Skip to main content
Top
Published in: European Radiology 4/2012

01-04-2012 | Gastrointestinal

Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer

Authors: M. J. Gollub, D. H. Gultekin, O. Akin, R. K. Do, J. L. Fuqua III, M. Gonen, D. Kuk, M. Weiser, L. Saltz, D. Schrag, K. Goodman, P. Paty, J. Guillem, G. M. Nash, L. Temple, J. Shia, L. H. Schwartz

Published in: European Radiology | Issue 4/2012

Login to get access

Abstract

Objective

To determine the ability of dynamic contrast enhanced (DCE-MRI) to predict pathological complete response (pCR) after preoperative chemotherapy for rectal cancer.

Methods

In a prospective clinical trial, 23/34 enrolled patients underwent pre- and post-treatment DCE-MRI performed at 1.5T. Gadolinium 0.1 mmol/kg was injected at a rate of 2 mL/s. Using a two-compartmental model of vascular space and extravascular extracellular space, Ktrans, kep, ve, AUC90, and AUC180 were calculated. Surgical specimens were the gold standard. Baseline, post-treatment and changes in these quantities were compared with clinico-pathological outcomes. For quantitative variable comparison, Spearman’s Rank correlation was used. For categorical variable comparison, the Kruskal–Wallis test was used. P ≤ 0.05 was considered significant.

Results

Percentage of histological tumour response ranged from 10 to 100%. Six patients showed pCR. Post chemotherapy Ktrans (mean 0.5 min−1 vs. 0.2 min−1, P = 0.04) differed significantly between non-pCR and pCR outcomes, respectively and also correlated with percent tumour response and pathological size. Post-treatment residual abnormal soft tissue noted in some cases of pCR prevented an MR impression of complete response based on morphology alone.

Conclusion

After neoadjuvant chemotherapy in rectal cancer, MR perfusional characteristics have been identified that can aid in the distinction between incomplete response and pCR.

Key Points

  • Dynamic contrast enhanced (DCE) MRI provides perfusion characteristics of tumours.
  • These objective quantitative measures may be more helpful than subjective imaging alone
  • Some parameters differed markedly between completely responding and incompletely responding rectal cancers.
  • Thus DCE-MRI can potentially offer treatment-altering imaging biomarkers.
Literature
1.
go back to reference Hartley A, Ho KF, McConkey C et al (2005) Pathological complete response following pre-operative chemoradiotherapy in rectal cancer: analysis of phase II/III trials. Br J Radiol 78:934–938PubMedCrossRef Hartley A, Ho KF, McConkey C et al (2005) Pathological complete response following pre-operative chemoradiotherapy in rectal cancer: analysis of phase II/III trials. Br J Radiol 78:934–938PubMedCrossRef
2.
go back to reference Kalff V, Ware R, Heriot A et al (2009) Radiation changes do not interfere with postchemoradiation restaging of patients with rectal cancer by FDG PET/CT before curative surgical therapy. Int J Radiat Oncol Biol Phys 74:60–6PubMedCrossRef Kalff V, Ware R, Heriot A et al (2009) Radiation changes do not interfere with postchemoradiation restaging of patients with rectal cancer by FDG PET/CT before curative surgical therapy. Int J Radiat Oncol Biol Phys 74:60–6PubMedCrossRef
3.
go back to reference Kalff V, Duong C, Drummond EG et al (2006) Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provide prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med 47:14–22PubMed Kalff V, Duong C, Drummond EG et al (2006) Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provide prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med 47:14–22PubMed
4.
go back to reference Suppiah A, Hunter IA, Cowley J et al (2009) Magnetic resonance imaging accuracy in assessing tumor down-staging following chemoradiation in rectal cancer. Colorectal Dis 3:249–53CrossRef Suppiah A, Hunter IA, Cowley J et al (2009) Magnetic resonance imaging accuracy in assessing tumor down-staging following chemoradiation in rectal cancer. Colorectal Dis 3:249–53CrossRef
5.
go back to reference Goh V, Padhani AR, Rasheed S (2007) Functional imaging of colorectal cancer angiogenesis. Lancet Oncol 8:245–55PubMedCrossRef Goh V, Padhani AR, Rasheed S (2007) Functional imaging of colorectal cancer angiogenesis. Lancet Oncol 8:245–55PubMedCrossRef
6.
go back to reference Kierkels RG, Backes WH, Janssen MHM et al (2010) Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in rectal cancer. Int J Radiation Oncology Biol Phys 77:400–408CrossRef Kierkels RG, Backes WH, Janssen MHM et al (2010) Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in rectal cancer. Int J Radiation Oncology Biol Phys 77:400–408CrossRef
7.
go back to reference De Lussanet QG, Backes WH, Griffen AW et al (2005) Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys 13:1309–1315CrossRef De Lussanet QG, Backes WH, Griffen AW et al (2005) Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys 13:1309–1315CrossRef
8.
go back to reference Atkin G, Taylor NJ, Daley FM et al (2006) Dynamic contrast-enhanced magnetic resonance imaging is a poor measure of rectal cancer angiogenesis. Br J Surg 93:992–1000PubMedCrossRef Atkin G, Taylor NJ, Daley FM et al (2006) Dynamic contrast-enhanced magnetic resonance imaging is a poor measure of rectal cancer angiogenesis. Br J Surg 93:992–1000PubMedCrossRef
9.
go back to reference Kremser C, Trieb T, Rudisch A et al (2007) Dynamic T1 mapping predicts outcome of chemoradiation therapy in primary rectal carcinoma: sequence implementation and data analysis. J Magn Reson Imaging 26:662–671PubMedCrossRef Kremser C, Trieb T, Rudisch A et al (2007) Dynamic T1 mapping predicts outcome of chemoradiation therapy in primary rectal carcinoma: sequence implementation and data analysis. J Magn Reson Imaging 26:662–671PubMedCrossRef
10.
go back to reference Sahani DV, Kalva SP, Hamberg LM et al (2005) Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology 234:785–792PubMedCrossRef Sahani DV, Kalva SP, Hamberg LM et al (2005) Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology 234:785–792PubMedCrossRef
11.
go back to reference Dinter DJ, Horisberger K, Zechmann C et al (2009) Can dynamic MR imaging predict response in patients with rectal cancer undergoing Cetuximab-based neoadjuvant chemoradiation? Onkologie 32:86–93PubMedCrossRef Dinter DJ, Horisberger K, Zechmann C et al (2009) Can dynamic MR imaging predict response in patients with rectal cancer undergoing Cetuximab-based neoadjuvant chemoradiation? Onkologie 32:86–93PubMedCrossRef
12.
go back to reference De Vries A, Griebel J, Kremser C et al (2000) Monitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: preliminary results and implications for therapy. Radiology 217:385–391PubMed De Vries A, Griebel J, Kremser C et al (2000) Monitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: preliminary results and implications for therapy. Radiology 217:385–391PubMed
13.
go back to reference DeVries AF, Griebel J, Kremser C et al (2001) Tumor microcirculation evaluated by dynamic magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma. Cancer Res 61:2513–2516PubMed DeVries AF, Griebel J, Kremser C et al (2001) Tumor microcirculation evaluated by dynamic magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma. Cancer Res 61:2513–2516PubMed
14.
go back to reference Habr-Gama A, Perez RO, Wynn G et al (2010) Complete clinical response after neoadjuvant chemoradiation therapy for distal rectal cancer: characterization of clinical and endoscopic findings for standardization. Dis Colon Rectum 53:1692–1698PubMedCrossRef Habr-Gama A, Perez RO, Wynn G et al (2010) Complete clinical response after neoadjuvant chemoradiation therapy for distal rectal cancer: characterization of clinical and endoscopic findings for standardization. Dis Colon Rectum 53:1692–1698PubMedCrossRef
15.
go back to reference Capirci C, Valentini V, Cionini L et al (2008) Prognostic value of pathologic complete response after neoadjuvant therapy in locally advanced rectal cancer: long-term analysis of 566 ypCR patients. Int J Radiat Oncol Biol Phys 72:99–107PubMedCrossRef Capirci C, Valentini V, Cionini L et al (2008) Prognostic value of pathologic complete response after neoadjuvant therapy in locally advanced rectal cancer: long-term analysis of 566 ypCR patients. Int J Radiat Oncol Biol Phys 72:99–107PubMedCrossRef
16.
go back to reference Rödel C, Martus P, Papadoupolos T et al (2005) Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol 23:8688–96PubMedCrossRef Rödel C, Martus P, Papadoupolos T et al (2005) Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol 23:8688–96PubMedCrossRef
17.
go back to reference Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41PubMed Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41PubMed
18.
go back to reference Weinmann HJ, Laniado M, Mützel W (1984) Pharmacokinetics of Gd DTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172PubMed Weinmann HJ, Laniado M, Mützel W (1984) Pharmacokinetics of Gd DTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172PubMed
19.
go back to reference Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–67PubMedCrossRef Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–67PubMedCrossRef
20.
go back to reference Jarnagin WR, Schwartz LH, Gultekin DH et al (2009) Regional chemotherapy for unresectable primary liver cancer: results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann Oncol 20:1589–95PubMedCrossRef Jarnagin WR, Schwartz LH, Gultekin DH et al (2009) Regional chemotherapy for unresectable primary liver cancer: results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann Oncol 20:1589–95PubMedCrossRef
21.
go back to reference Lockhart AC, Rothenberg ML, Dupont J et al (2010) Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol 28:207–14PubMedCrossRef Lockhart AC, Rothenberg ML, Dupont J et al (2010) Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol 28:207–14PubMedCrossRef
22.
go back to reference Shia J, Guillem JG, Moore HG et al (2004) Patterns of morphologic alteration in residual rectal carcinoma following preoperative chemoradiation and their association with long-term outcome. Am J Surg Pathol 28:215–223PubMedCrossRef Shia J, Guillem JG, Moore HG et al (2004) Patterns of morphologic alteration in residual rectal carcinoma following preoperative chemoradiation and their association with long-term outcome. Am J Surg Pathol 28:215–223PubMedCrossRef
23.
go back to reference Bewick V, Cheek L, Ball J (2004) Statistics review 10: further nonparametric methods. Crit Care 8:196–199PubMedCrossRef Bewick V, Cheek L, Ball J (2004) Statistics review 10: further nonparametric methods. Crit Care 8:196–199PubMedCrossRef
24.
go back to reference Kim YH, Kim DY, Kim TH et al (2005) Usefulness of magnetic resonance volumetric evaluation in predicting response to preoperative concurrent chemoradiotherapy in patients with resectable rectal cancer. Int J Radiat Oncol Biol Phys 62:761–768PubMedCrossRef Kim YH, Kim DY, Kim TH et al (2005) Usefulness of magnetic resonance volumetric evaluation in predicting response to preoperative concurrent chemoradiotherapy in patients with resectable rectal cancer. Int J Radiat Oncol Biol Phys 62:761–768PubMedCrossRef
25.
go back to reference Padhani AR, Dzik-Jurasz A (2004) Perfusion MR imaging of extracranial tumor angiogenesis. Top Magn Reson Imaging 15:41–57PubMedCrossRef Padhani AR, Dzik-Jurasz A (2004) Perfusion MR imaging of extracranial tumor angiogenesis. Top Magn Reson Imaging 15:41–57PubMedCrossRef
26.
go back to reference Willett CG et al (2004) Direct evidence that VEG specific antibody Bevacizumab has anti-vascular effects in human vascular cancer. Nat Med 10:145–147PubMedCrossRef Willett CG et al (2004) Direct evidence that VEG specific antibody Bevacizumab has anti-vascular effects in human vascular cancer. Nat Med 10:145–147PubMedCrossRef
27.
go back to reference Tofts PS, Phil D, Brix G et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRef Tofts PS, Phil D, Brix G et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRef
28.
go back to reference Lankester KJ, Taylor NJ, Stirling JJ et al (2007) Dynamic MRI for imaging tumor microvasculature: comparison of susceptibility and relaxivity techniques in pelvic tumors. J Mag Reson Imaging 25:796–805CrossRef Lankester KJ, Taylor NJ, Stirling JJ et al (2007) Dynamic MRI for imaging tumor microvasculature: comparison of susceptibility and relaxivity techniques in pelvic tumors. J Mag Reson Imaging 25:796–805CrossRef
29.
go back to reference George ML, Dzik-Jurasz ASK, Padhani AR et al (2001) Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 88:1628–1636PubMedCrossRef George ML, Dzik-Jurasz ASK, Padhani AR et al (2001) Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 88:1628–1636PubMedCrossRef
30.
go back to reference Brown JM, Giacca AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416PubMed Brown JM, Giacca AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416PubMed
31.
go back to reference Quah HM, Chou JF, Gonen M et al (2008) Pathologic stage is most prognostic of disease-free survival in locally advanced rectal cancer patients after preoperative chemoradiation. Cancer 113:57–64PubMedCrossRef Quah HM, Chou JF, Gonen M et al (2008) Pathologic stage is most prognostic of disease-free survival in locally advanced rectal cancer patients after preoperative chemoradiation. Cancer 113:57–64PubMedCrossRef
32.
go back to reference Habr-Gama A, Perez RO, Nadalin W et al (2004) Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 240:711–718PubMed Habr-Gama A, Perez RO, Nadalin W et al (2004) Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 240:711–718PubMed
Metadata
Title
Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer
Authors
M. J. Gollub
D. H. Gultekin
O. Akin
R. K. Do
J. L. Fuqua III
M. Gonen
D. Kuk
M. Weiser
L. Saltz
D. Schrag
K. Goodman
P. Paty
J. Guillem
G. M. Nash
L. Temple
J. Shia
L. H. Schwartz
Publication date
01-04-2012
Publisher
Springer-Verlag
Published in
European Radiology / Issue 4/2012
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-011-2321-1

Other articles of this Issue 4/2012

European Radiology 4/2012 Go to the issue