Skip to main content
Top
Published in: Diabetologia 3/2018

Open Access 01-03-2018 | Short Communication

Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation

Authors: Laween Uthman, Antonius Baartscheer, Boris Bleijlevens, Cees A. Schumacher, Jan W. T. Fiolet, Anneke Koeman, Milena Jancev, Markus W. Hollmann, Nina C. Weber, Ruben Coronel, Coert J. Zuurbier

Published in: Diabetologia | Issue 3/2018

Login to get access

Abstract

Aims/hypothesis

Sodium–glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i) constitute a novel class of glucose-lowering (type 2) kidney-targeted agents. We recently reported that the SGLT2i empagliflozin (EMPA) reduced cardiac cytosolic Na+ ([Na+]c) and cytosolic Ca2+ ([Ca2+]c) concentrations through inhibition of Na+/H+ exchanger (NHE). Here, we examine (1) whether the SGLT2i dapagliflozin (DAPA) and canagliflozin (CANA) also inhibit NHE and reduce [Na+]c; (2) a structural model for the interaction of SGLT2i to NHE; (3) to what extent SGLT2i affect the haemodynamic and metabolic performance of isolated hearts of healthy mice.

Methods

Cardiac NHE activity and [Na+]c in mouse cardiomyocytes were measured in the presence of clinically relevant concentrations of EMPA (1 μmol/l), DAPA (1 μmol/l), CANA (3 μmol/l) or vehicle. NHE docking simulation studies were applied to explore potential binding sites for SGTL2i. Constant-flow Langendorff-perfused mouse hearts were subjected to SGLT2i for 30 min, and cardiovascular function, O2 consumption and energetics (phosphocreatine (PCr)/ATP) were determined.

Results

EMPA, DAPA and CANA inhibited NHE activity (measured through low pH recovery after NH4 + pulse: EMPA 6.69 ± 0.09, DAPA 6.77 ± 0.12 and CANA 6.80 ± 0.18 vs vehicle 7.09 ± 0.09; p < 0.001 for all three comparisons) and reduced [Na+]c (in mmol/l: EMPA 10.0 ± 0.5, DAPA 10.7 ± 0.7 and CANA 11.0 ± 0.9 vs vehicle 12.7 ± 0.7; p < 0.001). Docking studies provided high binding affinity of all three SGLT2i with the extracellular Na+-binding site of NHE. EMPA and CANA, but not DAPA, induced coronary vasodilation of the intact heart. PCr/ATP remained unaffected.

Conclusions/interpretation

EMPA, DAPA and CANA directly inhibit cardiac NHE flux and reduce [Na+]c, possibly by binding with the Na+-binding site of NHE-1. Furthermore, EMPA and CANA affect the healthy heart by inducing vasodilation. The [Na+]c-lowering class effect of SGLT2i is a potential approach to combat elevated [Na+]c that is known to occur in heart failure and diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reddy RPM, Inzucchi SE (2016) SGLT2 inhibitors in the management of type 2 diabetes. Endocrine 53:364–372CrossRef Reddy RPM, Inzucchi SE (2016) SGLT2 inhibitors in the management of type 2 diabetes. Endocrine 53:364–372CrossRef
2.
go back to reference Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMed Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMed
3.
go back to reference Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657CrossRefPubMed Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657CrossRefPubMed
4.
go back to reference Baartscheer A, Schumacher CA, Wüst RCI et al (2017) Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60:568–573CrossRefPubMed Baartscheer A, Schumacher CA, Wüst RCI et al (2017) Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60:568–573CrossRefPubMed
5.
go back to reference Yokoyama H, Gunasegaram S, Harding SE, Avkiran M (2000) Sarcolemmal Na+/H+ exchanger activity and expression in human ventricular myocardium. J Am Coll Cardiol 36:534–540CrossRefPubMed Yokoyama H, Gunasegaram S, Harding SE, Avkiran M (2000) Sarcolemmal Na+/H+ exchanger activity and expression in human ventricular myocardium. J Am Coll Cardiol 36:534–540CrossRefPubMed
6.
go back to reference Baartscheer A, Schumacher CA, Van Borren MMGJ, Belterman CNW, Coronel R, Fiolet JWT (2003) Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 57:1015–1024CrossRefPubMed Baartscheer A, Schumacher CA, Van Borren MMGJ, Belterman CNW, Coronel R, Fiolet JWT (2003) Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 57:1015–1024CrossRefPubMed
7.
go back to reference Despa S, Islam MA, Weber CR, Pogwizd SM, Bers DM (2002) Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 105:2543–2548CrossRefPubMed Despa S, Islam MA, Weber CR, Pogwizd SM, Bers DM (2002) Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 105:2543–2548CrossRefPubMed
8.
go back to reference Darmellah A, Baetz D, Prunier F, Tamareille S (2007) Enhanced activity of the myocardial Na+/H+ exchanger contributes to left ventricular hypertrophy in the Goto–Kakizaki rat model of type 2 diabetes: critical role of Akt. Diabetologia 50:1335–1344CrossRefPubMed Darmellah A, Baetz D, Prunier F, Tamareille S (2007) Enhanced activity of the myocardial Na+/H+ exchanger contributes to left ventricular hypertrophy in the Goto–Kakizaki rat model of type 2 diabetes: critical role of Akt. Diabetologia 50:1335–1344CrossRefPubMed
9.
go back to reference Lambert R, Srodulski S, Peng X et al (2015) Intracellular Na+ concentration ([Na+]i) is elevated in diabetic hearts due to enhanced Na+-glucose cotransport. J Am Heart Assoc 4:e002183CrossRefPubMedPubMedCentral Lambert R, Srodulski S, Peng X et al (2015) Intracellular Na+ concentration ([Na+]i) is elevated in diabetic hearts due to enhanced Na+-glucose cotransport. J Am Heart Assoc 4:e002183CrossRefPubMedPubMedCentral
10.
go back to reference Scheen AJ (2014) Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations. Expert Opin Drug Metab Toxicol 10:647–663CrossRefPubMed Scheen AJ (2014) Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations. Expert Opin Drug Metab Toxicol 10:647–663CrossRefPubMed
11.
go back to reference Trott O, Olson A (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461PubMedPubMedCentral Trott O, Olson A (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461PubMedPubMedCentral
12.
go back to reference Pogwizd SM, Sipido KR, Verdonck F, Bers DM (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57:887–896CrossRefPubMed Pogwizd SM, Sipido KR, Verdonck F, Bers DM (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57:887–896CrossRefPubMed
13.
14.
go back to reference Baartscheer A, Hardziyenka M, Schumacher CA (2008) Chronic inhibition of the Na+/H+-exchanger causes regression of hypertrophy, heart failure, and ionic and electrophysiological remodeling. Br J Pharmacol 154:1266–1275CrossRefPubMedPubMedCentral Baartscheer A, Hardziyenka M, Schumacher CA (2008) Chronic inhibition of the Na+/H+-exchanger causes regression of hypertrophy, heart failure, and ionic and electrophysiological remodeling. Br J Pharmacol 154:1266–1275CrossRefPubMedPubMedCentral
15.
go back to reference Lacroix J, Poët M, Maehrel C, Counillon L (2004) A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens. EMBO Rep 5:91–96CrossRefPubMed Lacroix J, Poët M, Maehrel C, Counillon L (2004) A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens. EMBO Rep 5:91–96CrossRefPubMed
16.
go back to reference Oelze M, Kröller-Schön S, Welschof P et al (2014) The sodium–glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One 9:1–13CrossRef Oelze M, Kröller-Schön S, Welschof P et al (2014) The sodium–glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One 9:1–13CrossRef
17.
go back to reference Salim HM, Fukuda D, Yagi S, Soeki T, Shimabukuro M, Sata M (2016) Glycemic control with ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated endothelial dysfunction in streptozotocin-induced diabetic mouse. Front Cardiovasc Med 3:1–9CrossRef Salim HM, Fukuda D, Yagi S, Soeki T, Shimabukuro M, Sata M (2016) Glycemic control with ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated endothelial dysfunction in streptozotocin-induced diabetic mouse. Front Cardiovasc Med 3:1–9CrossRef
18.
go back to reference Wang S, Peng Q, Zhang J, Liu L (2008) Na+/H+ exchanger is required for hyperglycaemia-induced endothelial dysfunction via calcium-dependent calpain. Cardiovasc Res 80:255–262CrossRefPubMed Wang S, Peng Q, Zhang J, Liu L (2008) Na+/H+ exchanger is required for hyperglycaemia-induced endothelial dysfunction via calcium-dependent calpain. Cardiovasc Res 80:255–262CrossRefPubMed
19.
go back to reference Abdurrachim D, Manders E, Nicolay K, Prompers J, Mayoux E (2017) The effect of a single dose of empagliflozin on cardiac energy status in diabetic mice. Diabetes 66:A125 Abdurrachim D, Manders E, Nicolay K, Prompers J, Mayoux E (2017) The effect of a single dose of empagliflozin on cardiac energy status in diabetic mice. Diabetes 66:A125
Metadata
Title
Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation
Authors
Laween Uthman
Antonius Baartscheer
Boris Bleijlevens
Cees A. Schumacher
Jan W. T. Fiolet
Anneke Koeman
Milena Jancev
Markus W. Hollmann
Nina C. Weber
Ruben Coronel
Coert J. Zuurbier
Publication date
01-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 3/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4509-7

Other articles of this Issue 3/2018

Diabetologia 3/2018 Go to the issue

Up front

Up front