Skip to main content
Top
Published in: Strahlentherapie und Onkologie 1/2021

Open Access 01-01-2021 | Magnetic Resonance Imaging | Original Article

Evaluation of response using FDG-PET/CT and diffusion weighted MRI after radiochemotherapy of pancreatic cancer: a non-randomized, monocentric phase II clinical trial—PaCa-DD-041 (Eudra-CT 2009-011968-11)

Authors: Carolin Zimmermann, Marius Distler, Christina Jentsch, Sophia Blum, Gunnar Folprecht, Klaus Zöphel, Heike Polster, Esther G. C. Troost, Nasreddin Abolmaali, Jürgen Weitz, Michael Baumann, Hans-Detlev Saeger, Robert Grützmann

Published in: Strahlentherapie und Onkologie | Issue 1/2021

Login to get access

Abstract

Background

Pancreatic cancer is a devastating disease with a 5-year survival rate of 20–25%. As approximately only 20% of patients diagnosed with pancreatic cancer are initially staged as resectable, it is necessary to evaluate new therapeutic approaches. Hence, neoadjuvant (radio)chemotherapy is a promising therapeutic option, especially in patients with a borderline resectable tumor. The aim of this non-randomized, monocentric, prospective, phase II clinical study was to assess the prognostic value of functional imaging techniques, i.e., [18F]2-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) and diffusion weighted magnetic resonance imaging (DW-MRI), prior to and during neoadjuvant radiochemotherapy.

Methods

Patients with histologically proven resectable, borderline resectable or unresectable non-metastatic pancreatic adenocarcinoma received induction chemotherapy followed by neoadjuvant radiochemotherapy. Patients underwent FDG-PET/CT and DW-MRI including T1- and T2-weighted sequences prior to and after neoadjuvant chemotherapy as well as following induction radiochemotherapy. The primary endpoint was the evaluation of the response as quantified by the standardized uptake value (SUV) measured with FDG-PET. Response to treatment was evaluated by FDG-PET and DW-MRI during and after the neoadjuvant course. Morphologic staging was performed using contrast-enhanced CT and contrast-enhanced MRI to decide inclusion of patients and resectability after neoadjuvant therapy. In those patients undergoing subsequent surgery, imaging findings were correlated with those of the pathologic resection specimen.

Results

A total of 25 patients were enrolled in the study. The response rate measured by FDG-PET was 85% with a statistically significant decrease of the maximal SUV (SUVmax) during therapy (p < 0.001). Using the mean apparent diffusion coefficient (ADC), response was not detectable with DW-MRI. After neoadjuvant treatment 16 patients underwent surgery. In 12 (48%) patients tumor resection could be performed. The median overall survival of all patients was 25 months (range: 7–38 months).

Conclusion

Based on these limited patient numbers, it was possible to show that this trial design is feasible and that the neoadjuvant therapy regime was well tolerated. FDG-PET/CT may be a reliable method to evaluate response to the combined therapy. In contrast, when evaluating the response using mean ADC, DW-MRI did not show conclusive results.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (2013) Krebs in Deutschland 2009/2010 vol 9. Rucksaldruck Berlin, Berlin Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (2013) Krebs in Deutschland 2009/2010 vol 9. Rucksaldruck Berlin, Berlin
2.
go back to reference Bramhall SR (1998) The use of molecular technology in the differentiation of pancreatic cancer and chronic pancreatitis. Int J Pancreatol 23(2):83–100PubMedCrossRef Bramhall SR (1998) The use of molecular technology in the differentiation of pancreatic cancer and chronic pancreatitis. Int J Pancreatol 23(2):83–100PubMedCrossRef
3.
go back to reference Bachmayer S, Fastner G, Vaszi A et al (2018) Nonmetastatic pancreatic cancer: improved survival with chemoradiotherapy > 40 Gy after systemic treatment. Strahlenther Onkol 194(7):627–637PubMedPubMedCentralCrossRef Bachmayer S, Fastner G, Vaszi A et al (2018) Nonmetastatic pancreatic cancer: improved survival with chemoradiotherapy > 40 Gy after systemic treatment. Strahlenther Onkol 194(7):627–637PubMedPubMedCentralCrossRef
4.
go back to reference Ferrone CR, Marchegiani G, Hong TS et al (2015) Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann Surg 261(1):12–17PubMedCrossRef Ferrone CR, Marchegiani G, Hong TS et al (2015) Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann Surg 261(1):12–17PubMedCrossRef
5.
go back to reference Zimmermann C, Folprecht G, Zips D, Pilarsky C, Saeger HD, Grutzmann R (2011) Neoadjuvant therapy in patients with pancreatic cancer: a disappointing therapeutic approach? Cancers (Basel) 3(2):2286–2301CrossRef Zimmermann C, Folprecht G, Zips D, Pilarsky C, Saeger HD, Grutzmann R (2011) Neoadjuvant therapy in patients with pancreatic cancer: a disappointing therapeutic approach? Cancers (Basel) 3(2):2286–2301CrossRef
6.
go back to reference Lordick F, Ott K, Krause BJ et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8(9):797–805PubMedCrossRef Lordick F, Ott K, Krause BJ et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8(9):797–805PubMedCrossRef
7.
go back to reference zum Buschenfelde CM, Herrmann K, Schuster T et al (2011) (18)F-FDG PET-guided salvage neoadjuvant radiochemotherapy of adenocarcinoma of the esophagogastric junction: the MUNICON II trial. J Nucl Med 52(8):1189–1196PubMedCrossRef zum Buschenfelde CM, Herrmann K, Schuster T et al (2011) (18)F-FDG PET-guided salvage neoadjuvant radiochemotherapy of adenocarcinoma of the esophagogastric junction: the MUNICON II trial. J Nucl Med 52(8):1189–1196PubMedCrossRef
8.
go back to reference Weber WA, Ott K, Becker K et al (2001) Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 19(12):3058–3065PubMedCrossRef Weber WA, Ott K, Becker K et al (2001) Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 19(12):3058–3065PubMedCrossRef
9.
go back to reference Bang S, Chung HW, Park SW et al (2006) The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol 40(10):923–929PubMedCrossRef Bang S, Chung HW, Park SW et al (2006) The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol 40(10):923–929PubMedCrossRef
10.
go back to reference Yoshioka M, Sato T, Furuya T et al (2004) Role of positron emission tomography with 2‑deoxy-2-[18F]fluoro-D-glucose in evaluating the effects of arterial infusion chemotherapy and radiotherapy on pancreatic cancer. J Gastroenterol 39(1):50–55PubMedCrossRef Yoshioka M, Sato T, Furuya T et al (2004) Role of positron emission tomography with 2‑deoxy-2-[18F]fluoro-D-glucose in evaluating the effects of arterial infusion chemotherapy and radiotherapy on pancreatic cancer. J Gastroenterol 39(1):50–55PubMedCrossRef
11.
go back to reference Choi M, Heilbrun LK, Venkatramanamoorthy R, Lawhorn-Crews JM, Zalupski MM, Shields AF (2010) Using 18F-fluorodeoxyglucose positron emission tomography to monitor clinical outcomes in patients treated with neoadjuvant chemo-radiotherapy for locally advanced pancreatic cancer. Am J Clin Oncol 33(3):257–261PubMed Choi M, Heilbrun LK, Venkatramanamoorthy R, Lawhorn-Crews JM, Zalupski MM, Shields AF (2010) Using 18F-fluorodeoxyglucose positron emission tomography to monitor clinical outcomes in patients treated with neoadjuvant chemo-radiotherapy for locally advanced pancreatic cancer. Am J Clin Oncol 33(3):257–261PubMed
12.
go back to reference Lee SS, Byun JH, Park BJ et al (2008) Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging 28(4):928–936PubMedCrossRef Lee SS, Byun JH, Park BJ et al (2008) Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging 28(4):928–936PubMedCrossRef
13.
go back to reference Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125PubMedPubMedCentralCrossRef Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125PubMedPubMedCentralCrossRef
14.
go back to reference Niwa T, Ueno M, Ohkawa S et al (2009) Advanced pancreatic cancer: the use of the apparent diffusion coefficient to predict response to chemotherapy. Br J Radiol 82(973):28–34PubMedCrossRef Niwa T, Ueno M, Ohkawa S et al (2009) Advanced pancreatic cancer: the use of the apparent diffusion coefficient to predict response to chemotherapy. Br J Radiol 82(973):28–34PubMedCrossRef
15.
go back to reference Bockhorn M, Uzunoglu FG, Adham M et al (2014) Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 155(6):977–988PubMedCrossRef Bockhorn M, Uzunoglu FG, Adham M et al (2014) Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 155(6):977–988PubMedCrossRef
16.
go back to reference Oettle H, Neuhaus P (2007) Adjuvant therapy in pancreatic cancer: a critical appraisal. Drugs 67(16):2293–2310PubMedCrossRef Oettle H, Neuhaus P (2007) Adjuvant therapy in pancreatic cancer: a critical appraisal. Drugs 67(16):2293–2310PubMedCrossRef
17.
go back to reference Conroy T, Gavoille C, Samalin E, Ychou M, Ducreux M (2013) The role of the FOLFIRINOX regimen for advanced pancreatic cancer. Curr Oncol Rep 15(2):182–189PubMedCrossRef Conroy T, Gavoille C, Samalin E, Ychou M, Ducreux M (2013) The role of the FOLFIRINOX regimen for advanced pancreatic cancer. Curr Oncol Rep 15(2):182–189PubMedCrossRef
18.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRef Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRef
19.
go back to reference Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240(2):205–213PubMedPubMedCentralCrossRef Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240(2):205–213PubMedPubMedCentralCrossRef
20.
go back to reference Duffaud F, Therasse P (2000) New guidelines to evaluate the response to treatment in solid tumors. Bull Cancer 87(12):881–886PubMed Duffaud F, Therasse P (2000) New guidelines to evaluate the response to treatment in solid tumors. Bull Cancer 87(12):881–886PubMed
21.
go back to reference Becker K, Mueller JD, Schulmacher C et al (2003) Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 98(7):1521–1530PubMedCrossRef Becker K, Mueller JD, Schulmacher C et al (2003) Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 98(7):1521–1530PubMedCrossRef
22.
go back to reference Wang XY, Yang F, Jin C, Fu DL (2014) Utility of PET/CT in diagnosis, staging, assessment of resectability and metabolic response of pancreatic cancer. World J Gastroenterol 20(42):15580–15589PubMedPubMedCentralCrossRef Wang XY, Yang F, Jin C, Fu DL (2014) Utility of PET/CT in diagnosis, staging, assessment of resectability and metabolic response of pancreatic cancer. World J Gastroenterol 20(42):15580–15589PubMedPubMedCentralCrossRef
23.
go back to reference Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42(5 Suppl):1S–93SPubMed Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42(5 Suppl):1S–93SPubMed
24.
go back to reference Samolyk-Kogaczewska N, Sierko E, Zuzda K et al (2019) PET/MRI-guided GTV delineation during radiotherapy planning in patients with squamous cell carcinoma of the tongue. Strahlenther Onkol 195(9):780–791PubMedPubMedCentralCrossRef Samolyk-Kogaczewska N, Sierko E, Zuzda K et al (2019) PET/MRI-guided GTV delineation during radiotherapy planning in patients with squamous cell carcinoma of the tongue. Strahlenther Onkol 195(9):780–791PubMedPubMedCentralCrossRef
25.
go back to reference Ben-Haim S, Ell P (2009) 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med 50(1):88–99PubMedCrossRef Ben-Haim S, Ell P (2009) 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med 50(1):88–99PubMedCrossRef
26.
go back to reference Mahadevan D, Von Hoff DD (2007) Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6(4):1186–1197PubMedCrossRef Mahadevan D, Von Hoff DD (2007) Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6(4):1186–1197PubMedCrossRef
27.
go back to reference Herneth AM, Guccione S, Bednarski M (2003) Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol 45(3):208–213PubMedCrossRef Herneth AM, Guccione S, Bednarski M (2003) Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol 45(3):208–213PubMedCrossRef
28.
go back to reference Cuneo KC, Chenevert TL, Ben-Josef E et al (2014) A pilot study of diffusion-weighted MRI in patients undergoing neoadjuvant chemoradiation for pancreatic cancer. Transl Oncol 7(5):644–649PubMedPubMedCentralCrossRef Cuneo KC, Chenevert TL, Ben-Josef E et al (2014) A pilot study of diffusion-weighted MRI in patients undergoing neoadjuvant chemoradiation for pancreatic cancer. Transl Oncol 7(5):644–649PubMedPubMedCentralCrossRef
29.
go back to reference Barbaro B, Vitale R, Valentini V et al (2012) Diffusion-weighted magnetic resonance imaging in monitoring rectal cancer response to neoadjuvant chemoradiotherapy. Int J Radiat Oncol Biol Phys 83(2):594–599PubMedCrossRef Barbaro B, Vitale R, Valentini V et al (2012) Diffusion-weighted magnetic resonance imaging in monitoring rectal cancer response to neoadjuvant chemoradiotherapy. Int J Radiat Oncol Biol Phys 83(2):594–599PubMedCrossRef
30.
go back to reference Gollub MJ, Gultekin DH, Akin O et al (2012) Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer. Eur Radiol 22(4):821–831PubMedCrossRef Gollub MJ, Gultekin DH, Akin O et al (2012) Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer. Eur Radiol 22(4):821–831PubMedCrossRef
31.
go back to reference Curvo-Semedo L, Lambregts DM, Maas M, Beets GL, Caseiro-Alves F, Beets-Tan RG (2012) Diffusion-weighted MRI in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J Magn Reson Imaging 35(6):1365–1371PubMedCrossRef Curvo-Semedo L, Lambregts DM, Maas M, Beets GL, Caseiro-Alves F, Beets-Tan RG (2012) Diffusion-weighted MRI in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J Magn Reson Imaging 35(6):1365–1371PubMedCrossRef
Metadata
Title
Evaluation of response using FDG-PET/CT and diffusion weighted MRI after radiochemotherapy of pancreatic cancer: a non-randomized, monocentric phase II clinical trial—PaCa-DD-041 (Eudra-CT 2009-011968-11)
Authors
Carolin Zimmermann
Marius Distler
Christina Jentsch
Sophia Blum
Gunnar Folprecht
Klaus Zöphel
Heike Polster
Esther G. C. Troost
Nasreddin Abolmaali
Jürgen Weitz
Michael Baumann
Hans-Detlev Saeger
Robert Grützmann
Publication date
01-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 1/2021
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-020-01654-4

Other articles of this Issue 1/2021

Strahlentherapie und Onkologie 1/2021 Go to the issue