Skip to main content
Top
Published in: Diabetologia 9/2017

01-09-2017 | Article

Genetic risk scores in the prediction of plasma glucose, impaired insulin secretion, insulin resistance and incident type 2 diabetes in the METSIM study

Authors: Alena Stančáková, Teemu Kuulasmaa, Johanna Kuusisto, Karen L. Mohlke, Francis S. Collins, Michael Boehnke, Markku Laakso

Published in: Diabetologia | Issue 9/2017

Login to get access

Abstract

Aims/hypothesis

Many SNPs have been associated with glycaemic traits and type 2 diabetes, but their joint effects on glycaemic traits and the underlying mechanisms leading to hyperglycaemia over time are largely unknown. We aimed to investigate the association of six genetic risk scores (GRSs) with changes in plasma glucose, insulin sensitivity, insulin secretion and incident type 2 diabetes in the prospective METabolic Syndrome In Men (METSIM) study.

Methods

We generated weighted GRSs for fasting plasma glucose ([FPG] GRSFPG, 35 SNPs), 2 h plasma glucose ([2hPG] GRS2hPG, 9 SNPs), insulin secretion (GRSIS, 17 SNPs), insulin resistance (GRSIR, 9 SNPs) and BMI (GRSBMI, 95 SNPs) and a non-weighted GRS for type 2 diabetes (GRST2D, 76 SNPs) in up to 8749 non-diabetic Finnish men. Linear regression was used to test associations of the GRSs with changes in glycaemic traits over time.

Results

GRST2D, GRSFPG and GRSIS were associated with an increase in FPG, GRST2D with an increase in glucose AUC and a decrease in insulin secretion, and GRS2hPG with an increase in 2hPG during the follow-up (p < 0.0017 for all models). GRST2D, GRSFPG and GRSIS were associated with incident type 2 diabetes (p < 0.008 for all models). GRSBMI and GRSIR were not significantly associated with any changes in glycaemic traits.

Conclusions/interpretation

In the METSIM follow-up study, GRST2D, GRSFPG and GRSIS were associated with the worsening of FPG and an increase in incident type 2 diabetes. GRST2D was additionally associated with a decrease in insulin secretion, and GRS2hPG with an increase in 2hPG.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alberti G, Zimmet P, Shaw J et al (2004) Type 2 diabetes in the young: the evolving epidemic: the international diabetes federation consensus workshop. Diabetes Care 27:1798–1811CrossRefPubMed Alberti G, Zimmet P, Shaw J et al (2004) Type 2 diabetes in the young: the evolving epidemic: the international diabetes federation consensus workshop. Diabetes Care 27:1798–1811CrossRefPubMed
3.
go back to reference Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171CrossRefPubMedPubMedCentral Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171CrossRefPubMedPubMedCentral
5.
go back to reference Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232CrossRefPubMed Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232CrossRefPubMed
6.
go back to reference Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219CrossRefPubMedPubMedCentral Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219CrossRefPubMedPubMedCentral
7.
go back to reference van Hoek M, Dehghan A, Witteman JC et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128CrossRefPubMedPubMedCentral van Hoek M, Dehghan A, Witteman JC et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128CrossRefPubMedPubMedCentral
8.
go back to reference Vassy JL, Dasmahapatra P, Meigs JB et al (2012) Genotype prediction of adult type 2 diabetes from adolescence in a multiracial population. Pediatrics 130:e1235–e1242CrossRefPubMedPubMedCentral Vassy JL, Dasmahapatra P, Meigs JB et al (2012) Genotype prediction of adult type 2 diabetes from adolescence in a multiracial population. Pediatrics 130:e1235–e1242CrossRefPubMedPubMedCentral
9.
10.
go back to reference Talmud PJ, Hingorani AD, Cooper JA et al (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340:b4838CrossRefPubMedPubMedCentral Talmud PJ, Hingorani AD, Cooper JA et al (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340:b4838CrossRefPubMedPubMedCentral
11.
go back to reference Talmud PJ, Cooper JA, Morris RW et al (2015) Sixty-five common genetic variants and prediction of type 2 diabetes. Diabetes 64:1830–1840CrossRefPubMed Talmud PJ, Cooper JA, Morris RW et al (2015) Sixty-five common genetic variants and prediction of type 2 diabetes. Diabetes 64:1830–1840CrossRefPubMed
12.
go back to reference Vaxillaire M, Yengo L, Lobbens S et al (2014) Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study. Diabetologia 57:1601–1610CrossRefPubMed Vaxillaire M, Yengo L, Lobbens S et al (2014) Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study. Diabetologia 57:1601–1610CrossRefPubMed
13.
go back to reference Walford GA, Porneala BC, Dauriz M et al (2014) Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care 37:2508–2514CrossRefPubMedPubMedCentral Walford GA, Porneala BC, Dauriz M et al (2014) Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care 37:2508–2514CrossRefPubMedPubMedCentral
14.
go back to reference Poveda A, Koivula RW, Ahmad S et al (2016) Innate biology versus lifestyle behaviour in the aetiology of obesity and type 2 diabetes: the GLACIER study. Diabetologia 59:462–471CrossRefPubMed Poveda A, Koivula RW, Ahmad S et al (2016) Innate biology versus lifestyle behaviour in the aetiology of obesity and type 2 diabetes: the GLACIER study. Diabetologia 59:462–471CrossRefPubMed
15.
go back to reference Jensen AC, Barker A, Kumari M et al (2011) Associations of common genetic variants with age-related changes in fasting and postload glucose: evidence from 18 years of follow-up of the Whitehall II cohort. Diabetes 60:1617–1623CrossRefPubMedPubMedCentral Jensen AC, Barker A, Kumari M et al (2011) Associations of common genetic variants with age-related changes in fasting and postload glucose: evidence from 18 years of follow-up of the Whitehall II cohort. Diabetes 60:1617–1623CrossRefPubMedPubMedCentral
16.
go back to reference Andersson EA, Allin KH, Sandholt CH et al (2013) Genetic risk score of 46 type 2 diabetes risk variants associates with changes in plasma glucose and estimates of pancreatic β-cell function over 5 years of follow-up. Diabetes 62:3610–3617CrossRefPubMedPubMedCentral Andersson EA, Allin KH, Sandholt CH et al (2013) Genetic risk score of 46 type 2 diabetes risk variants associates with changes in plasma glucose and estimates of pancreatic β-cell function over 5 years of follow-up. Diabetes 62:3610–3617CrossRefPubMedPubMedCentral
17.
go back to reference Go MJ, Lee Y, Park S, Kwak SH, Kim BJ, Lee J (2016) Genetic-risk assessment of GWAS-derived susceptibility loci for type 2 diabetes in a 10 year follow-up of a population-based cohort study. J Hum Genet 61:1009–1012CrossRefPubMed Go MJ, Lee Y, Park S, Kwak SH, Kim BJ, Lee J (2016) Genetic-risk assessment of GWAS-derived susceptibility loci for type 2 diabetes in a 10 year follow-up of a population-based cohort study. J Hum Genet 61:1009–1012CrossRefPubMed
18.
go back to reference Yan J, Peng D, Jiang F et al (2016) Impaired pancreatic beta cell compensatory function is the main cause of type 2 diabetes in individuals with high genetic risk: a 9 year prospective cohort study in the Chinese population. Diabetologia 59:1458–1462CrossRefPubMed Yan J, Peng D, Jiang F et al (2016) Impaired pancreatic beta cell compensatory function is the main cause of type 2 diabetes in individuals with high genetic risk: a 9 year prospective cohort study in the Chinese population. Diabetologia 59:1458–1462CrossRefPubMed
19.
go back to reference Stančáková A, Javorský M, Kuulasmaa T, Haffner SM, Kuusisto J, Laakso M (2009) Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes 58:1212–1221CrossRefPubMedPubMedCentral Stančáková A, Javorský M, Kuulasmaa T, Haffner SM, Kuusisto J, Laakso M (2009) Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes 58:1212–1221CrossRefPubMedPubMedCentral
20.
go back to reference Genuth S, Alberti KG, Bennett P et al (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167CrossRefPubMed Genuth S, Alberti KG, Bennett P et al (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167CrossRefPubMed
21.
go back to reference Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470CrossRefPubMed Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470CrossRefPubMed
22.
go back to reference Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991–1005CrossRefPubMedPubMedCentral Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991–1005CrossRefPubMedPubMedCentral
23.
go back to reference Johnson AD, Handsaker RE, Pulit S, Nizzari MM, O'Donnell CJ, de Bakker PIW (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24:2938–2939CrossRefPubMedPubMedCentral Johnson AD, Handsaker RE, Pulit S, Nizzari MM, O'Donnell CJ, de Bakker PIW (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24:2938–2939CrossRefPubMedPubMedCentral
25.
go back to reference Katoh S, Lehtovirta M, Kaprio J et al (2005) Genetic and environmental effects on fasting and postchallenge plasma glucose and serum insulin values in Finnish twins. J Clin Endocrinol Metab 90:2642–2647CrossRefPubMed Katoh S, Lehtovirta M, Kaprio J et al (2005) Genetic and environmental effects on fasting and postchallenge plasma glucose and serum insulin values in Finnish twins. J Clin Endocrinol Metab 90:2642–2647CrossRefPubMed
26.
go back to reference Renström F, Shungin D, Johansson I et al (2011) Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis: ten-year follow-up of the GLACIER study. Diabetes 60:345–354CrossRefPubMed Renström F, Shungin D, Johansson I et al (2011) Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis: ten-year follow-up of the GLACIER study. Diabetes 60:345–354CrossRefPubMed
27.
go back to reference Scott RA, Fall T, Pasko D et al (2014) Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity. Diabetes 63:4378–4387CrossRefPubMedPubMedCentral Scott RA, Fall T, Pasko D et al (2014) Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity. Diabetes 63:4378–4387CrossRefPubMedPubMedCentral
28.
go back to reference de Miguel-Yanes JM, Shrader P, Pencina MJ et al (2011) Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 34:121–125CrossRefPubMed de Miguel-Yanes JM, Shrader P, Pencina MJ et al (2011) Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 34:121–125CrossRefPubMed
29.
go back to reference Ahmad S, Poveda A, Shungin D et al (2016) Established BMI-associated genetic variants and their prospective associations with BMI and other cardiometabolic traits: the GLACIER study. Int J Obes 40:1346–1352CrossRef Ahmad S, Poveda A, Shungin D et al (2016) Established BMI-associated genetic variants and their prospective associations with BMI and other cardiometabolic traits: the GLACIER study. Int J Obes 40:1346–1352CrossRef
30.
go back to reference Zhu J, Zong G, Lu L et al (2014) Association of genetic predisposition to obesity with type 2 diabetes risk in Han Chinese individuals. Diabetologia 57:1830–1833CrossRefPubMed Zhu J, Zong G, Lu L et al (2014) Association of genetic predisposition to obesity with type 2 diabetes risk in Han Chinese individuals. Diabetologia 57:1830–1833CrossRefPubMed
Metadata
Title
Genetic risk scores in the prediction of plasma glucose, impaired insulin secretion, insulin resistance and incident type 2 diabetes in the METSIM study
Authors
Alena Stančáková
Teemu Kuulasmaa
Johanna Kuusisto
Karen L. Mohlke
Francis S. Collins
Michael Boehnke
Markku Laakso
Publication date
01-09-2017
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 9/2017
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4313-4

Other articles of this Issue 9/2017

Diabetologia 9/2017 Go to the issue