Skip to main content
Top
Published in: Diabetologia 3/2017

Open Access 01-03-2017 | Short Communication

Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits

Authors: Antonius Baartscheer, Cees A. Schumacher, Rob C. I. Wüst, Jan W. T. Fiolet, Ger J. M. Stienen, Ruben Coronel, Coert J. Zuurbier

Published in: Diabetologia | Issue 3/2017

Login to get access

Abstract

Aims/hypothesis

Empagliflozin (EMPA), an inhibitor of the renal sodium–glucose cotransporter (SGLT) 2, reduces the risk of cardiovascular death in patients with type 2 diabetes. The underlying mechanism of this effect is unknown. Elevated cardiac cytoplasmic Na+ ([Na+]c) and Ca2+ ([Ca2+]c) concentrations and decreased mitochondrial Ca2+ concentration ([Ca2+]m) are drivers of heart failure and cardiac death. We therefore hypothesised that EMPA would directly modify [Na+]c, [Ca2+]c and [Ca2+]m in cardiomyocytes.

Methods

[Na+]c, [Ca2+]c, [Ca 2+]m and Na+/H+ exchanger (NHE) activity were measured fluorometrically in isolated ventricular myocytes from rabbits and rats.

Results

An increase in extracellular glucose, from 5.5 mmol/l to 11 mmol/l, resulted in increased [Na+]c and [Ca2+]c levels. EMPA treatment directly inhibited NHE flux, caused a reduction in [Na+]c and [Ca2+]c and increased [Ca2+]m. After pretreatment with the NHE inhibitor, Cariporide, these effects of EMPA were strongly reduced. EMPA also affected [Na+]c and NHE flux in the absence of extracellular glucose.

Conclusions/interpretation

The glucose lowering kidney-targeted agent, EMPA, demonstrates direct cardiac effects by lowering myocardial [Na+]c and [Ca2+]c and enhancing [Ca2+]m, through impairment of myocardial NHE flux, independent of SGLT2 activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zinman B, Wanner C, Lachin JM et al (2015) EMPA-REG OUTCOME investigators. Empagliflozin, cardiovascular outcomes and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMed Zinman B, Wanner C, Lachin JM et al (2015) EMPA-REG OUTCOME investigators. Empagliflozin, cardiovascular outcomes and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMed
2.
3.
go back to reference Baartscheer A, Schumacher CA, Borren MM, Belterman CN, Coronel R, Fiolet JW (2003) Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 57:1015–1024CrossRefPubMed Baartscheer A, Schumacher CA, Borren MM, Belterman CN, Coronel R, Fiolet JW (2003) Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 57:1015–1024CrossRefPubMed
4.
go back to reference Despa S, Islam MA, Pogwizd SM, Bers DM (2002) Intracellular Na+ concentration is elevated in heart failure, but Na/K pump function is unchanged. Circulation 105:2543–2548CrossRefPubMed Despa S, Islam MA, Pogwizd SM, Bers DM (2002) Intracellular Na+ concentration is elevated in heart failure, but Na/K pump function is unchanged. Circulation 105:2543–2548CrossRefPubMed
5.
go back to reference Liu T, Takimoto E, Dimaano VL et al (2014) Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden cardiac death in a guinea pig model of heart failure. Circ Res 115:44–54CrossRefPubMedPubMedCentral Liu T, Takimoto E, Dimaano VL et al (2014) Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden cardiac death in a guinea pig model of heart failure. Circ Res 115:44–54CrossRefPubMedPubMedCentral
6.
go back to reference Pogwizd SM, Sipido KR, Verdonck F, Bers DM (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57:887–896CrossRefPubMed Pogwizd SM, Sipido KR, Verdonck F, Bers DM (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57:887–896CrossRefPubMed
7.
go back to reference Liu T, O’Rourke B (2008) Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res 103:279–288CrossRefPubMedPubMedCentral Liu T, O’Rourke B (2008) Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res 103:279–288CrossRefPubMedPubMedCentral
8.
go back to reference Hamouda NN, Sydorenko V, Qureshi MA, Alkaabi JM, Oz M, Howarth FC (2015) Dapagliflozin reduces the amplitude of shortening and Ca2+ transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem 400:57–68CrossRefPubMed Hamouda NN, Sydorenko V, Qureshi MA, Alkaabi JM, Oz M, Howarth FC (2015) Dapagliflozin reduces the amplitude of shortening and Ca2+ transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem 400:57–68CrossRefPubMed
9.
go back to reference Van Steenbergen A, Balteau M, Scholasse J et al (2015) Identification of a glucose sensor in the heart. Eur Heart J 36 (Suppl 1):381(abstract) Van Steenbergen A, Balteau M, Scholasse J et al (2015) Identification of a glucose sensor in the heart. Eur Heart J 36 (Suppl 1):381(abstract)
10.
go back to reference Lambert R, Srodulski S, Peng X et al (2015) Intracellular Na+ concentration ([Na+]i) is elevated in diabetic hearts due to enhanced Na + -glucose cotransport. J Am Heart Assoc 4, e002183CrossRefPubMedPubMedCentral Lambert R, Srodulski S, Peng X et al (2015) Intracellular Na+ concentration ([Na+]i) is elevated in diabetic hearts due to enhanced Na + -glucose cotransport. J Am Heart Assoc 4, e002183CrossRefPubMedPubMedCentral
11.
go back to reference Vrhovac I, Balen Eror D, Klessen D et al (2015) Localizations of Na + -D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 467:1881–1898CrossRefPubMed Vrhovac I, Balen Eror D, Klessen D et al (2015) Localizations of Na + -D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 467:1881–1898CrossRefPubMed
12.
go back to reference Heise T, Seman MS, Macha S (2013) Safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple rising doses of Empagliflozin in patients with type 2 diabetes mellitus. Diabetes Ther 4:331–345CrossRefPubMedPubMedCentral Heise T, Seman MS, Macha S (2013) Safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple rising doses of Empagliflozin in patients with type 2 diabetes mellitus. Diabetes Ther 4:331–345CrossRefPubMedPubMedCentral
13.
go back to reference Grempler R, Thomas L, Eckhardt M et al (2012) Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterization and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab 14:83–90CrossRefPubMed Grempler R, Thomas L, Eckhardt M et al (2012) Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterization and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab 14:83–90CrossRefPubMed
14.
go back to reference Kohlhaas M, Liu T, Knopp A et al (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613CrossRefPubMedPubMedCentral Kohlhaas M, Liu T, Knopp A et al (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613CrossRefPubMedPubMedCentral
15.
go back to reference Balestra GM, Mik EG, Eerbeek O, Specht PA, van der Laarse WJ, Zuurbier CJ (2015) Increased in vivo mitochondrial oxygenation with right ventricular failure induced by pulmonary arterial hypertension: mitochondrial inhibition as driver of cardiac failure? Respir Res 16:6CrossRefPubMedPubMedCentral Balestra GM, Mik EG, Eerbeek O, Specht PA, van der Laarse WJ, Zuurbier CJ (2015) Increased in vivo mitochondrial oxygenation with right ventricular failure induced by pulmonary arterial hypertension: mitochondrial inhibition as driver of cardiac failure? Respir Res 16:6CrossRefPubMedPubMedCentral
16.
go back to reference Baartscheer A, Hardziyenka M, Schumacher CA (2008) Chronic inhibition of the Na+/H+ - exchanger causes regression of hypertrophy, heart failure, and ionic and electrophysiological remodeling. Br J Pharmacol 154:1266–1275CrossRefPubMedPubMedCentral Baartscheer A, Hardziyenka M, Schumacher CA (2008) Chronic inhibition of the Na+/H+ - exchanger causes regression of hypertrophy, heart failure, and ionic and electrophysiological remodeling. Br J Pharmacol 154:1266–1275CrossRefPubMedPubMedCentral
17.
go back to reference Baartscheer A, Schumacher CA, van Borren MM et al (2005) Chronic inhibition of Na+/H+-exchanger attenuates cardiac hypertrophy and prevents cellular remodeling in heart failure. Cardiovasc Res 65:83–92CrossRefPubMed Baartscheer A, Schumacher CA, van Borren MM et al (2005) Chronic inhibition of Na+/H+-exchanger attenuates cardiac hypertrophy and prevents cellular remodeling in heart failure. Cardiovasc Res 65:83–92CrossRefPubMed
Metadata
Title
Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits
Authors
Antonius Baartscheer
Cees A. Schumacher
Rob C. I. Wüst
Jan W. T. Fiolet
Ger J. M. Stienen
Ruben Coronel
Coert J. Zuurbier
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 3/2017
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4134-x

Other articles of this Issue 3/2017

Diabetologia 3/2017 Go to the issue