Skip to main content
Top
Published in: Calcified Tissue International 1/2017

Open Access 01-07-2017 | Original Research

Bone Alkaline Phosphatase and Tartrate-Resistant Acid Phosphatase: Potential Co-regulators of Bone Mineralization

Authors: Cecilia Halling Linder, Barbro Ek-Rylander, Michael Krumpel, Maria Norgård, Sonoko Narisawa, José Luis Millán, Göran Andersson, Per Magnusson

Published in: Calcified Tissue International | Issue 1/2017

Login to get access

Abstract

Phosphorylated osteopontin (OPN) inhibits hydroxyapatite crystal formation and growth, and bone alkaline phosphatase (BALP) promotes extracellular mineralization via the release of inorganic phosphate from the mineralization inhibitor inorganic pyrophosphate (PPi). Tartrate-resistant acid phosphatase (TRAP), produced by osteoclasts, osteoblasts, and osteocytes, exhibits potent phosphatase activity towards OPN; however, its potential capacity as a regulator of mineralization has not previously been addressed. We compared the efficiency of BALP and TRAP towards the endogenous substrates for BALP, i.e., PPi and pyridoxal 5′-phosphate (PLP), and their impact on mineralization in vitro via dephosphorylation of bovine milk OPN. TRAP showed higher phosphatase activity towards phosphorylated OPN and PPi compared to BALP, whereas the activity of TRAP and BALP towards PLP was comparable. Bovine milk OPN could be completely dephosphorylated by TRAP, liberating all its 28 phosphates, whereas BALP dephosphorylated at most 10 phosphates. OPN, dephosphorylated by either BALP or TRAP, showed a partially or completely attenuated phosphorylation-dependent inhibitory capacity, respectively, compared to native OPN on the formation of mineralized nodules. Thus, there are phosphorylations in OPN important for inhibition of mineralization that are removed by TRAP but not by BALP. In conclusion, our data indicate that both BALP and TRAP can alleviate the inhibitory effect of OPN on mineralization, suggesting a potential role for TRAP in skeletal mineralization. Further studies are warranted to explore the possible physiological relevance of TRAP in bone mineralization.
Literature
1.
go back to reference McNally EA, Schwarcz HP, Botton GA, Arsenault AL (2012) A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS ONE 7:e29258CrossRefPubMedPubMedCentral McNally EA, Schwarcz HP, Botton GA, Arsenault AL (2012) A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS ONE 7:e29258CrossRefPubMedPubMedCentral
2.
go back to reference Mahamid J, Addadi L, Weiner S (2011) Crystallization pathways in bone. Cells Tissues Organs 194:92–97CrossRefPubMed Mahamid J, Addadi L, Weiner S (2011) Crystallization pathways in bone. Cells Tissues Organs 194:92–97CrossRefPubMed
3.
go back to reference Millán JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 93:299–306CrossRefPubMed Millán JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 93:299–306CrossRefPubMed
4.
go back to reference Hunter GK (2013) Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int 93:348–354CrossRefPubMed Hunter GK (2013) Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int 93:348–354CrossRefPubMed
5.
go back to reference Cui L, Houston DA, Farquharson C, MacRae VE (2016) Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 87:147–158CrossRefPubMed Cui L, Houston DA, Farquharson C, MacRae VE (2016) Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 87:147–158CrossRefPubMed
6.
go back to reference Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71:145–154CrossRefPubMed Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71:145–154CrossRefPubMed
7.
go back to reference Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sorensen ES (2005) Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390:285–292CrossRefPubMedPubMedCentral Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sorensen ES (2005) Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390:285–292CrossRefPubMedPubMedCentral
8.
go back to reference Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300:723–728CrossRefPubMedPubMedCentral Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300:723–728CrossRefPubMedPubMedCentral
9.
go back to reference Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS (2001) Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 280:460–465CrossRefPubMed Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS (2001) Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 280:460–465CrossRefPubMed
11.
go back to reference Keykhosravani M, Doherty-Kirby A, Zhang C, Brewer D, Goldberg HA, Hunter GK, Lajoie G (2005) Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry. BioChemistry 44:6990–7003CrossRefPubMed Keykhosravani M, Doherty-Kirby A, Zhang C, Brewer D, Goldberg HA, Hunter GK, Lajoie G (2005) Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry. BioChemistry 44:6990–7003CrossRefPubMed
12.
go back to reference Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, Xiao J, Grishin NV, Dixon JE (2012) Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336:1150–1153CrossRefPubMedPubMedCentral Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, Xiao J, Grishin NV, Dixon JE (2012) Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336:1150–1153CrossRefPubMedPubMedCentral
13.
go back to reference Holt C, Sorensen ES, Clegg RA (2009) Role of calcium phosphate nanoclusters in the control of calcification. FEBS J 276:2308–2323CrossRefPubMed Holt C, Sorensen ES, Clegg RA (2009) Role of calcium phosphate nanoclusters in the control of calcification. FEBS J 276:2308–2323CrossRefPubMed
14.
go back to reference Ek-Rylander B, Andersson G (2010) Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate-resistant acid phosphatase. Exp Cell Res 316:443–451CrossRefPubMed Ek-Rylander B, Andersson G (2010) Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate-resistant acid phosphatase. Exp Cell Res 316:443–451CrossRefPubMed
15.
go back to reference Christensen B, Petersen TE, Sorensen ES (2008) Post-translational modification and proteolytic processing of urinary osteopontin. Biochem J 411:53–61CrossRefPubMed Christensen B, Petersen TE, Sorensen ES (2008) Post-translational modification and proteolytic processing of urinary osteopontin. Biochem J 411:53–61CrossRefPubMed
16.
go back to reference Sorensen ES, Hojrup P, Petersen TE (1995) Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci 4:2040–2049CrossRefPubMedPubMedCentral Sorensen ES, Hojrup P, Petersen TE (1995) Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci 4:2040–2049CrossRefPubMedPubMedCentral
17.
go back to reference Kirstein B, Chambers TJ, Fuller K (2006) Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem 98:1085–1094CrossRefPubMed Kirstein B, Chambers TJ, Fuller K (2006) Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem 98:1085–1094CrossRefPubMed
18.
go back to reference Lau KH, Baylink DJ (2003) Osteoblastic tartrate-resistant acid phosphatase: its potential role in the molecular mechanism of osteogenic action of fluoride. J Bone Miner Res 18:1897–1900CrossRefPubMed Lau KH, Baylink DJ (2003) Osteoblastic tartrate-resistant acid phosphatase: its potential role in the molecular mechanism of osteogenic action of fluoride. J Bone Miner Res 18:1897–1900CrossRefPubMed
19.
go back to reference Solberg LB, Brorson SH, Stordalen GA, Baekkevold ES, Andersson G, Reinholt FP (2014) Increased tartrate-resistant acid phosphatase expression in osteoblasts and osteocytes in experimental osteoporosis in rats. Calcif Tissue Int 94:510–521CrossRefPubMedPubMedCentral Solberg LB, Brorson SH, Stordalen GA, Baekkevold ES, Andersson G, Reinholt FP (2014) Increased tartrate-resistant acid phosphatase expression in osteoblasts and osteocytes in experimental osteoporosis in rats. Calcif Tissue Int 94:510–521CrossRefPubMedPubMedCentral
20.
go back to reference Ljusberg J, Ek-Rylander B, Andersson G (1999) Tartrate-resistant purple acid phosphatase is synthesized as a latent proenzyme and activated by cysteine proteinases. Biochem J 343:63–69CrossRefPubMedPubMedCentral Ljusberg J, Ek-Rylander B, Andersson G (1999) Tartrate-resistant purple acid phosphatase is synthesized as a latent proenzyme and activated by cysteine proteinases. Biochem J 343:63–69CrossRefPubMedPubMedCentral
21.
go back to reference Funhoff EG, Klaassen CH, Samyn B, Van Beeumen J, Averill BA (2001) The highly exposed loop region in mammalian purple acid phosphatase controls the catalytic activity. ChemBioChem 2:355–363CrossRefPubMed Funhoff EG, Klaassen CH, Samyn B, Van Beeumen J, Averill BA (2001) The highly exposed loop region in mammalian purple acid phosphatase controls the catalytic activity. ChemBioChem 2:355–363CrossRefPubMed
22.
go back to reference Ljusberg J, Wang Y, Lang P, Norgård M, Dodds R, Hultenby K, Ek-Rylander B, Andersson G (2005) Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem 280:28370–28381CrossRefPubMed Ljusberg J, Wang Y, Lang P, Norgård M, Dodds R, Hultenby K, Ek-Rylander B, Andersson G (2005) Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem 280:28370–28381CrossRefPubMed
23.
go back to reference Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjolander J, Lang P, Norgard M, Wang Y, Zhang SJ (2003) TRACP as an osteopontin phosphatase. J Bone Miner Res 18:1912–1915CrossRefPubMed Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjolander J, Lang P, Norgard M, Wang Y, Zhang SJ (2003) TRACP as an osteopontin phosphatase. J Bone Miner Res 18:1912–1915CrossRefPubMed
24.
go back to reference Millán JL (2006) Mammalian alkaline phosphatase. From biology to applications in medicine and biotechnology. Wiley, WeinheimCrossRef Millán JL (2006) Mammalian alkaline phosphatase. From biology to applications in medicine and biotechnology. Wiley, WeinheimCrossRef
25.
go back to reference Millán JL, Whyte MP (2016) Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98:398–416CrossRefPubMed Millán JL, Whyte MP (2016) Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98:398–416CrossRefPubMed
26.
go back to reference Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millán JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209CrossRefPubMedPubMedCentral Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millán JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209CrossRefPubMedPubMedCentral
27.
go back to reference Halling Linder C, Narisawa S, Millán JL, Magnusson P (2009) Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45:987–993CrossRefPubMed Halling Linder C, Narisawa S, Millán JL, Magnusson P (2009) Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45:987–993CrossRefPubMed
28.
go back to reference Krumpel M, Reithmeier A, Senge T, Baeumler TA, Frank M, Nyholm PG, Ek-Rylander B, Andersson G (2015) The small chemical enzyme inhibitor 5-phenylnicotinic acid/CD13 inhibits cell migration and invasion of tartrate-resistant acid phosphatase/ACP5-overexpressing MDA-MB-231 breast cancer cells. Exp Cell Res 339:154–162CrossRefPubMed Krumpel M, Reithmeier A, Senge T, Baeumler TA, Frank M, Nyholm PG, Ek-Rylander B, Andersson G (2015) The small chemical enzyme inhibitor 5-phenylnicotinic acid/CD13 inhibits cell migration and invasion of tartrate-resistant acid phosphatase/ACP5-overexpressing MDA-MB-231 breast cancer cells. Exp Cell Res 339:154–162CrossRefPubMed
29.
go back to reference Bayless KJ, Davis GE, Meininger GA (1997) Isolation and biological properties of osteopontin from bovine milk. Protein Expr Purif 9:309–314CrossRefPubMed Bayless KJ, Davis GE, Meininger GA (1997) Isolation and biological properties of osteopontin from bovine milk. Protein Expr Purif 9:309–314CrossRefPubMed
30.
go back to reference Bonewald LF, Harris SE, Rosser J, Dallas MR, Dallas SL, Camacho NP, Boyan B, Boskey A (2003) von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 72:537–547CrossRefPubMed Bonewald LF, Harris SE, Rosser J, Dallas MR, Dallas SL, Camacho NP, Boyan B, Boskey A (2003) von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 72:537–547CrossRefPubMed
31.
go back to reference Wang YH, Liu Y, Maye P, Rowe DW (2006) Examination of mineralized nodule formation in living osteoblastic cultures using fluorescent dyes. Biotechnol Prog 22:1697–1701CrossRefPubMedPubMedCentral Wang YH, Liu Y, Maye P, Rowe DW (2006) Examination of mineralized nodule formation in living osteoblastic cultures using fluorescent dyes. Biotechnol Prog 22:1697–1701CrossRefPubMedPubMedCentral
32.
go back to reference Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203CrossRefPubMed Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203CrossRefPubMed
33.
go back to reference Ek-Rylander B, Flores M, Wendel M, Heinegard D, Andersson G (1994) Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J Biol Chem 269:14853–14856PubMed Ek-Rylander B, Flores M, Wendel M, Heinegard D, Andersson G (1994) Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J Biol Chem 269:14853–14856PubMed
34.
go back to reference Lam KW, Lai LC, Burkart PT, Yam LT (1977) Kinetic properties of tartrate-resistant acid phosphatase isolated from human spleen with leukemic reticuloendotheliosis. J Biol Chem 252:3371–3373PubMed Lam KW, Lai LC, Burkart PT, Yam LT (1977) Kinetic properties of tartrate-resistant acid phosphatase isolated from human spleen with leukemic reticuloendotheliosis. J Biol Chem 252:3371–3373PubMed
35.
go back to reference Franz-Odendaal TA, Hall BK, Witten PE (2006) Buried alive: how osteoblasts become osteocytes. Dev Dyn 235:176–190CrossRefPubMed Franz-Odendaal TA, Hall BK, Witten PE (2006) Buried alive: how osteoblasts become osteocytes. Dev Dyn 235:176–190CrossRefPubMed
36.
go back to reference Kogawa M, Wijenayaka AR, Ormsby RT, Thomas GP, Anderson PH, Bonewald LF, Findlay DM, Atkins GJ (2013) Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2. J Bone Miner Res 28:2436–2448CrossRefPubMed Kogawa M, Wijenayaka AR, Ormsby RT, Thomas GP, Anderson PH, Bonewald LF, Findlay DM, Atkins GJ (2013) Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2. J Bone Miner Res 28:2436–2448CrossRefPubMed
37.
go back to reference Nango N, Kubota S, Hasegawa T, Yashiro W, Momose A, Matsuo K (2016) Osteocyte-directed bone demineralization along canaliculi. Bone 84:279–288CrossRefPubMed Nango N, Kubota S, Hasegawa T, Yashiro W, Momose A, Matsuo K (2016) Osteocyte-directed bone demineralization along canaliculi. Bone 84:279–288CrossRefPubMed
38.
go back to reference Addison WN, McKee MD (2010) ASARM mineralization hypothesis: a bridge to progress. J Bone Miner Res 25:1191–1192CrossRefPubMed Addison WN, McKee MD (2010) ASARM mineralization hypothesis: a bridge to progress. J Bone Miner Res 25:1191–1192CrossRefPubMed
39.
go back to reference Hunter GK, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem J 302:175–179CrossRefPubMedPubMedCentral Hunter GK, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem J 302:175–179CrossRefPubMedPubMedCentral
40.
go back to reference Shapses SA, Cifuentes M, Spevak L, Chowdhury H, Brittingham J, Boskey AL, Denhardt DT (2003) Osteopontin facilitates bone resorption, decreasing bone mineral crystallinity and content during calcium deficiency. Calcif Tissue Int 73:86–92CrossRefPubMed Shapses SA, Cifuentes M, Spevak L, Chowdhury H, Brittingham J, Boskey AL, Denhardt DT (2003) Osteopontin facilitates bone resorption, decreasing bone mineral crystallinity and content during calcium deficiency. Calcif Tissue Int 73:86–92CrossRefPubMed
41.
go back to reference Harmey D, Johnson KA, Zelken J, Camacho NP, Hoylaerts MF, Noda M, Terkeltaub R, Millán JL (2006) Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2 −/− mice. J Bone Miner Res 21:1377–1386CrossRefPubMed Harmey D, Johnson KA, Zelken J, Camacho NP, Hoylaerts MF, Noda M, Terkeltaub R, Millán JL (2006) Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2 −/− mice. J Bone Miner Res 21:1377–1386CrossRefPubMed
42.
go back to reference Narisawa S, Yadav MC, Millán JL (2013) In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res 28:1587–1598CrossRefPubMedPubMedCentral Narisawa S, Yadav MC, Millán JL (2013) In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res 28:1587–1598CrossRefPubMedPubMedCentral
43.
go back to reference Neame PJ, Butler WT (1996) Posttranslational modification in rat bone osteopontin. Connect Tissue Res 35:145–150CrossRefPubMed Neame PJ, Butler WT (1996) Posttranslational modification in rat bone osteopontin. Connect Tissue Res 35:145–150CrossRefPubMed
44.
go back to reference Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM (1996) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122:3151–3162PubMed Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM (1996) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122:3151–3162PubMed
45.
go back to reference An J, Briggs TA, Dumax-Vorzet A, Alarcon-Riquelme ME, Belot A, Beresford M, Bruce IN,, Carvalho C, Chaperot L, Frostegard J, Plumas J, Rice GI, Vyse TJ, Wiedeman A, Crow YJ, Elkon KB (2017) Tartrate-resistant acid phosphatase deficiency in the predisposition to systemic lupus erythematosus. Arthritis Rheumatol 69:131–142CrossRefPubMed An J, Briggs TA, Dumax-Vorzet A, Alarcon-Riquelme ME, Belot A, Beresford M, Bruce IN,, Carvalho C, Chaperot L, Frostegard J, Plumas J, Rice GI, Vyse TJ, Wiedeman A, Crow YJ, Elkon KB (2017) Tartrate-resistant acid phosphatase deficiency in the predisposition to systemic lupus erythematosus. Arthritis Rheumatol 69:131–142CrossRefPubMed
46.
go back to reference Briggs TA, Rice GI, Daly S, Urquhart J, Gornall H, Bader-Meunier B, Baskar K, Baskar S, Baudouin V, Beresford MW, Black GC, Dearman RJ, de Zegher F, Foster ES, Frances C, Hayman AR, Hilton E, Job-Deslandre C, Kulkarni ML, Le Merrer M, Linglart A, Lovell SC, Maurer K, Musset L, Navarro V, Picard C, Puel A, Rieux-Laucat F, Roifman CM, Scholl-Burgi S, Smith N, Szynkiewicz M, Wiedeman A, Wouters C, Zeef LA, Casanova JL, Elkon KB, Janckila A, Lebon P, Crow YJ (2011) Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 43:127–131CrossRefPubMed Briggs TA, Rice GI, Daly S, Urquhart J, Gornall H, Bader-Meunier B, Baskar K, Baskar S, Baudouin V, Beresford MW, Black GC, Dearman RJ, de Zegher F, Foster ES, Frances C, Hayman AR, Hilton E, Job-Deslandre C, Kulkarni ML, Le Merrer M, Linglart A, Lovell SC, Maurer K, Musset L, Navarro V, Picard C, Puel A, Rieux-Laucat F, Roifman CM, Scholl-Burgi S, Smith N, Szynkiewicz M, Wiedeman A, Wouters C, Zeef LA, Casanova JL, Elkon KB, Janckila A, Lebon P, Crow YJ (2011) Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 43:127–131CrossRefPubMed
47.
go back to reference Lausch E, Janecke A, Bros M, Trojandt S, Alanay Y, De Laet C, Hubner CA, Meinecke P, Nishimura G, Matsuo M, Hirano Y, Tenoutasse S, Kiss A, Rosa RF, Unger SL, Renella R, Bonafe L, Spranger J, Unger S, Zabel B, Superti-Furga A (2011) Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet 43:132–137CrossRefPubMed Lausch E, Janecke A, Bros M, Trojandt S, Alanay Y, De Laet C, Hubner CA, Meinecke P, Nishimura G, Matsuo M, Hirano Y, Tenoutasse S, Kiss A, Rosa RF, Unger SL, Renella R, Bonafe L, Spranger J, Unger S, Zabel B, Superti-Furga A (2011) Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet 43:132–137CrossRefPubMed
48.
go back to reference Zenger S, Hollberg K, Ljusberg J, Norgard M, Ek-Rylander B, Kiviranta R, Andersson G (2007) Proteolytic processing and polarized secretion of tartrate-resistant acid phosphatase is altered in a subpopulation of metaphyseal osteoclasts in cathepsin K-deficient mice. Bone 41:820–832CrossRefPubMed Zenger S, Hollberg K, Ljusberg J, Norgard M, Ek-Rylander B, Kiviranta R, Andersson G (2007) Proteolytic processing and polarized secretion of tartrate-resistant acid phosphatase is altered in a subpopulation of metaphyseal osteoclasts in cathepsin K-deficient mice. Bone 41:820–832CrossRefPubMed
49.
go back to reference Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77:45–54CrossRefPubMedPubMedCentral Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77:45–54CrossRefPubMedPubMedCentral
Metadata
Title
Bone Alkaline Phosphatase and Tartrate-Resistant Acid Phosphatase: Potential Co-regulators of Bone Mineralization
Authors
Cecilia Halling Linder
Barbro Ek-Rylander
Michael Krumpel
Maria Norgård
Sonoko Narisawa
José Luis Millán
Göran Andersson
Per Magnusson
Publication date
01-07-2017
Publisher
Springer US
Published in
Calcified Tissue International / Issue 1/2017
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-017-0259-2

Other articles of this Issue 1/2017

Calcified Tissue International 1/2017 Go to the issue