Skip to main content
Top
Published in: Strahlentherapie und Onkologie 2/2015

01-02-2015 | Original article

Late inflammatory and thrombotic changes in irradiated hearts of C57BL/6 wild-type and atherosclerosis-prone ApoE-deficient mice

Authors: I. Patties, J. Haagen, W. Dörr, G. Hildebrandt, A. Glasow

Published in: Strahlentherapie und Onkologie | Issue 2/2015

Login to get access

Abstract

Background and purpose

Radiation-induced heart disease represents a late complication of thoracic radiotherapy. We investigated the inflammatory and thrombotic response after local heart irradiation in wild-type and atherosclerosis-prone mice.

Material and methods

Atherosclerosis-prone ApoE−/− and C57BL/6 wild-type mice were sacrificed 20, 40, and 60 weeks after irradiation with 0.2, 2, 8, or 16 Gy. The expression of CD31, vascular cell adhesion molecule-1 (VCAM-1), thrombomodulin (TM), and CD45 were quantified by immunofluorescence staining of heart tissue sections.

Results

Microvascular density decreased at 40 weeks after 16 Gy in C57BL/6 but not in ApoE−/− mice. CD31 expression declined in C57BL/6 mice at 40 weeks (8 Gy), but increased in ApoE−/− mice at 20 (2/8/16 Gy) and 60 weeks (16 Gy). Capillary area decreased in C57BL/6 at 40 weeks (8/16 Gy) but increased in ApoE−/− mice at 20 weeks (16 Gy). Endocardial VCAM-1 expression remained unchanged. TM-positive capillaries decreased at 40 weeks (8/16 Gy) in C57BL/6 and at 60 weeks (2/16 Gy) in ApoE−/− mice. Leukocyte infiltration transiently rose 40 weeks after 8 Gy (only ApoE−/−) and 16 Gy. After receiving a low irradiation dose of 0.2 Gy, no significant changes were observed in any of the mouse models.

Conclusion

This study demonstrated that local heart irradiation affects microvascular structure and induces inflammatory/thrombotic responses in mice in a dose- and time-dependent manner. Thereby, significant prothrombotic changes were found in both strains, although they were progressive in ApoE−/− mice only. Proinflammatory responses, like the increase of adhesion molecules and leukocyte infiltration, were more pronounced and occurred at lower doses in ApoE−/− vs. C57BL/6 mice. These findings indicate that metabolic risk factors, such as decreased ApoE lipoproteins, may lead to an enhanced proinflammatory and prothrombotic late response in locally irradiated hearts.
Literature
1.
go back to reference Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE (2003) Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 45:55–75PubMedCrossRef Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE (2003) Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 45:55–75PubMedCrossRef
2.
go back to reference McGale P, Darby SC, Hall P et al (2011) Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol 100:167–175PubMedCrossRef McGale P, Darby SC, Hall P et al (2011) Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol 100:167–175PubMedCrossRef
3.
go back to reference Fakhrian K, Oechsner M, Kampfer S et al (2013) Advanced techniques in neoadjuvant radiotherapy allow dose escalation without increased dose to the organs at risk: planning study in esophageal carcinoma. Strahlenther Onkol 189:293–300PubMedCrossRef Fakhrian K, Oechsner M, Kampfer S et al (2013) Advanced techniques in neoadjuvant radiotherapy allow dose escalation without increased dose to the organs at risk: planning study in esophageal carcinoma. Strahlenther Onkol 189:293–300PubMedCrossRef
4.
go back to reference Pasler M, Georg D, Bartelt S et al (2013) Node-positive left-sided breast cancer: does VMAT improve treatment plan quality with respect to IMRT? Strahlenther Onkol 189:380–386PubMedCrossRef Pasler M, Georg D, Bartelt S et al (2013) Node-positive left-sided breast cancer: does VMAT improve treatment plan quality with respect to IMRT? Strahlenther Onkol 189:380–386PubMedCrossRef
5.
go back to reference Aleman BM, Belt-Dusebout AW van den, Klokman WJ et al (2003) Long-term cause-specific mortality of patients treated for Hodgkin’s disease. J Clin Oncol 21:3431–3439PubMedCrossRef Aleman BM, Belt-Dusebout AW van den, Klokman WJ et al (2003) Long-term cause-specific mortality of patients treated for Hodgkin’s disease. J Clin Oncol 21:3431–3439PubMedCrossRef
6.
go back to reference Schultz-Hector S, Trott KR (2007) Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys 67:10–18PubMedCrossRef Schultz-Hector S, Trott KR (2007) Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys 67:10–18PubMedCrossRef
7.
go back to reference Hull MC, Morris CG, Pepine CJ et al (2003) Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of hodgkin lymphoma treated with radiation therapy. JAMA 290:2831–2837PubMedCrossRef Hull MC, Morris CG, Pepine CJ et al (2003) Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of hodgkin lymphoma treated with radiation therapy. JAMA 290:2831–2837PubMedCrossRef
8.
go back to reference Dorresteijn LD, Kappelle AC, Boogerd W et al (2002) Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol 20:282–288PubMedCrossRef Dorresteijn LD, Kappelle AC, Boogerd W et al (2002) Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol 20:282–288PubMedCrossRef
9.
go back to reference Caligiuri G, Levy B, Pernow J et al (1999) Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci U S A 96:6920–6924PubMedCentralPubMedCrossRef Caligiuri G, Levy B, Pernow J et al (1999) Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci U S A 96:6920–6924PubMedCentralPubMedCrossRef
10.
go back to reference Jurado JA, Bashir R, Burket MW (2008) Radiation-induced peripheral artery disease. Catheter Cardiovasc Interv 72:563–568PubMedCrossRef Jurado JA, Bashir R, Burket MW (2008) Radiation-induced peripheral artery disease. Catheter Cardiovasc Interv 72:563–568PubMedCrossRef
11.
go back to reference Patel DA, Kochanski J, Suen AW et al (2006) Clinical manifestations of noncoronary atherosclerotic vascular disease after moderate dose irradiation. Cancer 106:718–725PubMedCrossRef Patel DA, Kochanski J, Suen AW et al (2006) Clinical manifestations of noncoronary atherosclerotic vascular disease after moderate dose irradiation. Cancer 106:718–725PubMedCrossRef
12.
go back to reference Stewart FA, Heeneman S, Te PJ et al (2006) Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE−/− mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 168:649–658PubMedCentralPubMedCrossRef Stewart FA, Heeneman S, Te PJ et al (2006) Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE−/− mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 168:649–658PubMedCentralPubMedCrossRef
13.
go back to reference Seemann I, Gabriels K, Visser NL et al (2012) Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature. Radiother Oncol 103:143–150PubMedCrossRef Seemann I, Gabriels K, Visser NL et al (2012) Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature. Radiother Oncol 103:143–150PubMedCrossRef
14.
go back to reference Gabriels K, Hoving S, Seemann I et al (2012) Local heart irradiation of ApoE(−/−) mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis. Radiother Oncol 105:358–364PubMedCrossRef Gabriels K, Hoving S, Seemann I et al (2012) Local heart irradiation of ApoE(−/−) mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis. Radiother Oncol 105:358–364PubMedCrossRef
15.
go back to reference Meir KS, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24:1006–1014PubMedCrossRef Meir KS, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24:1006–1014PubMedCrossRef
16.
go back to reference Mertens A, Holvoet P (2001) Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 15:2073–2084PubMedCrossRef Mertens A, Holvoet P (2001) Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 15:2073–2084PubMedCrossRef
17.
go back to reference Quarmby S, Kumar P, Wang J et al (1999) Irradiation induces upregulation of CD31 in human endothelial cells. Arterioscler Thromb Vasc Biol 19:588–597PubMedCrossRef Quarmby S, Kumar P, Wang J et al (1999) Irradiation induces upregulation of CD31 in human endothelial cells. Arterioscler Thromb Vasc Biol 19:588–597PubMedCrossRef
18.
go back to reference Gaugler MH, Vereycken-Holler V, Squiban C et al (2004) PECAM-1 (CD31) is required for interactions of platelets with endothelial cells after irradiation. J Thromb Haemost 2:2020–2026PubMedCrossRef Gaugler MH, Vereycken-Holler V, Squiban C et al (2004) PECAM-1 (CD31) is required for interactions of platelets with endothelial cells after irradiation. J Thromb Haemost 2:2020–2026PubMedCrossRef
19.
go back to reference Van de Wouwer M, Conway EM (2004) Novel functions of thrombomodulin in inflammation. Crit Care Med 32:S254–S261CrossRef Van de Wouwer M, Conway EM (2004) Novel functions of thrombomodulin in inflammation. Crit Care Med 32:S254–S261CrossRef
20.
go back to reference Wang J, Zheng H, Ou X et al (2002) Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: possible link between endothelial dysfunction and chronic radiation fibrosis. Am J Pathol 160:2063–2072PubMedCentralPubMedCrossRef Wang J, Zheng H, Ou X et al (2002) Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: possible link between endothelial dysfunction and chronic radiation fibrosis. Am J Pathol 160:2063–2072PubMedCentralPubMedCrossRef
21.
go back to reference Barjaktarovic Z, Schmaltz D, Shyla A et al (2011) Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One 6:e27811PubMedCentralPubMedCrossRef Barjaktarovic Z, Schmaltz D, Shyla A et al (2011) Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One 6:e27811PubMedCentralPubMedCrossRef
22.
go back to reference Patties I, Habelt B, Rosin B et al (2014) Late effects of local irradiation on the expression of inflammatory markers in the Arteria saphena of C57BL/6 wild-type and ApoE-knockout mice. Radiat Environ Biophys 53:117–124PubMedCrossRef Patties I, Habelt B, Rosin B et al (2014) Late effects of local irradiation on the expression of inflammatory markers in the Arteria saphena of C57BL/6 wild-type and ApoE-knockout mice. Radiat Environ Biophys 53:117–124PubMedCrossRef
23.
go back to reference Nakashima Y, Raines EW, Plump AS et al (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18:842–851PubMedCrossRef Nakashima Y, Raines EW, Plump AS et al (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18:842–851PubMedCrossRef
24.
go back to reference Hoving S, Heeneman S, Gijbels MJ et al (2012) Irradiation induces different inflammatory and thrombotic responses in carotid arteries of wildtype C57BL/6J and atherosclerosis-prone ApoE(−/−) mice. Radiother Oncol 105:365–370PubMedCrossRef Hoving S, Heeneman S, Gijbels MJ et al (2012) Irradiation induces different inflammatory and thrombotic responses in carotid arteries of wildtype C57BL/6J and atherosclerosis-prone ApoE(−/−) mice. Radiother Oncol 105:365–370PubMedCrossRef
25.
go back to reference Zibara K, Chettab K, McGregor B et al (2001) Increased ICAM-1 and PECAM-1 transcription levels in the heart of Apo-E deficient mice in comparison to wild type (C57BL6). Thromb Haemost 85:908–914PubMed Zibara K, Chettab K, McGregor B et al (2001) Increased ICAM-1 and PECAM-1 transcription levels in the heart of Apo-E deficient mice in comparison to wild type (C57BL6). Thromb Haemost 85:908–914PubMed
27.
go back to reference Muller WA (1995) The role of PECAM-1 (CD31) in leukocyte emigration: studies in vitro and in vivo. J Leukoc Biol 57:523–528PubMed Muller WA (1995) The role of PECAM-1 (CD31) in leukocyte emigration: studies in vitro and in vivo. J Leukoc Biol 57:523–528PubMed
28.
go back to reference Van der Meeren A, Vandamme, Squiban C et al (2003) Inflammatory reaction and changes in expression of coagulation proteins on lung endothelial cells after total-body irradiation in mice. Radiat Res 160:637–646PubMedCrossRef Van der Meeren A, Vandamme, Squiban C et al (2003) Inflammatory reaction and changes in expression of coagulation proteins on lung endothelial cells after total-body irradiation in mice. Radiat Res 160:637–646PubMedCrossRef
29.
go back to reference Jaenke RS, Robbins ME, Bywaters T et al (1993) Capillary endothelium. Target site of renal radiation injury. Lab Invest 68:396–405PubMed Jaenke RS, Robbins ME, Bywaters T et al (1993) Capillary endothelium. Target site of renal radiation injury. Lab Invest 68:396–405PubMed
31.
go back to reference Massberg S, Brand K, Gruner S et al (2002) A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 196:887–896PubMedCentralPubMedCrossRef Massberg S, Brand K, Gruner S et al (2002) A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 196:887–896PubMedCentralPubMedCrossRef
32.
go back to reference Molla M, Gironella M, Miquel R et al (2003) Relative roles of ICAM-1 and VCAM-1 in the pathogenesis of experimental radiation-induced intestinal inflammation. Int J Radiat Oncol Biol Phys 57:264–273PubMedCrossRef Molla M, Gironella M, Miquel R et al (2003) Relative roles of ICAM-1 and VCAM-1 in the pathogenesis of experimental radiation-induced intestinal inflammation. Int J Radiat Oncol Biol Phys 57:264–273PubMedCrossRef
33.
go back to reference Quarmby S, Hunter RD, Kumar S (2000) Irradiation induced expression of CD31, ICAM-1 and VCAM-1 in human microvascular endothelial cells. Anticancer Res 20:3375–3381PubMed Quarmby S, Hunter RD, Kumar S (2000) Irradiation induced expression of CD31, ICAM-1 and VCAM-1 in human microvascular endothelial cells. Anticancer Res 20:3375–3381PubMed
34.
go back to reference Epperly MW, Sikora CA, DeFilippi SJ et al (2002) Pulmonary irradiation-induced expression of VCAM-I and ICAM-I is decreased by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy. Biol Blood Marrow Transplant 8:175–187PubMedCrossRef Epperly MW, Sikora CA, DeFilippi SJ et al (2002) Pulmonary irradiation-induced expression of VCAM-I and ICAM-I is decreased by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy. Biol Blood Marrow Transplant 8:175–187PubMedCrossRef
35.
go back to reference Richter KK, Fink LM, Hughes BM et al (1998) Differential effect of radiation on endothelial cell function in rectal cancer and normal rectum. Am J Surg 176:642–647PubMedCrossRef Richter KK, Fink LM, Hughes BM et al (1998) Differential effect of radiation on endothelial cell function in rectal cancer and normal rectum. Am J Surg 176:642–647PubMedCrossRef
36.
go back to reference Richter KK, Fink LM, Hughes BM et al (1997) Is the loss of endothelial thrombomodulin involved in the mechanism of chronicity in late radiation enteropathy? Radiother Oncol 44:65–71PubMedCrossRef Richter KK, Fink LM, Hughes BM et al (1997) Is the loss of endothelial thrombomodulin involved in the mechanism of chronicity in late radiation enteropathy? Radiother Oncol 44:65–71PubMedCrossRef
37.
go back to reference Robbins ME, Jaenke RS, Bywaters T et al (1993) Sequential evaluation of radiation-induced glomerular ultrastructural changes in the pig kidney. Radiat Res 135:351–364PubMedCrossRef Robbins ME, Jaenke RS, Bywaters T et al (1993) Sequential evaluation of radiation-induced glomerular ultrastructural changes in the pig kidney. Radiat Res 135:351–364PubMedCrossRef
38.
go back to reference Hallahan D, Kuchibhotla J, Wyble C (1996) Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res 56:5150–5155PubMed Hallahan D, Kuchibhotla J, Wyble C (1996) Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res 56:5150–5155PubMed
39.
go back to reference Stewart FA, Poele JA te, Van der Wal AF et al (2001) Radiation nephropathy – the link between functional damage and vascular mediated inflammatory and thrombotic changes. Acta Oncol 40:952–957PubMedCrossRef Stewart FA, Poele JA te, Van der Wal AF et al (2001) Radiation nephropathy – the link between functional damage and vascular mediated inflammatory and thrombotic changes. Acta Oncol 40:952–957PubMedCrossRef
41.
go back to reference Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998PubMedCrossRef Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998PubMedCrossRef
Metadata
Title
Late inflammatory and thrombotic changes in irradiated hearts of C57BL/6 wild-type and atherosclerosis-prone ApoE-deficient mice
Authors
I. Patties
J. Haagen
W. Dörr
G. Hildebrandt
A. Glasow
Publication date
01-02-2015
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 2/2015
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-014-0745-7

Other articles of this Issue 2/2015

Strahlentherapie und Onkologie 2/2015 Go to the issue