Skip to main content
Top
Published in: Diabetologia 8/2017

01-08-2017 | Article

Retinopathy with central oedema in an INS C94Y transgenic pig model of long-term diabetes

Authors: Kristina J. H. Kleinwort, Barbara Amann, Stefanie M. Hauck, Sieglinde Hirmer, Andreas Blutke, Simone Renner, Patrizia B. Uhl, Karina Lutterberg, Walter Sekundo, Eckhard Wolf, Cornelia A. Deeg

Published in: Diabetologia | Issue 8/2017

Login to get access

Abstract

Aims/hypothesis

Diabetic retinopathy is a severe complication of diabetes mellitus that often leads to blindness. Because the pathophysiology of diabetic retinopathy is not fully understood and novel therapeutic interventions require testing, there is a need for reliable animal models that mimic all the complications of diabetic retinopathy. Pig eyes share important anatomical and physiological similarities with human eyes. Previous studies have demonstrated that INS C94Y transgenic pigs develop a stable diabetic phenotype and ocular alterations such as cataracts. The aim of this study was to conduct an in-depth analysis of pathological changes in retinas from INS C94Y pigs exposed to hyperglycaemia for more than 2 years, representing a chronic diabetic condition.

Methods

Eyes from six INS C94Ypigs and six age-matched control littermates were analysed via histology and immunohistochemistry. For histological analyses of retinal (layer) thickness, sections were stained with H&E or Mallory’s trichrome. For comparison of protein expression patterns and vessel courses, sections were stained with different antibodies in immunohistochemistry. Observed lesions were compared with reported pathologies in human diabetic retinopathy.

Results

INS C94Ypigs developed several signs of diabetic retinopathy similar to those seen in humans, such as intraretinal microvascular abnormalities, symptoms of proliferative diabetic retinopathy and central retinal oedema in a region that is cone rich, like the human macula.

Conclusions/interpretation

The INS C94Ypig is an interesting model for studying the pathophysiology of diabetic retinopathy and for testing novel therapeutic strategies.
Literature
1.
go back to reference Kharroubi AT, Darwish HM (2015) Diabetes mellitus: the epidemic of the century. World J Diab 6:850–867CrossRef Kharroubi AT, Darwish HM (2015) Diabetes mellitus: the epidemic of the century. World J Diab 6:850–867CrossRef
2.
go back to reference Ponto KA, Koenig J, Peto T et al (2016) Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the Gutenberg Health Study (GHS). Diabetologia 59:1913–1919CrossRefPubMed Ponto KA, Koenig J, Peto T et al (2016) Prevalence of diabetic retinopathy in screening-detected diabetes mellitus: results from the Gutenberg Health Study (GHS). Diabetologia 59:1913–1919CrossRefPubMed
3.
go back to reference Tan GS, Cheung N, Simo R, Cheung GC, Wong TY (2017) Diabetic macular oedema. Lancet Diabetes Endocrinol 5:143–155CrossRefPubMed Tan GS, Cheung N, Simo R, Cheung GC, Wong TY (2017) Diabetic macular oedema. Lancet Diabetes Endocrinol 5:143–155CrossRefPubMed
4.
go back to reference Antonetti DA, Barber AJ, Bronson SK et al (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55:2401–2411CrossRefPubMed Antonetti DA, Barber AJ, Bronson SK et al (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55:2401–2411CrossRefPubMed
5.
6.
go back to reference Berkowitz BA, Bissig D, Ye Y, Valsadia P, Kern TS, Roberts R (2012) Evidence for diffuse central retinal edema in vivo in diabetic male Sprague Dawley rats. PLoS One 7:e29619CrossRefPubMedPubMedCentral Berkowitz BA, Bissig D, Ye Y, Valsadia P, Kern TS, Roberts R (2012) Evidence for diffuse central retinal edema in vivo in diabetic male Sprague Dawley rats. PLoS One 7:e29619CrossRefPubMedPubMedCentral
7.
go back to reference Clermont A, Chilcote TJ, Kita T et al (2011) Plasma kallikrein mediates retinal vascular dysfunction and induces retinal thickening in diabetic rats. Diabetes 60:1590–1598CrossRefPubMedPubMedCentral Clermont A, Chilcote TJ, Kita T et al (2011) Plasma kallikrein mediates retinal vascular dysfunction and induces retinal thickening in diabetic rats. Diabetes 60:1590–1598CrossRefPubMedPubMedCentral
9.
go back to reference Hendrickson A, Hicks D (2002) Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. Exp Eye Res 74:435–444CrossRefPubMed Hendrickson A, Hicks D (2002) Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. Exp Eye Res 74:435–444CrossRefPubMed
10.
go back to reference Chandler MJ, Smith PJ, Samuelson DA, MacKay EO (1999) Photoreceptor density of the domestic pig retina. Vet Ophthalmol 2:179–184CrossRefPubMed Chandler MJ, Smith PJ, Samuelson DA, MacKay EO (1999) Photoreceptor density of the domestic pig retina. Vet Ophthalmol 2:179–184CrossRefPubMed
12.
go back to reference Albl B, Haesner S, Braun-Reichhart C et al (2016) Tissue sampling guides for porcine biomedical models. Toxicol Pathol 44:414–420CrossRefPubMed Albl B, Haesner S, Braun-Reichhart C et al (2016) Tissue sampling guides for porcine biomedical models. Toxicol Pathol 44:414–420CrossRefPubMed
13.
go back to reference Wolf E, Braun-Reichhart C, Streckel E, Renner S (2014) Genetically engineered pig models for diabetes research. Transgenic Res 23:27–38CrossRefPubMed Wolf E, Braun-Reichhart C, Streckel E, Renner S (2014) Genetically engineered pig models for diabetes research. Transgenic Res 23:27–38CrossRefPubMed
14.
go back to reference Chou J, Rollins S, Fawzi AA (2014) Role of endothelial cell and pericyte dysfunction in diabetic retinopathy: review of techniques in rodent models. Adv Exp Med Biol 801:669–675CrossRefPubMedPubMedCentral Chou J, Rollins S, Fawzi AA (2014) Role of endothelial cell and pericyte dysfunction in diabetic retinopathy: review of techniques in rodent models. Adv Exp Med Biol 801:669–675CrossRefPubMedPubMedCentral
15.
go back to reference Higgins PJ, Garlick RL, Bunn HF (1982) Glycosylated hemoglobin in human and animal red cells. Role of glucose permeability. Diabetes 31:743–748CrossRefPubMed Higgins PJ, Garlick RL, Bunn HF (1982) Glycosylated hemoglobin in human and animal red cells. Role of glucose permeability. Diabetes 31:743–748CrossRefPubMed
16.
go back to reference Garca M, Ruiz-Ederra J, Hernandez-Barbachano H, Vecino E (2005) Topography of pig retinal ganglion cells. J Comp Neurol 486:361–372CrossRefPubMed Garca M, Ruiz-Ederra J, Hernandez-Barbachano H, Vecino E (2005) Topography of pig retinal ganglion cells. J Comp Neurol 486:361–372CrossRefPubMed
17.
go back to reference Amann B, Kleinwort KJ, Hirmer S et al (2016) Expression and distribution pattern of aquaporin 4, 5 and 11 in retinas of 15 different species. Int J Mol Sci 17:E1145CrossRefPubMed Amann B, Kleinwort KJ, Hirmer S et al (2016) Expression and distribution pattern of aquaporin 4, 5 and 11 in retinas of 15 different species. Int J Mol Sci 17:E1145CrossRefPubMed
18.
go back to reference Amann B, Hirmer S, Hauck SM, Kremmer E, Ueffing M, Deeg CA (2014) True blue: S-opsin is widely expressed in different animal species. J Anim Physiol Anim Nutr (Berl) 98:32–42CrossRef Amann B, Hirmer S, Hauck SM, Kremmer E, Ueffing M, Deeg CA (2014) True blue: S-opsin is widely expressed in different animal species. J Anim Physiol Anim Nutr (Berl) 98:32–42CrossRef
19.
go back to reference Lavin DP, White MF, Brazil DP (2016) IRS proteins and diabetic complications. Diabetologia 59:2280–2291CrossRefPubMed Lavin DP, White MF, Brazil DP (2016) IRS proteins and diabetic complications. Diabetologia 59:2280–2291CrossRefPubMed
20.
go back to reference Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186CrossRefPubMed Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186CrossRefPubMed
21.
go back to reference Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5:444–456CrossRefPubMedPubMedCentral Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5:444–456CrossRefPubMedPubMedCentral
22.
go back to reference Chronopoulos A, Roy S, Beglova E, Mansfield K, Wachtman L, Roy S (2015) Hyperhexosemia-induced retinal vascular pathology in a novel primate model of diabetic retinopathy. Diabetes 64:2603–2608CrossRefPubMedPubMedCentral Chronopoulos A, Roy S, Beglova E, Mansfield K, Wachtman L, Roy S (2015) Hyperhexosemia-induced retinal vascular pathology in a novel primate model of diabetic retinopathy. Diabetes 64:2603–2608CrossRefPubMedPubMedCentral
23.
go back to reference Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J Diabetes Res 2013:905058PubMedPubMedCentral Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J Diabetes Res 2013:905058PubMedPubMedCentral
24.
go back to reference Diabetic Retinopathy Clinical Research Network (2011) Rationale for the diabetic retinopathy clinical research network treatment protocol for center-involved diabetic macular edema. Ophthalmology 118:e5–e14CrossRefPubMedCentral Diabetic Retinopathy Clinical Research Network (2011) Rationale for the diabetic retinopathy clinical research network treatment protocol for center-involved diabetic macular edema. Ophthalmology 118:e5–e14CrossRefPubMedCentral
25.
go back to reference Broe R, Rasmussen ML, Frydkjaer-Olsen U et al (2014) Retinal vessel calibers predict long-term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Diabetes 63:3906–3914CrossRefPubMed Broe R, Rasmussen ML, Frydkjaer-Olsen U et al (2014) Retinal vessel calibers predict long-term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Diabetes 63:3906–3914CrossRefPubMed
26.
go back to reference Broe R (2015) Early risk stratification in pediatric type 1 diabetes. Acta Ophthalmol 93(Thesis 1):1–19CrossRefPubMed Broe R (2015) Early risk stratification in pediatric type 1 diabetes. Acta Ophthalmol 93(Thesis 1):1–19CrossRefPubMed
28.
go back to reference Fong DS, Aiello L, Gardner TW et al (2004) Retinopathy in diabetes. Diabetes Care 27(Suppl 1):S84–S87CrossRefPubMed Fong DS, Aiello L, Gardner TW et al (2004) Retinopathy in diabetes. Diabetes Care 27(Suppl 1):S84–S87CrossRefPubMed
29.
go back to reference Chous AP, Richer SP, Gerson JD, Kowluru RA (2016) The diabetes visual function supplement study (DiVFuSS). Br J Ophthalmol 100:227–234CrossRefPubMed Chous AP, Richer SP, Gerson JD, Kowluru RA (2016) The diabetes visual function supplement study (DiVFuSS). Br J Ophthalmol 100:227–234CrossRefPubMed
30.
go back to reference Pannicke T, Ivo Chao T, Reisenhofer M, Francke M, Reichenbach A (2017) Comparative electrophysiology of retinal Müller glial cells—a survey on vertebrate species. Glia 65:533–568CrossRefPubMed Pannicke T, Ivo Chao T, Reisenhofer M, Francke M, Reichenbach A (2017) Comparative electrophysiology of retinal Müller glial cells—a survey on vertebrate species. Glia 65:533–568CrossRefPubMed
31.
go back to reference Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 55:633–639CrossRefPubMed Pannicke T, Iandiev I, Wurm A et al (2006) Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 55:633–639CrossRefPubMed
32.
go back to reference Sorrentino FS, Allkabes M, Salsini G, Bonifazzi C, Perri P (2016) The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci 162:54–59CrossRefPubMed Sorrentino FS, Allkabes M, Salsini G, Bonifazzi C, Perri P (2016) The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci 162:54–59CrossRefPubMed
33.
go back to reference Iandiev I, Uckermann O, Pannicke T et al (2006) Glial cell reactivity in a porcine model of retinal detachment. Investig Ophthalmol Vis Sci 47:2161–2171CrossRef Iandiev I, Uckermann O, Pannicke T et al (2006) Glial cell reactivity in a porcine model of retinal detachment. Investig Ophthalmol Vis Sci 47:2161–2171CrossRef
Metadata
Title
Retinopathy with central oedema in an INS C94Y transgenic pig model of long-term diabetes
Authors
Kristina J. H. Kleinwort
Barbara Amann
Stefanie M. Hauck
Sieglinde Hirmer
Andreas Blutke
Simone Renner
Patrizia B. Uhl
Karina Lutterberg
Walter Sekundo
Eckhard Wolf
Cornelia A. Deeg
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 8/2017
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4290-7

Other articles of this Issue 8/2017

Diabetologia 8/2017 Go to the issue