Skip to main content
Top
Published in: Strahlentherapie und Onkologie 10/2020

Open Access 01-10-2020 | Magnetic Resonance Imaging | Review Article

Radiomics in radiation oncology—basics, methods, and limitations

Authors: Philipp Lohmann, PhD, Khaled Bousabarah, Mauritius Hoevels, Harald Treuer, PhD

Published in: Strahlentherapie und Onkologie | Issue 10/2020

Login to get access

Abstract

Over the past years, the quantity and complexity of imaging data available for the clinical management of patients with solid tumors has increased substantially. Without the support of methods from the field of artificial intelligence (AI) and machine learning, a complete evaluation of the available image information is hardly feasible in clinical routine. Especially in radiotherapy planning, manual detection and segmentation of lesions is laborious, time consuming, and shows significant variability among observers. Here, AI already offers techniques to support radiation oncologists, whereby ultimately, the productivity and the quality are increased, potentially leading to an improved patient outcome. Besides detection and segmentation of lesions, AI allows the extraction of a vast number of quantitative imaging features from structural or functional imaging data that are typically not accessible by means of human perception. These features can be used alone or in combination with other clinical parameters to generate mathematical models that allow, for example, prediction of the response to radiotherapy. Within the large field of AI, radiomics is the subdiscipline that deals with the extraction of quantitative image features as well as the generation of predictive or prognostic mathematical models. This review gives an overview of the basics, methods, and limitations of radiomics, with a focus on patients with brain tumors treated by radiation therapy.
Literature
3.
go back to reference Straube C, Elpula G, Gempt J, Gerhardt J, Bette S, Zimmer C, Schmidt-Graf F, Meyer B, Combs SE (2017) Re-irradiation after gross total resection of recurrent glioblastoma : spatial pattern of recurrence and a review of the literature as a basis for target volume definition. Strahlenther Onkol 193(11):897–909. https://doi.org/10.1007/s00066-017-1161-6CrossRefPubMed Straube C, Elpula G, Gempt J, Gerhardt J, Bette S, Zimmer C, Schmidt-Graf F, Meyer B, Combs SE (2017) Re-irradiation after gross total resection of recurrent glioblastoma : spatial pattern of recurrence and a review of the literature as a basis for target volume definition. Strahlenther Onkol 193(11):897–909. https://​doi.​org/​10.​1007/​s00066-017-1161-6CrossRefPubMed
9.
go back to reference Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue R, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762. https://doi.org/10.1038/nrclinonc.2017.141CrossRefPubMed Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue R, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762. https://​doi.​org/​10.​1038/​nrclinonc.​2017.​141CrossRefPubMed
11.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006CrossRefPubMed Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://​doi.​org/​10.​1038/​ncomms5006CrossRefPubMed
22.
go back to reference Zwanenburg A, Vallieres M, Abdalah MA, Aerts H, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit MC, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Gotz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegard A, Maier-Hein KH, Morin O, Muller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers R, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FHP, Whybra P, Richter C, Lock S (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338. https://doi.org/10.1148/radiol.2020191145CrossRefPubMed Zwanenburg A, Vallieres M, Abdalah MA, Aerts H, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit MC, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Gotz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegard A, Maier-Hein KH, Morin O, Muller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers R, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FHP, Whybra P, Richter C, Lock S (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338. https://​doi.​org/​10.​1148/​radiol.​2020191145CrossRefPubMed
24.
go back to reference Ellingson BM, Zaw T, Cloughesy TF, Naeini KM, Lalezari S, Mong S, Lai A, Nghiemphu PL, Pope WB (2012) Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood volume (CBV) in human gliomas. J Magn Reson Imaging 35(6):1472–1477. https://doi.org/10.1002/jmri.23600CrossRefPubMed Ellingson BM, Zaw T, Cloughesy TF, Naeini KM, Lalezari S, Mong S, Lai A, Nghiemphu PL, Pope WB (2012) Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood volume (CBV) in human gliomas. J Magn Reson Imaging 35(6):1472–1477. https://​doi.​org/​10.​1002/​jmri.​23600CrossRefPubMed
26.
go back to reference Xu D‑H, Kurani AS, Furst JD, Raicu DS (2004) Run-length encoding for volumetric texture. Conference proeedings from the 4th IASTED international conference on visualization, imaging and image processing: VIP Xu D‑H, Kurani AS, Furst JD, Raicu DS (2004) Run-length encoding for volumetric texture. Conference proeedings from the 4th IASTED international conference on visualization, imaging and image processing: VIP
28.
go back to reference Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, Yeom KW, Iv M, Ou Y, Kalpathy-Cramer J, Napel S, Gillies R, Gevaert O, Gatenby R (2018) Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol 39(2):208–216. https://doi.org/10.3174/ajnr.A5391CrossRefPubMedPubMedCentral Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, Yeom KW, Iv M, Ou Y, Kalpathy-Cramer J, Napel S, Gillies R, Gevaert O, Gatenby R (2018) Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol 39(2):208–216. https://​doi.​org/​10.​3174/​ajnr.​A5391CrossRefPubMedPubMedCentral
35.
go back to reference Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learningCrossRef Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learningCrossRef
40.
go back to reference Nioche C, Orlhac F, Boughdad S, Reuze S, Goya-Outi J, Robert C, Pellot-Barakat C, Soussan M, Frouin F, Buvat I (2018) LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 78(16):4786–4789. https://doi.org/10.1158/0008-5472.CAN-18-0125CrossRefPubMed Nioche C, Orlhac F, Boughdad S, Reuze S, Goya-Outi J, Robert C, Pellot-Barakat C, Soussan M, Frouin F, Buvat I (2018) LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 78(16):4786–4789. https://​doi.​org/​10.​1158/​0008-5472.​CAN-18-0125CrossRefPubMed
41.
go back to reference Gulli A, Pal S (2017) Deep learning with Keras Gulli A, Pal S (2017) Deep learning with Keras
42.
go back to reference Abadi M, Barham P, Chen J, Chen U, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M (2016) Tensorflow: a system for large-scale machine learning. In: 12th symposium on operating systems design and implementation, pp 265–283 Abadi M, Barham P, Chen J, Chen U, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M (2016) Tensorflow: a system for large-scale machine learning. In: 12th symposium on operating systems design and implementation, pp 265–283
43.
go back to reference Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A (eds) Advances in neural information processing systems, vol 32, pp 8024–8035 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A (eds) Advances in neural information processing systems, vol 32, pp 8024–8035
45.
go back to reference Nguyen A, Yosinski J, Clune J (2019) Understanding neural networks via feature visualization: a survey. In: Samek W, Montavon G, Vedaldi A, Hansen LK, Müller K‑R (eds) Explainable AI: interpreting, explaining and visualizing deep learning. Springer, Cham, pp 55–76 https://doi.org/10.1007/978-3-030-28954-6_4CrossRef Nguyen A, Yosinski J, Clune J (2019) Understanding neural networks via feature visualization: a survey. In: Samek W, Montavon G, Vedaldi A, Hansen LK, Müller K‑R (eds) Explainable AI: interpreting, explaining and visualizing deep learning. Springer, Cham, pp 55–76 https://​doi.​org/​10.​1007/​978-3-030-28954-6_​4CrossRef
Metadata
Title
Radiomics in radiation oncology—basics, methods, and limitations
Authors
Philipp Lohmann, PhD
Khaled Bousabarah
Mauritius Hoevels
Harald Treuer, PhD
Publication date
01-10-2020
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 10/2020
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-020-01663-3

Other articles of this Issue 10/2020

Strahlentherapie und Onkologie 10/2020 Go to the issue