Skip to main content
Top
Published in: Diabetologia 11/2016

Open Access 01-11-2016 | Review

IRS proteins and diabetic complications

Authors: Deborah P. Lavin, Morris F. White, Derek P. Brazil

Published in: Diabetologia | Issue 11/2016

Login to get access

Abstract

IRS proteins are cellular adaptor molecules that mediate many of the key metabolic actions of insulin. When tyrosine is phosphorylated by the activated insulin receptor, IRS proteins recruit downstream effectors, such as phosphoinositide 3-kinase and mitogen-activated protein kinase, in order to elicit cellular responses such as glucose uptake, lipid metabolism and cell proliferation. There are two main IRS proteins in humans (IRS1 and IRS2), both of which are widely expressed. Given their central role in the insulin signalling pathway, it is not surprising that male mice lacking Irs1 or Irs2 present with elevated blood glucose or type 2 diabetes, respectively. For reasons yet to be identified, female Irs2 −/− mice do not develop type 2 diabetes. A number of organs are affected by complications of diabetes; macrovascular complications include stroke and coronary artery disease, while nephropathy, neuropathy and retinopathy fall into the category of microvascular complications. Given the serious consequences of these complications on patient morbidity and mortality, it is essential to identify the molecular pathogenesis underlying diabetic complications, with a view to improving therapeutic intervention and patient outcomes. A number of recently published papers have converged on the hypothesis that the loss of insulin signalling and IRS proteins is instrumental to the development and/or progression of diabetic complications. This review will summarise some highlights from the published work in which this hypothesis is discussed.
Literature
1.
go back to reference Sadagurski M, Dong XC, Myers MG Jr, White MF (2014) Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis. Mol Metab 3:55–63CrossRefPubMed Sadagurski M, Dong XC, Myers MG Jr, White MF (2014) Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis. Mol Metab 3:55–63CrossRefPubMed
2.
go back to reference White MF (2016) Insulin action. In: Holt RIG, Cockram CS, Flyvbjerg A, Goldstein BJ (eds) Textbook of diabetes. Wiley, Chichester White MF (2016) Insulin action. In: Holt RIG, Cockram CS, Flyvbjerg A, Goldstein BJ (eds) Textbook of diabetes. Wiley, Chichester
3.
go back to reference Withers DJ, Gutierrez JS, Towery H et al (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904CrossRefPubMed Withers DJ, Gutierrez JS, Towery H et al (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904CrossRefPubMed
4.
go back to reference Araki E, Lipes MA, Patti ME et al (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190CrossRefPubMed Araki E, Lipes MA, Patti ME et al (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190CrossRefPubMed
5.
go back to reference Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF (1999) Irs-2 coordinates Igf-1 receptor-mediated [beta]-cell development and peripheral insulin signalling. Nat Genet 23:32–40PubMed Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF (1999) Irs-2 coordinates Igf-1 receptor-mediated [beta]-cell development and peripheral insulin signalling. Nat Genet 23:32–40PubMed
8.
go back to reference Nathan DM, Cleary PA, Backlund JY et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643–2653CrossRefPubMed Nathan DM, Cleary PA, Backlund JY et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643–2653CrossRefPubMed
9.
go back to reference King GL, Park K, Li Q (2016) Selective insulin resistance and the development of cardiovascular diseases in diabetes: the 2015 Edwin Bierman award lecture. Diabetes 65:1462–1471CrossRefPubMedPubMedCentral King GL, Park K, Li Q (2016) Selective insulin resistance and the development of cardiovascular diseases in diabetes: the 2015 Edwin Bierman award lecture. Diabetes 65:1462–1471CrossRefPubMedPubMedCentral
10.
go back to reference Park K, Li Q, Rask-Madsen C et al (2013) Serine phosphorylation sites on IRS2 activated by angiotensin II and protein kinase C to induce selective insulin resistance in endothelial cells. Mol Cell Biol 33:3227–3241CrossRefPubMedPubMedCentral Park K, Li Q, Rask-Madsen C et al (2013) Serine phosphorylation sites on IRS2 activated by angiotensin II and protein kinase C to induce selective insulin resistance in endothelial cells. Mol Cell Biol 33:3227–3241CrossRefPubMedPubMedCentral
11.
go back to reference Connelly KA, Kelly DJ, Zhang Y et al (2009) Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail 2:129–137CrossRefPubMed Connelly KA, Kelly DJ, Zhang Y et al (2009) Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail 2:129–137CrossRefPubMed
12.
go back to reference Liu Y, Lei S, Gao X et al (2012) PKCbeta inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfunction in rats with streptozotocin-induced diabetes. Clin Sci 122:161–173CrossRefPubMed Liu Y, Lei S, Gao X et al (2012) PKCbeta inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfunction in rats with streptozotocin-induced diabetes. Clin Sci 122:161–173CrossRefPubMed
13.
go back to reference Liu Y, Jin J, Qiao S et al (2015) Inhibition of PKCbeta2 overexpression ameliorates myocardial ischaemia/reperfusion injury in diabetic rats via restoring caveolin-3/Akt signaling. Clin Sci 129:331–344CrossRefPubMed Liu Y, Jin J, Qiao S et al (2015) Inhibition of PKCbeta2 overexpression ameliorates myocardial ischaemia/reperfusion injury in diabetic rats via restoring caveolin-3/Akt signaling. Clin Sci 129:331–344CrossRefPubMed
14.
go back to reference Ladage D, Tilemann L, Ishikawa K et al (2011) Inhibition of PKCalpha/beta with ruboxistaurin antagonizes heart failure in pigs after myocardial infarction injury. Circ Res 109:1396–1400CrossRefPubMedPubMedCentral Ladage D, Tilemann L, Ishikawa K et al (2011) Inhibition of PKCalpha/beta with ruboxistaurin antagonizes heart failure in pigs after myocardial infarction injury. Circ Res 109:1396–1400CrossRefPubMedPubMedCentral
15.
go back to reference Laustsen PG, Russell SJ, Cui L et al (2007) Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol 27:1649–1664CrossRefPubMed Laustsen PG, Russell SJ, Cui L et al (2007) Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol 27:1649–1664CrossRefPubMed
16.
go back to reference Rask-Madsen C, Li Q, Freund B et al (2010) Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab 11:379–389CrossRefPubMedPubMedCentral Rask-Madsen C, Li Q, Freund B et al (2010) Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab 11:379–389CrossRefPubMedPubMedCentral
17.
go back to reference Cook SA, Varela-Carver A, Mongillo M et al (2010) Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur Heart J 31:100–111CrossRefPubMed Cook SA, Varela-Carver A, Mongillo M et al (2010) Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur Heart J 31:100–111CrossRefPubMed
18.
go back to reference Baroni MG, D’Andrea MP, Montali A et al (1999) A common mutation of the insulin receptor substrate-1 gene is a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 19:2975–2980CrossRefPubMed Baroni MG, D’Andrea MP, Montali A et al (1999) A common mutation of the insulin receptor substrate-1 gene is a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 19:2975–2980CrossRefPubMed
19.
go back to reference Hitman GA, Hawrami K, McCarthy MI et al (1995) Insulin receptor substrate-1 gene mutations in NIDDM; implications for the study of polygenic disease. Diabetologia 38:481–486CrossRefPubMed Hitman GA, Hawrami K, McCarthy MI et al (1995) Insulin receptor substrate-1 gene mutations in NIDDM; implications for the study of polygenic disease. Diabetologia 38:481–486CrossRefPubMed
20.
go back to reference Jellema A, Zeegers MP, Feskens EJ, Dagnelie PC, Mensink RP (2003) Gly972Arg variant in the insulin receptor substrate-1 gene and association with Type 2 diabetes: a meta-analysis of 27 studies. Diabetologia 46:990–995CrossRefPubMed Jellema A, Zeegers MP, Feskens EJ, Dagnelie PC, Mensink RP (2003) Gly972Arg variant in the insulin receptor substrate-1 gene and association with Type 2 diabetes: a meta-analysis of 27 studies. Diabetologia 46:990–995CrossRefPubMed
21.
go back to reference Liu W, Zhou X, Yu F, Hu J, Hu W (2013) Arg972 Insulin receptor substrate-1 is associated with decreased serum angiotensin-converting enzyme 2 levels in acute myocardial infarction patients: in vivo and in vitro evidence. Cardiovasc Diabetol 12:151CrossRefPubMedPubMedCentral Liu W, Zhou X, Yu F, Hu J, Hu W (2013) Arg972 Insulin receptor substrate-1 is associated with decreased serum angiotensin-converting enzyme 2 levels in acute myocardial infarction patients: in vivo and in vitro evidence. Cardiovasc Diabetol 12:151CrossRefPubMedPubMedCentral
22.
go back to reference Vats S, Matharoo KK, Singh AP, Bhanwer AJS, Sambyal V (2013) Polymorphisms in PPARγ (Pro12Ala, C1431T), IRS1 (G972R), IRS2 (G1057D) and Coronary artery disease. Int J Diabetes Dev Ctries 33:192–201 Vats S, Matharoo KK, Singh AP, Bhanwer AJS, Sambyal V (2013) Polymorphisms in PPARγ (Pro12Ala, C1431T), IRS1 (G972R), IRS2 (G1057D) and Coronary artery disease. Int J Diabetes Dev Ctries 33:192–201
23.
go back to reference Strohmer B, Reiter R, Holzl B, Paulweber B (2004) Lack of association of the Gly972Arg mutation of the insulin receptor substrate-1 gene with coronary artery disease in the Austrian population. J Intern Med 255:146–147CrossRefPubMed Strohmer B, Reiter R, Holzl B, Paulweber B (2004) Lack of association of the Gly972Arg mutation of the insulin receptor substrate-1 gene with coronary artery disease in the Austrian population. J Intern Med 255:146–147CrossRefPubMed
24.
go back to reference Chan SH, Chen JH, Li YH, Tsai LM (2012) Gly1057Asp polymorphism of insulin receptor substrate-2 is associated with coronary artery disease in the Taiwanese population. J Biomed Sci 19:100CrossRefPubMedPubMedCentral Chan SH, Chen JH, Li YH, Tsai LM (2012) Gly1057Asp polymorphism of insulin receptor substrate-2 is associated with coronary artery disease in the Taiwanese population. J Biomed Sci 19:100CrossRefPubMedPubMedCentral
25.
go back to reference Kim B, Sullivan KA, Backus C, Feldman EL (2011) Cortical neurons develop insulin resistance and blunted Akt signaling: a potential mechanism contributing to enhanced ischemic injury in diabetes. Antioxid Redox Signal 14:1829–1839CrossRefPubMedPubMedCentral Kim B, Sullivan KA, Backus C, Feldman EL (2011) Cortical neurons develop insulin resistance and blunted Akt signaling: a potential mechanism contributing to enhanced ischemic injury in diabetes. Antioxid Redox Signal 14:1829–1839CrossRefPubMedPubMedCentral
27.
28.
go back to reference Zhang D, Zhang X, Liu D et al (2016) Association between insulin receptor substrate-1 polymorphisms and high platelet reactivity with clopidogrel therapy in coronary artery disease patients with type 2 diabetes mellitus. Cardiovasc Diabetol 15:50CrossRefPubMedPubMedCentral Zhang D, Zhang X, Liu D et al (2016) Association between insulin receptor substrate-1 polymorphisms and high platelet reactivity with clopidogrel therapy in coronary artery disease patients with type 2 diabetes mellitus. Cardiovasc Diabetol 15:50CrossRefPubMedPubMedCentral
29.
go back to reference Parving H-H, Mauer M, Ritz E (2004) Diabetic nephropathy. In: Brenner and Rector’s the kidney. Saunders, Philadelphia, USA 1411–1455 Parving H-H, Mauer M, Ritz E (2004) Diabetic nephropathy. In: Brenner and Rector’s the kidney. Saunders, Philadelphia, USA 1411–1455
31.
go back to reference Coward RJ, Welsh GI, Yang J et al (2005) The human glomerular podocyte is a novel target for insulin action. Diabetes 54:3095–3102CrossRefPubMed Coward RJ, Welsh GI, Yang J et al (2005) The human glomerular podocyte is a novel target for insulin action. Diabetes 54:3095–3102CrossRefPubMed
32.
go back to reference Coward RJ, Welsh GI, Koziell A et al (2007) Nephrin is critical for the action of insulin on human glomerular podocytes. Diabetes 56:1127–1135CrossRefPubMed Coward RJ, Welsh GI, Koziell A et al (2007) Nephrin is critical for the action of insulin on human glomerular podocytes. Diabetes 56:1127–1135CrossRefPubMed
33.
34.
go back to reference Hale LJ, Hurcombe J, Lay A et al (2013) Insulin directly stimulates VEGF-A production in the glomerular podocyte. Am J Physiol Ren Physiol 305:F182–F188CrossRef Hale LJ, Hurcombe J, Lay A et al (2013) Insulin directly stimulates VEGF-A production in the glomerular podocyte. Am J Physiol Ren Physiol 305:F182–F188CrossRef
35.
go back to reference Eremina V, Sood M, Haigh J et al (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111:707–716CrossRefPubMedPubMedCentral Eremina V, Sood M, Haigh J et al (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111:707–716CrossRefPubMedPubMedCentral
36.
go back to reference Santamaria B, Marquez E, Lay A et al (2015) IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes. Biochim Biophys Acta 1853:3224–3334CrossRefPubMed Santamaria B, Marquez E, Lay A et al (2015) IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes. Biochim Biophys Acta 1853:3224–3334CrossRefPubMed
37.
go back to reference Hookham MB, O’Donovan HC, Church RH et al (2013) Insulin receptor substrate-2 is expressed in kidney epithelium and up-regulated in diabetic nephropathy. FEBS J 280:3232–3243CrossRefPubMedPubMedCentral Hookham MB, O’Donovan HC, Church RH et al (2013) Insulin receptor substrate-2 is expressed in kidney epithelium and up-regulated in diabetic nephropathy. FEBS J 280:3232–3243CrossRefPubMedPubMedCentral
38.
go back to reference Eknoyan G, Levin NW (2002) K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am J Kidney Dis 39:S14–S266CrossRef Eknoyan G, Levin NW (2002) K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am J Kidney Dis 39:S14–S266CrossRef
39.
go back to reference Thameem F, Puppala S, Schneider J et al (2012) The Gly(972)Arg variant of human IRS1 gene is associated with variation in glomerular filtration rate likely through impaired insulin receptor signaling. Diabetes 61:2385–2393CrossRefPubMedPubMedCentral Thameem F, Puppala S, Schneider J et al (2012) The Gly(972)Arg variant of human IRS1 gene is associated with variation in glomerular filtration rate likely through impaired insulin receptor signaling. Diabetes 61:2385–2393CrossRefPubMedPubMedCentral
40.
go back to reference Pezzolesi MG, Poznik GD, Skupien J et al (2011) An intergenic region on chromosome 13q33.3 is associated with the susceptibility to kidney disease in type 1 and 2 diabetes. Kidney Int 80:105–111CrossRefPubMedPubMedCentral Pezzolesi MG, Poznik GD, Skupien J et al (2011) An intergenic region on chromosome 13q33.3 is associated with the susceptibility to kidney disease in type 1 and 2 diabetes. Kidney Int 80:105–111CrossRefPubMedPubMedCentral
41.
go back to reference Bernal D, Almind K, Yenush L et al (1998) Insulin receptor substrate-2 amino acid polymorphisms are not associated with random type 2 diabetes among Caucasians. Diabetes 47:976–979CrossRefPubMed Bernal D, Almind K, Yenush L et al (1998) Insulin receptor substrate-2 amino acid polymorphisms are not associated with random type 2 diabetes among Caucasians. Diabetes 47:976–979CrossRefPubMed
42.
go back to reference Singh BK, Singh A, Mascarenhas DD (2010) A nuclear complex of rictor and insulin receptor substrate-2 is associated with albuminuria in diabetic mice. Metab Syndr Relat Disord 8:355–363CrossRefPubMed Singh BK, Singh A, Mascarenhas DD (2010) A nuclear complex of rictor and insulin receptor substrate-2 is associated with albuminuria in diabetic mice. Metab Syndr Relat Disord 8:355–363CrossRefPubMed
43.
go back to reference Wei K, Piecewicz SM, McGinnis LM et al (2013) A liver Hif-2[alpha]-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat Med 19:1331–1337CrossRefPubMedPubMedCentral Wei K, Piecewicz SM, McGinnis LM et al (2013) A liver Hif-2[alpha]-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat Med 19:1331–1337CrossRefPubMedPubMedCentral
44.
go back to reference Taniguchi CM, Finger EC, Krieg AJ et al (2013) Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes. Nat Med 19:1325–1330CrossRefPubMedPubMedCentral Taniguchi CM, Finger EC, Krieg AJ et al (2013) Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes. Nat Med 19:1325–1330CrossRefPubMedPubMedCentral
45.
go back to reference Yi X, Schubert M, Peachey NS et al (2005) Insulin receptor substrate 2 is essential for maturation and survival of photoreceptor cells. J Neurosci 25:1240–1248CrossRefPubMed Yi X, Schubert M, Peachey NS et al (2005) Insulin receptor substrate 2 is essential for maturation and survival of photoreceptor cells. J Neurosci 25:1240–1248CrossRefPubMed
46.
go back to reference Stitt AW, Lois N, Medina RJ, Adamson P, Curtis TM (2013) Advances in our understanding of diabetic retinopathy. Clin Sci 125:1–17CrossRefPubMed Stitt AW, Lois N, Medina RJ, Adamson P, Curtis TM (2013) Advances in our understanding of diabetic retinopathy. Clin Sci 125:1–17CrossRefPubMed
47.
go back to reference Copps KD, White MF (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55:2565–2582CrossRefPubMedPubMedCentral Copps KD, White MF (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55:2565–2582CrossRefPubMedPubMedCentral
48.
go back to reference Carew RM, Browne MB, Hickey FB, Brazil DP (2011) Insulin receptor substrate 2 and FoxO3a signalling are involved in E-cadherin expression and transforming growth factor-β1-induced repression in kidney epithelial cells. FEBS J 278:3370–3380CrossRefPubMed Carew RM, Browne MB, Hickey FB, Brazil DP (2011) Insulin receptor substrate 2 and FoxO3a signalling are involved in E-cadherin expression and transforming growth factor-β1-induced repression in kidney epithelial cells. FEBS J 278:3370–3380CrossRefPubMed
49.
go back to reference Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275:9047–9054CrossRefPubMed Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275:9047–9054CrossRefPubMed
50.
go back to reference Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277:1531–1537CrossRefPubMed Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277:1531–1537CrossRefPubMed
51.
go back to reference Jiang Y, Zhang Q, Soderland C, Steinle JJ (2012) TNFalpha and SOCS3 regulate IRS-1 to increase retinal endothelial cell apoptosis. Cell Signal 24:1086–1092CrossRefPubMedPubMedCentral Jiang Y, Zhang Q, Soderland C, Steinle JJ (2012) TNFalpha and SOCS3 regulate IRS-1 to increase retinal endothelial cell apoptosis. Cell Signal 24:1086–1092CrossRefPubMedPubMedCentral
52.
go back to reference Walker RJ, Anderson NM, Jiang Y, Bahouth S, Steinle JJ (2011) Role of beta-adrenergic receptor regulation of TNF-alpha and insulin signaling in retinal Muller cells. Invest Ophthalmol Vis Sci 52:9527–9533CrossRefPubMedPubMedCentral Walker RJ, Anderson NM, Jiang Y, Bahouth S, Steinle JJ (2011) Role of beta-adrenergic receptor regulation of TNF-alpha and insulin signaling in retinal Muller cells. Invest Ophthalmol Vis Sci 52:9527–9533CrossRefPubMedPubMedCentral
53.
go back to reference Walker RJ, Anderson NM, Bahouth S, Steinle JJ (2012) Silencing of insulin receptor substrate-1 increases cell death in retinal Muller cells. Mol Vis 18:271–279PubMedPubMedCentral Walker RJ, Anderson NM, Bahouth S, Steinle JJ (2012) Silencing of insulin receptor substrate-1 increases cell death in retinal Muller cells. Mol Vis 18:271–279PubMedPubMedCentral
54.
go back to reference Jiang Y, Biswas SK, Steinle JJ (2014) Serine 307 on insulin receptor substrate 1 is required for SOCS3 and TNF-alpha signaling in the rMC-1 cell line. Mol Vis 20:1463–1470PubMedPubMedCentral Jiang Y, Biswas SK, Steinle JJ (2014) Serine 307 on insulin receptor substrate 1 is required for SOCS3 and TNF-alpha signaling in the rMC-1 cell line. Mol Vis 20:1463–1470PubMedPubMedCentral
55.
go back to reference Jiang Y, Thakran S, Bheemreddy R et al (2014) Pioglitazone normalizes insulin signaling in the diabetic rat retina through reduction in tumor necrosis factor α and suppressor of cytokine signaling 3. J Biol Chem 289:26395–26405CrossRefPubMedPubMedCentral Jiang Y, Thakran S, Bheemreddy R et al (2014) Pioglitazone normalizes insulin signaling in the diabetic rat retina through reduction in tumor necrosis factor α and suppressor of cytokine signaling 3. J Biol Chem 289:26395–26405CrossRefPubMedPubMedCentral
56.
go back to reference Jiang Y, Thakran S, Bheemreddy R, Coppess W, Walker RJ, Steinle JJ (2015) Sodium salicylate reduced insulin resistance in the retina of a type 2 diabetic rat model. PLoS One 10, e0125505CrossRefPubMedPubMedCentral Jiang Y, Thakran S, Bheemreddy R, Coppess W, Walker RJ, Steinle JJ (2015) Sodium salicylate reduced insulin resistance in the retina of a type 2 diabetic rat model. PLoS One 10, e0125505CrossRefPubMedPubMedCentral
58.
go back to reference Yuan M, Konstantopoulos N, Lee J et al (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293:1673–1677CrossRefPubMed Yuan M, Konstantopoulos N, Lee J et al (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293:1673–1677CrossRefPubMed
59.
go back to reference Plum L, Schubert M, Bruning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16:59–65CrossRefPubMed Plum L, Schubert M, Bruning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16:59–65CrossRefPubMed
60.
go back to reference Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382CrossRefPubMed Obici S, Zhang BB, Karkanias G, Rossetti L (2002) Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376–1382CrossRefPubMed
61.
go back to reference Bruning JC, Gautam D, Burks DJ et al (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125CrossRefPubMed Bruning JC, Gautam D, Burks DJ et al (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125CrossRefPubMed
62.
go back to reference Burks DJ, Font de Mora J, Schubert M et al (2000) IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407:377–382CrossRefPubMed Burks DJ, Font de Mora J, Schubert M et al (2000) IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407:377–382CrossRefPubMed
63.
go back to reference Choudhury AI, Heffron H, Smith MA et al (2005) The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J Clin Invest 115:940–950CrossRefPubMedPubMedCentral Choudhury AI, Heffron H, Smith MA et al (2005) The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J Clin Invest 115:940–950CrossRefPubMedPubMedCentral
64.
go back to reference Schubert M, Brazil DP, Burks DJ et al (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23:7084–7092PubMed Schubert M, Brazil DP, Burks DJ et al (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23:7084–7092PubMed
65.
go back to reference Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243CrossRefPubMed Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243CrossRefPubMed
66.
go back to reference Talbot K, Wang HY, Kazi H et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338CrossRefPubMedPubMedCentral Talbot K, Wang HY, Kazi H et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338CrossRefPubMedPubMedCentral
67.
go back to reference Martin ED, Sanchez-Perez A, Trejo JL et al (2012) IRS-2 deficiency impairs NMDA receptor-dependent long-term potentiation. Cereb Cortex 22:1717–1727CrossRefPubMed Martin ED, Sanchez-Perez A, Trejo JL et al (2012) IRS-2 deficiency impairs NMDA receptor-dependent long-term potentiation. Cereb Cortex 22:1717–1727CrossRefPubMed
68.
go back to reference Costello DA, Claret M, Al-Qassab H et al (2012) Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One 7, e31124CrossRefPubMedPubMedCentral Costello DA, Claret M, Al-Qassab H et al (2012) Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One 7, e31124CrossRefPubMedPubMedCentral
69.
go back to reference Bomfim TR, Forny-Germano L, Sathler LB et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Invest 122:1339–1353CrossRefPubMedPubMedCentral Bomfim TR, Forny-Germano L, Sathler LB et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Invest 122:1339–1353CrossRefPubMedPubMedCentral
70.
go back to reference Grote CW, Morris JK, Ryals JM, Geiger PC, Wright DE (2011) Insulin receptor substrate 2 expression and involvement in neuronal insulin resistance in diabetic neuropathy. Exp Diabetes Res 2011:212571CrossRefPubMedPubMedCentral Grote CW, Morris JK, Ryals JM, Geiger PC, Wright DE (2011) Insulin receptor substrate 2 expression and involvement in neuronal insulin resistance in diabetic neuropathy. Exp Diabetes Res 2011:212571CrossRefPubMedPubMedCentral
72.
go back to reference Zochodne DW (2007) Diabetes mellitus and the peripheral nervous system: manifestations and mechanisms. Muscle Nerve 36:144–166CrossRefPubMed Zochodne DW (2007) Diabetes mellitus and the peripheral nervous system: manifestations and mechanisms. Muscle Nerve 36:144–166CrossRefPubMed
73.
go back to reference Kou ZZ, Li CY, Tang J et al (2013) Down-regulation of insulin signaling is involved in painful diabetic neuropathy in type 2 diabetes. Pain Physician 16:E71–E83PubMed Kou ZZ, Li CY, Tang J et al (2013) Down-regulation of insulin signaling is involved in painful diabetic neuropathy in type 2 diabetes. Pain Physician 16:E71–E83PubMed
74.
go back to reference Jin HY, Liu WJ, Park JH, Baek HS, Park TS (2009) Effect of dipeptidyl peptidase-IV (DPP-IV) inhibitor (Vildagliptin) on peripheral nerves in streptozotocin-induced diabetic rats. Arch Med Res 40:536–544CrossRefPubMed Jin HY, Liu WJ, Park JH, Baek HS, Park TS (2009) Effect of dipeptidyl peptidase-IV (DPP-IV) inhibitor (Vildagliptin) on peripheral nerves in streptozotocin-induced diabetic rats. Arch Med Res 40:536–544CrossRefPubMed
75.
go back to reference Davidson EP, Coppey LJ, Dake B, Yorek MA (2011) Treatment of streptozotocin-induced diabetic rats with alogliptin: effect on vascular and neural complications. Exp Diabetes Res 2011:810469CrossRefPubMedPubMedCentral Davidson EP, Coppey LJ, Dake B, Yorek MA (2011) Treatment of streptozotocin-induced diabetic rats with alogliptin: effect on vascular and neural complications. Exp Diabetes Res 2011:810469CrossRefPubMedPubMedCentral
76.
go back to reference Bianchi R, Cervellini I, Porretta-Serapiglia C et al (2012) Beneficial effects of p KF275–055, a novel, selective, orally bioavailable, long-acting dipeptidyl peptidase IV inhibitor in streptozotocin-induced diabetic peripheral neuropathy. J Pharmacol Exp Ther 340:64–72CrossRefPubMed Bianchi R, Cervellini I, Porretta-Serapiglia C et al (2012) Beneficial effects of p KF275–055, a novel, selective, orally bioavailable, long-acting dipeptidyl peptidase IV inhibitor in streptozotocin-induced diabetic peripheral neuropathy. J Pharmacol Exp Ther 340:64–72CrossRefPubMed
77.
go back to reference Tsuboi K, Mizukami H, Inaba W, Baba M, Yagihashi S (2016) The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: effects on peripheral sensory nerve function, structure and molecular changes. J Neurochem 136:859–870CrossRef Tsuboi K, Mizukami H, Inaba W, Baba M, Yagihashi S (2016) The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: effects on peripheral sensory nerve function, structure and molecular changes. J Neurochem 136:859–870CrossRef
78.
go back to reference Qi Y, Xu Z, Zhu Q et al (2013) Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes 62:3887–3900CrossRefPubMedPubMedCentral Qi Y, Xu Z, Zhu Q et al (2013) Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes 62:3887–3900CrossRefPubMedPubMedCentral
79.
go back to reference Nakamura M, Satoh N, Suzuki M et al (2015) Stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in type 2 diabetes with nephropathy. Biochem Biophys Res Commun 461:154–158CrossRefPubMed Nakamura M, Satoh N, Suzuki M et al (2015) Stimulatory effect of insulin on renal proximal tubule sodium transport is preserved in type 2 diabetes with nephropathy. Biochem Biophys Res Commun 461:154–158CrossRefPubMed
80.
go back to reference Fornoni A, Rosenzweig SA, Lenz O, Rivera A, Striker GE, Elliot SJ (2006) Low insulin-like growth factor binding protein-2 expression is responsible for increased insulin receptor substrate-1 phosphorylation in mesangial cells from mice susceptible to glomerulosclerosis. Endocrinology 147:3547–3554CrossRefPubMed Fornoni A, Rosenzweig SA, Lenz O, Rivera A, Striker GE, Elliot SJ (2006) Low insulin-like growth factor binding protein-2 expression is responsible for increased insulin receptor substrate-1 phosphorylation in mesangial cells from mice susceptible to glomerulosclerosis. Endocrinology 147:3547–3554CrossRefPubMed
81.
go back to reference Myers MG Jr, Sun XJ, Cheatham B et al (1993) IRS-1 is a common element in insulin and insulin-like growth factor-I signaling to the phosphatidylinositol 3′-kinase. Endocrinology 132:1421–1430CrossRefPubMed Myers MG Jr, Sun XJ, Cheatham B et al (1993) IRS-1 is a common element in insulin and insulin-like growth factor-I signaling to the phosphatidylinositol 3′-kinase. Endocrinology 132:1421–1430CrossRefPubMed
82.
go back to reference Zheng Y, Yamada H, Sakamoto K et al (2005) Roles of insulin receptor substrates in insulin-induced stimulation of renal proximal bicarbonate absorption. J Am Soc Nephrol 16:2288–2295CrossRefPubMed Zheng Y, Yamada H, Sakamoto K et al (2005) Roles of insulin receptor substrates in insulin-induced stimulation of renal proximal bicarbonate absorption. J Am Soc Nephrol 16:2288–2295CrossRefPubMed
83.
go back to reference Albert-Fort M, Hombrebueno JR, Pons-Vazquez S, Sanz-Gonzalez S, Diaz-Llopis M, Pinazo-Duran MD (2014) Retinal neurodegenerative changes in the adult insulin receptor substrate-2 deficient mouse. Exp Eye Res 124C:1–10CrossRef Albert-Fort M, Hombrebueno JR, Pons-Vazquez S, Sanz-Gonzalez S, Diaz-Llopis M, Pinazo-Duran MD (2014) Retinal neurodegenerative changes in the adult insulin receptor substrate-2 deficient mouse. Exp Eye Res 124C:1–10CrossRef
85.
go back to reference Reiter CE, Wu X, Sandirasegarane L et al (2006) Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes 55:1148–1156CrossRefPubMed Reiter CE, Wu X, Sandirasegarane L et al (2006) Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes 55:1148–1156CrossRefPubMed
86.
go back to reference Brussee V, Guo G, Dong Y et al (2008) Distal degenerative sensory neuropathy in a long-term type 2 diabetes rat model. Diabetes 57:1664–1673CrossRefPubMed Brussee V, Guo G, Dong Y et al (2008) Distal degenerative sensory neuropathy in a long-term type 2 diabetes rat model. Diabetes 57:1664–1673CrossRefPubMed
87.
go back to reference Rui L, Fisher TL, Thomas J, White MF (2001) Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem 276:40362–40367CrossRefPubMed Rui L, Fisher TL, Thomas J, White MF (2001) Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem 276:40362–40367CrossRefPubMed
Metadata
Title
IRS proteins and diabetic complications
Authors
Deborah P. Lavin
Morris F. White
Derek P. Brazil
Publication date
01-11-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 11/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4072-7

Other articles of this Issue 11/2016

Diabetologia 11/2016 Go to the issue