Skip to main content
Top
Published in: Diabetologia 1/2018

01-01-2018 | Article

Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity

Authors: Jonathan R. Weitz, Madina Makhmutova, Joana Almaça, Julia Stertmann, Kristie Aamodt, Marcela Brissova, Stephan Speier, Rayner Rodriguez-Diaz, Alejandro Caicedo

Published in: Diabetologia | Issue 1/2018

Login to get access

Abstract

Aims/hypothesis

Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells.

Methods

To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca2+ indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells.

Results

Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity.

Conclusions/interpretation

Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jacques-Silva MC, Correa-Medina M, Cabrera O et al (2010) ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci U S A 107:6465–6470CrossRefPubMedPubMedCentral Jacques-Silva MC, Correa-Medina M, Cabrera O et al (2010) ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci U S A 107:6465–6470CrossRefPubMedPubMedCentral
2.
go back to reference Almaca J, Molina J, Menegaz D et al (2016) Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep 17:3281–3291CrossRefPubMed Almaca J, Molina J, Menegaz D et al (2016) Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep 17:3281–3291CrossRefPubMed
3.
4.
go back to reference Szalay G, Martinecz B, Lenart N et al (2016) Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7:11499CrossRefPubMedPubMedCentral Szalay G, Martinecz B, Lenart N et al (2016) Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7:11499CrossRefPubMedPubMedCentral
5.
go back to reference Westphalen K, Gusarova GA, Islam MN et al (2014) Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506:503–506CrossRefPubMedPubMedCentral Westphalen K, Gusarova GA, Islam MN et al (2014) Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506:503–506CrossRefPubMedPubMedCentral
6.
go back to reference Banaei-Bouchareb L, Gouon-Evans V, Samara-Boustani D et al (2004) Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J Leukoc Biol 76:359–367CrossRefPubMed Banaei-Bouchareb L, Gouon-Evans V, Samara-Boustani D et al (2004) Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J Leukoc Biol 76:359–367CrossRefPubMed
7.
go back to reference Brissova M, Aamodt K, Brahmachary P et al (2014) Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes beta cell regeneration. Cell Metab 19:498–511CrossRefPubMedPubMedCentral Brissova M, Aamodt K, Brahmachary P et al (2014) Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes beta cell regeneration. Cell Metab 19:498–511CrossRefPubMedPubMedCentral
8.
go back to reference Riley KG, Pasek RC, Maulis MF et al (2015) Macrophages are essential for CTGF-mediated adult beta-cell proliferation after injury. Mol Metab 4:584–591CrossRefPubMedPubMedCentral Riley KG, Pasek RC, Maulis MF et al (2015) Macrophages are essential for CTGF-mediated adult beta-cell proliferation after injury. Mol Metab 4:584–591CrossRefPubMedPubMedCentral
9.
go back to reference Calderon B, Carrero JA, Ferris ST et al (2015) The pancreas anatomy conditions the origin and properties of resident macrophages. J Exp Med 212:1497–1512CrossRefPubMedPubMedCentral Calderon B, Carrero JA, Ferris ST et al (2015) The pancreas anatomy conditions the origin and properties of resident macrophages. J Exp Med 212:1497–1512CrossRefPubMedPubMedCentral
11.
go back to reference Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9CrossRefPubMed Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9CrossRefPubMed
12.
go back to reference Criscimanna A, Coudriet GM, Gittes GK, Piganelli JD, Esni F (2014) Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice. Gastroenterology 147:1106–1118 e11CrossRefPubMed Criscimanna A, Coudriet GM, Gittes GK, Piganelli JD, Esni F (2014) Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice. Gastroenterology 147:1106–1118 e11CrossRefPubMed
13.
go back to reference Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256–266CrossRefPubMed Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256–266CrossRefPubMed
14.
go back to reference Marciniak A, Cohrs CM, Tsata V et al (2014) Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nat Protoc 9:2809–2822CrossRefPubMed Marciniak A, Cohrs CM, Tsata V et al (2014) Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nat Protoc 9:2809–2822CrossRefPubMed
15.
go back to reference Chamberlain LM, Holt-Casper D, Gonzalez-Juarrero M, Grainger DW (2015) Extended culture of macrophages from different sources and maturation results in a common M2 phenotype. J Biomed Mater Res A 103:2864–2874CrossRefPubMedPubMedCentral Chamberlain LM, Holt-Casper D, Gonzalez-Juarrero M, Grainger DW (2015) Extended culture of macrophages from different sources and maturation results in a common M2 phenotype. J Biomed Mater Res A 103:2864–2874CrossRefPubMedPubMedCentral
16.
go back to reference Huang YC, Rupnik M, Gaisano HY (2011) Unperturbed islet α-cell function examined in mouse pancreas tissue slices. J Physiol 589:395–408CrossRefPubMed Huang YC, Rupnik M, Gaisano HY (2011) Unperturbed islet α-cell function examined in mouse pancreas tissue slices. J Physiol 589:395–408CrossRefPubMed
17.
go back to reference Lau HY, Wong FL, Bhatia M (2005) A key role of neurokinin 1 receptors in acute pancreatitis and associated lung injury. Biochem Biophys Res Commun 327:509–515CrossRefPubMed Lau HY, Wong FL, Bhatia M (2005) A key role of neurokinin 1 receptors in acute pancreatitis and associated lung injury. Biochem Biophys Res Commun 327:509–515CrossRefPubMed
18.
go back to reference Detimary P, Jonas JC, Henquin JC (1996) Stable and diffusible pools of nucleotides in pancreatic islet cells. Endocrinology 137:4671–4676CrossRefPubMed Detimary P, Jonas JC, Henquin JC (1996) Stable and diffusible pools of nucleotides in pancreatic islet cells. Endocrinology 137:4671–4676CrossRefPubMed
19.
go back to reference Ekholm R, Ericson LE, Lundquist I (1971) Monoamines in the pancreatic islets of the mouse. Subcellular localization of 5-hydroxytryptamine by electron microscopic autoradiography. Diabetologia 7:339–348CrossRefPubMed Ekholm R, Ericson LE, Lundquist I (1971) Monoamines in the pancreatic islets of the mouse. Subcellular localization of 5-hydroxytryptamine by electron microscopic autoradiography. Diabetologia 7:339–348CrossRefPubMed
20.
go back to reference Inoue K, Tsuda M (2012) Purinergic systems, neuropathic pain and the role of microglia. Exp Neurol 234:293–301CrossRefPubMed Inoue K, Tsuda M (2012) Purinergic systems, neuropathic pain and the role of microglia. Exp Neurol 234:293–301CrossRefPubMed
21.
go back to reference Konno M, Shirakawa H, Iida S et al (2012) Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia 60:761–770CrossRefPubMed Konno M, Shirakawa H, Iida S et al (2012) Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia 60:761–770CrossRefPubMed
22.
go back to reference Schwiebert EM, Zsembery A (2003) Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615:7–32CrossRefPubMed Schwiebert EM, Zsembery A (2003) Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615:7–32CrossRefPubMed
23.
go back to reference Hillaire-Buys D, Bertrand G, Gross R, Loubatieres-Mariani MM (1987) Evidence for an inhibitory A1 subtype adenosine receptor on pancreatic insulin-secreting cells. Eur J Pharmacol 136:109–112CrossRefPubMed Hillaire-Buys D, Bertrand G, Gross R, Loubatieres-Mariani MM (1987) Evidence for an inhibitory A1 subtype adenosine receptor on pancreatic insulin-secreting cells. Eur J Pharmacol 136:109–112CrossRefPubMed
24.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318CrossRefPubMed Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318CrossRefPubMed
25.
go back to reference Geisler JC, Corbin KL, Li Q, Feranchak AP, Nunemaker CS, Li C (2013) Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 154:675–684CrossRefPubMed Geisler JC, Corbin KL, Li Q, Feranchak AP, Nunemaker CS, Li C (2013) Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 154:675–684CrossRefPubMed
26.
go back to reference Hazama A, Hayashi S, Okada Y (1998) Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflugers Arch 437:31–35CrossRefPubMed Hazama A, Hayashi S, Okada Y (1998) Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflugers Arch 437:31–35CrossRefPubMed
27.
go back to reference Yang SN, Berggren PO (2006) The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocr Rev 27:621–676CrossRefPubMed Yang SN, Berggren PO (2006) The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocr Rev 27:621–676CrossRefPubMed
28.
go back to reference Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758CrossRefPubMed Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758CrossRefPubMed
29.
go back to reference Moghimi SM, Patel HM (1990) Calcium as a possible modulator of Kupffer cell phagocytic function by regulating liver-specific opsonic activity. Biochim Biophys Acta 1028:304–308CrossRefPubMed Moghimi SM, Patel HM (1990) Calcium as a possible modulator of Kupffer cell phagocytic function by regulating liver-specific opsonic activity. Biochim Biophys Acta 1028:304–308CrossRefPubMed
30.
go back to reference Lee CJ, Spalding AC, Ben-Josef E, Wang L, Simeone DM (2010) In vivo bioluminescent imaging of irradiated orthotopic pancreatic cancer xenografts in nonobese diabetic-severe combined immunodeficient mice: a novel method for targeting and assaying efficacy of ionizing radiation. Transl Oncol 3:153–159CrossRefPubMedPubMedCentral Lee CJ, Spalding AC, Ben-Josef E, Wang L, Simeone DM (2010) In vivo bioluminescent imaging of irradiated orthotopic pancreatic cancer xenografts in nonobese diabetic-severe combined immunodeficient mice: a novel method for targeting and assaying efficacy of ionizing radiation. Transl Oncol 3:153–159CrossRefPubMedPubMedCentral
31.
go back to reference Martinic MM, von Herrath MG (2008) Real-time imaging of the pancreas during development of diabetes. Immunol Rev 221:200–213CrossRefPubMed Martinic MM, von Herrath MG (2008) Real-time imaging of the pancreas during development of diabetes. Immunol Rev 221:200–213CrossRefPubMed
32.
go back to reference Turvey SE, Swart E, Denis MC et al (2005) Noninvasive imaging of pancreatic inflammation and its reversal in type 1 diabetes. J Clin Invest 115:2454–2461CrossRefPubMedPubMedCentral Turvey SE, Swart E, Denis MC et al (2005) Noninvasive imaging of pancreatic inflammation and its reversal in type 1 diabetes. J Clin Invest 115:2454–2461CrossRefPubMedPubMedCentral
33.
go back to reference Braun M, Wendt A, Karanauskaite J et al (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells. J General Physiol 129:221–231CrossRef Braun M, Wendt A, Karanauskaite J et al (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells. J General Physiol 129:221–231CrossRef
34.
go back to reference MacDonald PE, Braun M, Galvanovskis J, Rorsman P (2006) Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab 4:283–290CrossRefPubMed MacDonald PE, Braun M, Galvanovskis J, Rorsman P (2006) Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab 4:283–290CrossRefPubMed
35.
go back to reference Kronlage M, Song J, Sorokin L et al (2010) Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3:ra55CrossRefPubMed Kronlage M, Song J, Sorokin L et al (2010) Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3:ra55CrossRefPubMed
36.
37.
go back to reference Perregaux DG, McNiff P, Laliberte R, Conklyn M, Gabel CA (2000) ATP acts as an agonist to promote stimulus-induced secretion of IL-1 beta and IL-18 in human blood. J Immunol 165:4615–4623CrossRefPubMed Perregaux DG, McNiff P, Laliberte R, Conklyn M, Gabel CA (2000) ATP acts as an agonist to promote stimulus-induced secretion of IL-1 beta and IL-18 in human blood. J Immunol 165:4615–4623CrossRefPubMed
38.
go back to reference Comens PG, Wolf BA, Unanue ER, Lacy PE, McDaniel ML (1987) Interleukin 1 is potent modulator of insulin secretion from isolated rat islets of Langerhans. Diabetes 36:963–970CrossRefPubMed Comens PG, Wolf BA, Unanue ER, Lacy PE, McDaniel ML (1987) Interleukin 1 is potent modulator of insulin secretion from isolated rat islets of Langerhans. Diabetes 36:963–970CrossRefPubMed
39.
go back to reference Arnush M, Heitmeier MR, Scarim AL, Marino MH, Manning PT, Corbett JA (1998) IL-1 produced and released endogenously within human islets inhibits beta cell function. J Clin Invest 102:516–526CrossRefPubMedPubMedCentral Arnush M, Heitmeier MR, Scarim AL, Marino MH, Manning PT, Corbett JA (1998) IL-1 produced and released endogenously within human islets inhibits beta cell function. J Clin Invest 102:516–526CrossRefPubMedPubMedCentral
40.
41.
42.
go back to reference Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489CrossRefPubMedPubMedCentral Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489CrossRefPubMedPubMedCentral
44.
go back to reference Appels B, Burkart V, Kantwerk-Funke G, Funda J, Kolb-Bachofen V, Kolb H (1989) Spontaneous cytotoxicity of macrophages against pancreatic islet cells. J Immunol 142:3803–3808PubMed Appels B, Burkart V, Kantwerk-Funke G, Funda J, Kolb-Bachofen V, Kolb H (1989) Spontaneous cytotoxicity of macrophages against pancreatic islet cells. J Immunol 142:3803–3808PubMed
45.
go back to reference Burkart V, Kolb H (1996) Macrophages in islet destruction in autoimmune diabetes mellitus. Immunobiology 195:601–613CrossRefPubMed Burkart V, Kolb H (1996) Macrophages in islet destruction in autoimmune diabetes mellitus. Immunobiology 195:601–613CrossRefPubMed
46.
go back to reference Ferris ST, Carrero JA, Mohan JF, Calderon B, Murphy KM, Unanue ER (2014) A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity 41:657–669CrossRefPubMedPubMedCentral Ferris ST, Carrero JA, Mohan JF, Calderon B, Murphy KM, Unanue ER (2014) A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity 41:657–669CrossRefPubMedPubMedCentral
47.
go back to reference Hildner K, Edelson BT, Purtha WE et al (2008) Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:1097–1100CrossRefPubMedPubMedCentral Hildner K, Edelson BT, Purtha WE et al (2008) Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:1097–1100CrossRefPubMedPubMedCentral
48.
go back to reference Jansen A, Homo-Delarche F, Hooijkaas H, Leenen PJ, Dardenne M, Drexhage HA (1994) Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and β-cell destruction in NOD mice. Diabetes 43:667–675CrossRefPubMed Jansen A, Homo-Delarche F, Hooijkaas H, Leenen PJ, Dardenne M, Drexhage HA (1994) Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and β-cell destruction in NOD mice. Diabetes 43:667–675CrossRefPubMed
49.
go back to reference Kolb H, Burkart V, Appels B et al (1990) Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J Autoimmun 3(Suppl 1):117–120CrossRefPubMed Kolb H, Burkart V, Appels B et al (1990) Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J Autoimmun 3(Suppl 1):117–120CrossRefPubMed
50.
go back to reference Thornley TB, Agarwal KA, Kyriazis P et al (2016) Contrasting roles of islet resident immunoregulatory macrophages and dendritic cells in experimental autoimmune type 1 diabetes. PLoS One 11:e0150792CrossRefPubMedPubMedCentral Thornley TB, Agarwal KA, Kyriazis P et al (2016) Contrasting roles of islet resident immunoregulatory macrophages and dendritic cells in experimental autoimmune type 1 diabetes. PLoS One 11:e0150792CrossRefPubMedPubMedCentral
51.
go back to reference Vomund AN, Zinselmeyer BH, Hughes J et al (2015) Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells. Proc Natl Acad Sci U S A 112:E5496–E5502CrossRefPubMedPubMedCentral Vomund AN, Zinselmeyer BH, Hughes J et al (2015) Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells. Proc Natl Acad Sci U S A 112:E5496–E5502CrossRefPubMedPubMedCentral
52.
go back to reference Donath MY, Dalmas E, Sauter NS, Boni-Schnetzler M (2013) Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab 17:860–872CrossRefPubMed Donath MY, Dalmas E, Sauter NS, Boni-Schnetzler M (2013) Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab 17:860–872CrossRefPubMed
53.
go back to reference Eguchi K, Manabe I (2013) Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab 15(Suppl 3):152–158CrossRefPubMed Eguchi K, Manabe I (2013) Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab 15(Suppl 3):152–158CrossRefPubMed
Metadata
Title
Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity
Authors
Jonathan R. Weitz
Madina Makhmutova
Joana Almaça
Julia Stertmann
Kristie Aamodt
Marcela Brissova
Stephan Speier
Rayner Rodriguez-Diaz
Alejandro Caicedo
Publication date
01-01-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 1/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4416-y

Other articles of this Issue 1/2018

Diabetologia 1/2018 Go to the issue