Skip to main content
Top
Published in: Inflammation Research 9/2016

01-09-2016 | Review

Red cell DAMPs and inflammation

Authors: Rafaela Mendonça, Angélica A. A. Silveira, Nicola Conran

Published in: Inflammation Research | Issue 9/2016

Login to get access

Abstract

Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5’ triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Literature
1.
go back to reference Quigley JG, Means RT Jr, Gçader B. The birth, life and death of red blood cells, erythropoiesis, the mature red blood cell and cell destruction. In: Greer JP, Arber DA, Glader B, List AF, Means Jr RT, Paraskevas F, et al., editors. Wintrobe’s clinical hematology. Philadelphia: Lippincott Williams & Wilkins, Wolters Kluwer; 2014. p. 83–124. Quigley JG, Means RT Jr, Gçader B. The birth, life and death of red blood cells, erythropoiesis, the mature red blood cell and cell destruction. In: Greer JP, Arber DA, Glader B, List AF, Means Jr RT, Paraskevas F, et al., editors. Wintrobe’s clinical hematology. Philadelphia: Lippincott Williams & Wilkins, Wolters Kluwer; 2014. p. 83–124.
2.
go back to reference Means RT Jr, Glader B. Anemia: general considerations. In: Greer JP, Arber DA, Glader B, List AF, Means Jr RT, Paraskevas F, et al., editors. Wintrobe’s clinical hematology. Philadelphia: Lippincott Williams & Wilkins, Wolters Kluwer; 2014. p. 587–616. Means RT Jr, Glader B. Anemia: general considerations. In: Greer JP, Arber DA, Glader B, List AF, Means Jr RT, Paraskevas F, et al., editors. Wintrobe’s clinical hematology. Philadelphia: Lippincott Williams & Wilkins, Wolters Kluwer; 2014. p. 587–616.
3.
go back to reference Dhaliwal G, Cornett PA, Tierney LM Jr. Hemolytic anemia. Am Fam Phys. 2004;69:2599–606. Dhaliwal G, Cornett PA, Tierney LM Jr. Hemolytic anemia. Am Fam Phys. 2004;69:2599–606.
4.
go back to reference Gram M, Dolberg Anderson U, Johansson ME, Edstrom-Hagerwall A, Larsson I, Jalmby M, et al. The human endogenous protection system against cell-free hemoglobin and heme is overwhelmed in preeclampsia and provides potential biomarkers and clinical indicators. PLoS One. 2015;10:e0138111.PubMedPubMedCentralCrossRef Gram M, Dolberg Anderson U, Johansson ME, Edstrom-Hagerwall A, Larsson I, Jalmby M, et al. The human endogenous protection system against cell-free hemoglobin and heme is overwhelmed in preeclampsia and provides potential biomarkers and clinical indicators. PLoS One. 2015;10:e0138111.PubMedPubMedCentralCrossRef
5.
go back to reference Padmore R. Possible mechanisms for intravenous immunoglobulin-associated hemolysis: clues obtained from review of clinical case reports. Transfusion. 2015;55(Suppl 2):S59–64.PubMedCrossRef Padmore R. Possible mechanisms for intravenous immunoglobulin-associated hemolysis: clues obtained from review of clinical case reports. Transfusion. 2015;55(Suppl 2):S59–64.PubMedCrossRef
6.
go back to reference Barcellini W, Fattizzo B. Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis Mark. 2015;2015:635670. Barcellini W, Fattizzo B. Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis Mark. 2015;2015:635670.
7.
go back to reference Kato GJ, McGowan V, Machado RF, Little JA, Jt Taylor, Morris CR, et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood. 2006;107:2279–85.PubMedPubMedCentralCrossRef Kato GJ, McGowan V, Machado RF, Little JA, Jt Taylor, Morris CR, et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood. 2006;107:2279–85.PubMedPubMedCentralCrossRef
8.
9.
go back to reference Schaer DJ, Buehler PW. Cell-free hemoglobin and its scavenger proteins: new disease models leading the way to targeted therapies. Cold Spring Harb Perspect Med. 2013;3:a013433.PubMedPubMedCentralCrossRef Schaer DJ, Buehler PW. Cell-free hemoglobin and its scavenger proteins: new disease models leading the way to targeted therapies. Cold Spring Harb Perspect Med. 2013;3:a013433.PubMedPubMedCentralCrossRef
11.
go back to reference Conran N, Costa FF. Hemoglobin disorders and endothelial cell interactions. Clin Biochem. 2009;42:1824–38.PubMedCrossRef Conran N, Costa FF. Hemoglobin disorders and endothelial cell interactions. Clin Biochem. 2009;42:1824–38.PubMedCrossRef
12.
go back to reference Hebbel RP, Vercellotti G, Nath KA. A systems biology consideration of the vasculopathy of sickle cell anemia: the need for multi-modality chemo-prophylaxsis. Cardiovasc Hematol Disord Drug Target. 2009;9:271–92.CrossRef Hebbel RP, Vercellotti G, Nath KA. A systems biology consideration of the vasculopathy of sickle cell anemia: the need for multi-modality chemo-prophylaxsis. Cardiovasc Hematol Disord Drug Target. 2009;9:271–92.CrossRef
13.
go back to reference MHO-F Steinberg K, Heeney MM. Clinical and pathophysiological aspects of sickle cell anemia. In: Steinberg MH, Forget BG, Higgs DR, Weatherall DJ, editors. Disorders of hemoglobin. Cambridge: Cambridge University Press; 2009.CrossRef MHO-F Steinberg K, Heeney MM. Clinical and pathophysiological aspects of sickle cell anemia. In: Steinberg MH, Forget BG, Higgs DR, Weatherall DJ, editors. Disorders of hemoglobin. Cambridge: Cambridge University Press; 2009.CrossRef
14.
go back to reference Olivieri NF, Weatherall, D.J. Disorders of Hemoglobin. Chapter 17. New York:Cambridge University Press; 2009. Olivieri NF, Weatherall, D.J. Disorders of Hemoglobin. Chapter 17. New York:Cambridge University Press; 2009.
15.
go back to reference Atichartakarn V, Chuncharunee S, Archararit N, Udomsubpayakul U, Aryurachai K. Intravascular hemolysis, vascular endothelial cell activation and thrombophilia in splenectomized patients with hemoglobin E/beta-thalassemia disease. Acta Haematol. 2014;132:100–7.PubMedCrossRef Atichartakarn V, Chuncharunee S, Archararit N, Udomsubpayakul U, Aryurachai K. Intravascular hemolysis, vascular endothelial cell activation and thrombophilia in splenectomized patients with hemoglobin E/beta-thalassemia disease. Acta Haematol. 2014;132:100–7.PubMedCrossRef
16.
go back to reference Conran N. Intravascular hemolysis: a disease mechanism not to be ignored. Acta Haematol. 2014;132:97–9.PubMedCrossRef Conran N. Intravascular hemolysis: a disease mechanism not to be ignored. Acta Haematol. 2014;132:97–9.PubMedCrossRef
17.
go back to reference Conran N, Franco-Penteado CF, Costa FF. Newer aspects of the pathophysiology of sickle cell disease vaso-occlusion. Hemoglobin. 2009;33:1–16.PubMedCrossRef Conran N, Franco-Penteado CF, Costa FF. Newer aspects of the pathophysiology of sickle cell disease vaso-occlusion. Hemoglobin. 2009;33:1–16.PubMedCrossRef
18.
go back to reference Almeida CB, Kato GJ, Conran N. Inflammation and sickle cell anemia. In: Costa FF, Conran N, editors. Sickle cell anemia: from basic science to clinical practice. Switzerland: Springer International; 2016. p. 177–211.CrossRef Almeida CB, Kato GJ, Conran N. Inflammation and sickle cell anemia. In: Costa FF, Conran N, editors. Sickle cell anemia: from basic science to clinical practice. Switzerland: Springer International; 2016. p. 177–211.CrossRef
19.
go back to reference Hoppe CC. Inflammatory mediators of endothelial injury in sickle cell disease. Hematol Oncol Clin North Am. 2014;28:265–86.PubMedCrossRef Hoppe CC. Inflammatory mediators of endothelial injury in sickle cell disease. Hematol Oncol Clin North Am. 2014;28:265–86.PubMedCrossRef
20.
go back to reference Steinberg M. Overview of sickle cell anemia pathophysiology. In: Costa FF, Conran N, editors. Sickle cell anemia: from basic science to clinical practice. Switzerland: Springer International; 2016. p. 49–73.CrossRef Steinberg M. Overview of sickle cell anemia pathophysiology. In: Costa FF, Conran N, editors. Sickle cell anemia: from basic science to clinical practice. Switzerland: Springer International; 2016. p. 49–73.CrossRef
21.
go back to reference Aggeli C, Antoniades C, Cosma C, Chrysohoou C, Tousoulis D, Ladis V, et al. Endothelial dysfunction and inflammatory process in transfusion-dependent patients with beta-thalassemia major. Int J Cardiol. 2005;105:80–4.PubMedCrossRef Aggeli C, Antoniades C, Cosma C, Chrysohoou C, Tousoulis D, Ladis V, et al. Endothelial dysfunction and inflammatory process in transfusion-dependent patients with beta-thalassemia major. Int J Cardiol. 2005;105:80–4.PubMedCrossRef
22.
23.
go back to reference Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005;293:1653–62.PubMedCrossRef Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005;293:1653–62.PubMedCrossRef
24.
go back to reference Souza MC, Padua TA, Henriques MG. Endothelial-leukocyte interaction in severe malaria: beyond the brain. Mediat Inflamm. 2015;2015:168937.CrossRef Souza MC, Padua TA, Henriques MG. Endothelial-leukocyte interaction in severe malaria: beyond the brain. Mediat Inflamm. 2015;2015:168937.CrossRef
25.
go back to reference Schaer DJ, Vinchi F, Ingoglia G, Tolosano E, Buehler PW. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol. 2014;5:415.PubMedPubMedCentralCrossRef Schaer DJ, Vinchi F, Ingoglia G, Tolosano E, Buehler PW. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol. 2014;5:415.PubMedPubMedCentralCrossRef
26.
go back to reference Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO 3rd, Schechter AN, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8:1383–9.PubMedCrossRef Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO 3rd, Schechter AN, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8:1383–9.PubMedCrossRef
27.
go back to reference Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood. 2013;121:1276–84.PubMedPubMedCentralCrossRef Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood. 2013;121:1276–84.PubMedPubMedCentralCrossRef
28.
go back to reference Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276:2034–7.PubMedCrossRef Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276:2034–7.PubMedCrossRef
29.
go back to reference Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.PubMedCrossRef Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.PubMedCrossRef
30.
go back to reference Gladwin MT, Crawford JH, Patel RP. The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Radic Biol Med. 2004;36:707–17.PubMedCrossRef Gladwin MT, Crawford JH, Patel RP. The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Radic Biol Med. 2004;36:707–17.PubMedCrossRef
31.
go back to reference Helms CC, Marvel M, Zhao W, Stahle M, Vest R, Kato GJ, et al. Mechanisms of hemolysis-associated platelet activation. J Thromb Haemost. 2013;11:2148–54.PubMedPubMedCentralCrossRef Helms CC, Marvel M, Zhao W, Stahle M, Vest R, Kato GJ, et al. Mechanisms of hemolysis-associated platelet activation. J Thromb Haemost. 2013;11:2148–54.PubMedPubMedCentralCrossRef
32.
go back to reference Almeida CB, Souza LE, Leonardo FC, Costa FT, Werneck CC, Covas DT, et al. Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea. Blood. 2015;126:711–20.PubMedCrossRef Almeida CB, Souza LE, Leonardo FC, Costa FT, Werneck CC, Covas DT, et al. Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea. Blood. 2015;126:711–20.PubMedCrossRef
33.
go back to reference Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123:377–90.PubMedPubMedCentralCrossRef Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123:377–90.PubMedPubMedCentralCrossRef
34.
go back to reference Dutra FF, Alves LS, Rodrigues D, Fernandez PL, de Oliveira RB, Golenbock DT, et al. Hemolysis-induced lethality involves inflammasome activation by heme. Proc Natl Acad Sci USA. 2014;111:E4110–8.PubMedPubMedCentralCrossRef Dutra FF, Alves LS, Rodrigues D, Fernandez PL, de Oliveira RB, Golenbock DT, et al. Hemolysis-induced lethality involves inflammasome activation by heme. Proc Natl Acad Sci USA. 2014;111:E4110–8.PubMedPubMedCentralCrossRef
36.
go back to reference Porto BN, Alves LS, Fernandez PL, Dutra TP, Figueiredo RT, Graca-Souza AV, et al. Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J Biol Chem. 2007;282:24430–6.PubMedCrossRef Porto BN, Alves LS, Fernandez PL, Dutra TP, Figueiredo RT, Graca-Souza AV, et al. Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J Biol Chem. 2007;282:24430–6.PubMedCrossRef
37.
go back to reference Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002;100:879–87.PubMedCrossRef Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002;100:879–87.PubMedCrossRef
38.
go back to reference Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS, et al. Characterization of heme as activator of toll-like receptor 4. J Biol Chem. 2007;282:20221–9.PubMedCrossRef Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS, et al. Characterization of heme as activator of toll-like receptor 4. J Biol Chem. 2007;282:20221–9.PubMedCrossRef
39.
go back to reference Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, et al. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev. 2003;55:551–71.PubMedCrossRef Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, et al. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev. 2003;55:551–71.PubMedCrossRef
40.
go back to reference Hunt RC, Handy I, Smith A. Heme-mediated reactive oxygen species toxicity to retinal pigment epithelial cells is reduced by hemopexin. J Cell Physiol. 1996;168:81–6.PubMedCrossRef Hunt RC, Handy I, Smith A. Heme-mediated reactive oxygen species toxicity to retinal pigment epithelial cells is reduced by hemopexin. J Cell Physiol. 1996;168:81–6.PubMedCrossRef
41.
go back to reference Yamada N, Yamaya M, Okinaga S, Lie R, Suzuki T, Nakayama K, et al. Protective effects of heme oxygenase-1 against oxidant-induced injury in the cultured human tracheal epithelium. Am J Respir Cell Mol Biol. 1999;21:428–35.PubMedCrossRef Yamada N, Yamaya M, Okinaga S, Lie R, Suzuki T, Nakayama K, et al. Protective effects of heme oxygenase-1 against oxidant-induced injury in the cultured human tracheal epithelium. Am J Respir Cell Mol Biol. 1999;21:428–35.PubMedCrossRef
42.
go back to reference Fernandez PL, Dutra FF, Alves L, Figueiredo RT, Mourao-Sa D, Fortes GB, et al. Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation. J Biol Chem. 2010;285:32844–51.PubMedPubMedCentralCrossRef Fernandez PL, Dutra FF, Alves L, Figueiredo RT, Mourao-Sa D, Fortes GB, et al. Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation. J Biol Chem. 2010;285:32844–51.PubMedPubMedCentralCrossRef
43.
go back to reference Setty BN, Betal SG, Zhang J, Stuart MJ. Heme induces endothelial tissue factor expression: potential role in hemostatic activation in patients with hemolytic anemia. J Thromb Haemost. 2008;6:2202–9.PubMedCrossRef Setty BN, Betal SG, Zhang J, Stuart MJ. Heme induces endothelial tissue factor expression: potential role in hemostatic activation in patients with hemolytic anemia. J Thromb Haemost. 2008;6:2202–9.PubMedCrossRef
44.
go back to reference Camus SM, De Moraes JA, Bonnin P, Abbyad P, Le Jeune S, Lionnet F, et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vaso-occlusions in sickle cell disease. Blood. 2015;125:3805–14.PubMedPubMedCentralCrossRef Camus SM, De Moraes JA, Bonnin P, Abbyad P, Le Jeune S, Lionnet F, et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vaso-occlusions in sickle cell disease. Blood. 2015;125:3805–14.PubMedPubMedCentralCrossRef
45.
go back to reference Sprague RS, Stephenson AH, Ellsworth ML. Red not dead: signaling in and from erythrocytes. Trend Endocrinol Metab. 2007;18:350–5.CrossRef Sprague RS, Stephenson AH, Ellsworth ML. Red not dead: signaling in and from erythrocytes. Trend Endocrinol Metab. 2007;18:350–5.CrossRef
46.
go back to reference Ramdani G, Langsley G. ATP, an extracellular signaling molecule in red blood cells: a messenger for malaria? Biomed J. 2014;37:284–92.PubMedCrossRef Ramdani G, Langsley G. ATP, an extracellular signaling molecule in red blood cells: a messenger for malaria? Biomed J. 2014;37:284–92.PubMedCrossRef
47.
go back to reference Nur E, Biemond BJ, Otten HM, Brandjes DP, Schnog JJ, Group CS. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management. Am J Hematol. 2011;86:484–9.CrossRef Nur E, Biemond BJ, Otten HM, Brandjes DP, Schnog JJ, Group CS. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management. Am J Hematol. 2011;86:484–9.CrossRef
48.
go back to reference Sprague RS, Ellsworth ML. Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication. Microcirculation. 2012;19:430–9.PubMedPubMedCentralCrossRef Sprague RS, Ellsworth ML. Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication. Microcirculation. 2012;19:430–9.PubMedPubMedCentralCrossRef
49.
51.
go back to reference Idzko M, Ferrari D, Riegel AK, Eltzschig HK. Extracellular nucleotide and nucleoside signaling in vascular and blood disease. Blood. 2014;124:1029–37.PubMedPubMedCentralCrossRef Idzko M, Ferrari D, Riegel AK, Eltzschig HK. Extracellular nucleotide and nucleoside signaling in vascular and blood disease. Blood. 2014;124:1029–37.PubMedPubMedCentralCrossRef
52.
go back to reference Sumi Y, Woehrle T, Chen Y, Bao Y, Li X, Yao Y, et al. Plasma ATP is required for neutrophil activation in a mouse sepsis model. Shock. 2014;42:142–7.PubMedPubMedCentralCrossRef Sumi Y, Woehrle T, Chen Y, Bao Y, Li X, Yao Y, et al. Plasma ATP is required for neutrophil activation in a mouse sepsis model. Shock. 2014;42:142–7.PubMedPubMedCentralCrossRef
53.
go back to reference Lecut C, Frederix K, Johnson DM, Deroanne C, Thiry M, Faccinetto C, et al. P2X1 ion channels promote neutrophil chemotaxis through rho kinase activation. J Immunol. 2009;183:2801–9.PubMedCrossRef Lecut C, Frederix K, Johnson DM, Deroanne C, Thiry M, Faccinetto C, et al. P2X1 ion channels promote neutrophil chemotaxis through rho kinase activation. J Immunol. 2009;183:2801–9.PubMedCrossRef
54.
go back to reference Bours MJ, Dagnelie PC, Giuliani AL, Wesselius A, Di Virgilio F. P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front Biosci (Schol Ed). 2011;3:1443–56. Bours MJ, Dagnelie PC, Giuliani AL, Wesselius A, Di Virgilio F. P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front Biosci (Schol Ed). 2011;3:1443–56.
56.
go back to reference Zhang Y, Dai Y, Wen J, Zhang W, Grenz A, Sun H, et al. Detrimental effects of adenosine signaling in sickle cell disease. Nat Med. 2011;17:79–86.PubMedCrossRef Zhang Y, Dai Y, Wen J, Zhang W, Grenz A, Sun H, et al. Detrimental effects of adenosine signaling in sickle cell disease. Nat Med. 2011;17:79–86.PubMedCrossRef
58.
go back to reference Gromov PS, Celis JE. Identification of two molecular chaperons (HSX70, HSC70) in mature human erythrocytes. Exp Cell Res. 1991;195:556–9.PubMedCrossRef Gromov PS, Celis JE. Identification of two molecular chaperons (HSX70, HSC70) in mature human erythrocytes. Exp Cell Res. 1991;195:556–9.PubMedCrossRef
60.
go back to reference Jheng HF, Tsai PJ, Chuang YL, Shen YT, Tai TA, Chen WC, et al. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis Model Mech. 2015;8:1311–21.PubMedPubMedCentralCrossRef Jheng HF, Tsai PJ, Chuang YL, Shen YT, Tai TA, Chen WC, et al. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis Model Mech. 2015;8:1311–21.PubMedPubMedCentralCrossRef
61.
go back to reference Molvarec A, Tamasi L, Losonczy G, Madach K, Prohaszka Z, Rigo J Jr. Circulating heat shock protein 70 (HSPA1A) in normal and pathological pregnancies. Cell Stress Chaperones. 2010;15:237–47.PubMedCrossRef Molvarec A, Tamasi L, Losonczy G, Madach K, Prohaszka Z, Rigo J Jr. Circulating heat shock protein 70 (HSPA1A) in normal and pathological pregnancies. Cell Stress Chaperones. 2010;15:237–47.PubMedCrossRef
62.
go back to reference Bhattacharya D, Saha S, Basu S, Chakravarty S, Chakravarty A, Banerjee D, et al. Differential regulation of redox proteins and chaperones in HbEbeta-thalassemia erythrocyte proteome. Proteom Clin Appl. 2010;4:480–8. Bhattacharya D, Saha S, Basu S, Chakravarty S, Chakravarty A, Banerjee D, et al. Differential regulation of redox proteins and chaperones in HbEbeta-thalassemia erythrocyte proteome. Proteom Clin Appl. 2010;4:480–8.
63.
go back to reference Adewoye AH, Klings ES, Farber HW, Palaima E, Bausero MA, McMahon L, et al. Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70. Am J Hematol. 2005;78:240–2.PubMedPubMedCentralCrossRef Adewoye AH, Klings ES, Farber HW, Palaima E, Bausero MA, McMahon L, et al. Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70. Am J Hematol. 2005;78:240–2.PubMedPubMedCentralCrossRef
64.
go back to reference Lott JM, Sumpter TL, Turnquist HR. New dog and new tricks: evolving roles for IL-33 in type 2 immunity. J Leukoc Biol. 2015;97:1037–48.PubMedCrossRef Lott JM, Sumpter TL, Turnquist HR. New dog and new tricks: evolving roles for IL-33 in type 2 immunity. J Leukoc Biol. 2015;97:1037–48.PubMedCrossRef
65.
go back to reference Wei J, Zhao J, Schrott V, Zhang Y, Gladwin M, Bullock G, et al. Red blood cells store and release interleukin-33. J Investig Med. 2015;63:806–10.PubMedCrossRef Wei J, Zhao J, Schrott V, Zhang Y, Gladwin M, Bullock G, et al. Red blood cells store and release interleukin-33. J Investig Med. 2015;63:806–10.PubMedCrossRef
66.
go back to reference Bu X, Zhang T, Wang C, Ren T, Wen Z. IL-33 reflects dynamics of disease activity in patients with autoimmune hemolytic anemia by regulating autoantibody production. J Transl Med. 2015;13:381.PubMedPubMedCentralCrossRef Bu X, Zhang T, Wang C, Ren T, Wen Z. IL-33 reflects dynamics of disease activity in patients with autoimmune hemolytic anemia by regulating autoantibody production. J Transl Med. 2015;13:381.PubMedPubMedCentralCrossRef
68.
go back to reference Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.PubMedPubMedCentralCrossRef Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.PubMedPubMedCentralCrossRef
69.
go back to reference Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36:401–14.PubMedPubMedCentralCrossRef Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36:401–14.PubMedPubMedCentralCrossRef
70.
go back to reference Pazmandi K, Agod Z, Kumar BV, Szabo A, Fekete T, Sogor V, et al. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. Free Radic Biol Med. 2014;77:281–90.PubMedCrossRef Pazmandi K, Agod Z, Kumar BV, Szabo A, Fekete T, Sogor V, et al. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. Free Radic Biol Med. 2014;77:281–90.PubMedCrossRef
71.
go back to reference Lee YL, King MB, Gonzalez RP, Brevard SB, Frotan MA, Gillespie MN, et al. Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury. J Surg Res. 2014;191:286–9.PubMedPubMedCentralCrossRef Lee YL, King MB, Gonzalez RP, Brevard SB, Frotan MA, Gillespie MN, et al. Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury. J Surg Res. 2014;191:286–9.PubMedPubMedCentralCrossRef
72.
go back to reference Billich A, Winkler G, Aschauer H, Rot A, Peichl P. Presence of cyclophilin a in synovial fluids of patients with rheumatoid arthritis. J Exp Med. 1997;185:975–80.PubMedPubMedCentralCrossRef Billich A, Winkler G, Aschauer H, Rot A, Peichl P. Presence of cyclophilin a in synovial fluids of patients with rheumatoid arthritis. J Exp Med. 1997;185:975–80.PubMedPubMedCentralCrossRef
73.
go back to reference Tegeder I, Schumacher A, John S, Geiger H, Geisslinger G, Bang H, et al. Elevated serum cyclophilin levels in patients with severe sepsis. J Clin Immunol. 1997;17:380–6.PubMedCrossRef Tegeder I, Schumacher A, John S, Geiger H, Geisslinger G, Bang H, et al. Elevated serum cyclophilin levels in patients with severe sepsis. J Clin Immunol. 1997;17:380–6.PubMedCrossRef
74.
go back to reference Kim H, Kim WJ, Jeon ST, Koh EM, Cha HS, Ahn KS, et al. Cyclophilin a may contribute to the inflammatory processes in rheumatoid arthritis through induction of matrix degrading enzymes and inflammatory cytokines from macrophages. Clin Immunol. 2005;116:217–24.PubMedCrossRef Kim H, Kim WJ, Jeon ST, Koh EM, Cha HS, Ahn KS, et al. Cyclophilin a may contribute to the inflammatory processes in rheumatoid arthritis through induction of matrix degrading enzymes and inflammatory cytokines from macrophages. Clin Immunol. 2005;116:217–24.PubMedCrossRef
75.
go back to reference Dear JW, Simpson KJ, Nicolai MP, Catterson JH, Street J, Huizinga T, et al. Cyclophilin A is a damage-associated molecular pattern molecule that mediates acetaminophen-induced liver injury. J Immunol. 2011;187:3347–52.PubMedCrossRef Dear JW, Simpson KJ, Nicolai MP, Catterson JH, Street J, Huizinga T, et al. Cyclophilin A is a damage-associated molecular pattern molecule that mediates acetaminophen-induced liver injury. J Immunol. 2011;187:3347–52.PubMedCrossRef
76.
go back to reference Kakhniashvili DG, Bulla LA Jr, Goodman SR. The human erythrocyte proteome: analysis by ion trap mass spectrometry. Mol Cell Proteom. 2004;3:501–9.CrossRef Kakhniashvili DG, Bulla LA Jr, Goodman SR. The human erythrocyte proteome: analysis by ion trap mass spectrometry. Mol Cell Proteom. 2004;3:501–9.CrossRef
77.
go back to reference Pasini EM, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood. 2006;108:791–801.PubMedCrossRef Pasini EM, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood. 2006;108:791–801.PubMedCrossRef
78.
go back to reference Pruchniak MP, Kotula I, Manda-Handzlik A. Neutrophil extracellular traps (Nets) impact upon autoimmune disorders. Cent Eur J Immunol. 2015;40:217–24.PubMedPubMedCentralCrossRef Pruchniak MP, Kotula I, Manda-Handzlik A. Neutrophil extracellular traps (Nets) impact upon autoimmune disorders. Cent Eur J Immunol. 2015;40:217–24.PubMedPubMedCentralCrossRef
79.
go back to reference Grayson PC, Kaplan MJ. At the Bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J Leukoc Biol. 2016;99:253–64.PubMedCrossRef Grayson PC, Kaplan MJ. At the Bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J Leukoc Biol. 2016;99:253–64.PubMedCrossRef
80.
go back to reference Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–41.PubMedPubMedCentralCrossRef Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–41.PubMedPubMedCentralCrossRef
81.
go back to reference Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B. An endonuclease allows streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol. 2006;16:401–7.PubMedCrossRef Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B. An endonuclease allows streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol. 2006;16:401–7.PubMedCrossRef
83.
go back to reference Doring Y, Manthey HD, Drechsler M, Lievens D, Megens RT, Soehnlein O, et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation. 2012;125:1673–83.PubMedCrossRef Doring Y, Manthey HD, Drechsler M, Lievens D, Megens RT, Soehnlein O, et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation. 2012;125:1673–83.PubMedCrossRef
84.
go back to reference Schimmel M, Nur E, Biemond BJ, van Mierlo GJ, Solati S, Brandjes DP, et al. Nucleosomes and neutrophil activation in sickle cell disease painful crisis. Haematologica. 2013;98:1797–803.PubMedPubMedCentralCrossRef Schimmel M, Nur E, Biemond BJ, van Mierlo GJ, Solati S, Brandjes DP, et al. Nucleosomes and neutrophil activation in sickle cell disease painful crisis. Haematologica. 2013;98:1797–803.PubMedPubMedCentralCrossRef
85.
go back to reference Thomas GM, Carbo C, Curtis BR, Martinod K, Mazo IB, Schatzberg D, et al. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood. 2012;119:6335–43.PubMedPubMedCentralCrossRef Thomas GM, Carbo C, Curtis BR, Martinod K, Mazo IB, Schatzberg D, et al. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood. 2012;119:6335–43.PubMedPubMedCentralCrossRef
86.
go back to reference Kato GJ, Gladwin MT, Steinberg MH. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev. 2007;21:37–47.PubMedCrossRef Kato GJ, Gladwin MT, Steinberg MH. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev. 2007;21:37–47.PubMedCrossRef
87.
go back to reference Peters AL, van Hezel ME, Juffermans NP, Vlaar AP. Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside. Blood Rev. 2015;29:51–61.PubMedCrossRef Peters AL, van Hezel ME, Juffermans NP, Vlaar AP. Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside. Blood Rev. 2015;29:51–61.PubMedCrossRef
88.
go back to reference Kono M, Saigo K, Takagi Y, Takahashi T, Kawauchi S, Wada A, et al. Heme-related molecules induce rapid production of neutrophil extracellular traps. Transfusion. 2014;54:2811–9.PubMedCrossRef Kono M, Saigo K, Takagi Y, Takahashi T, Kawauchi S, Wada A, et al. Heme-related molecules induce rapid production of neutrophil extracellular traps. Transfusion. 2014;54:2811–9.PubMedCrossRef
89.
go back to reference Kono M, Saigo K, Takagi Y, Kawauchi S, Wada A, Hashimoto M, et al. Morphological and flow-cytometric analysis of haemin-induced human neutrophil activation: implications for transfusion-related acute lung injury. Blood Transfus. 2013;11:53–60.PubMedPubMedCentral Kono M, Saigo K, Takagi Y, Kawauchi S, Wada A, Hashimoto M, et al. Morphological and flow-cytometric analysis of haemin-induced human neutrophil activation: implications for transfusion-related acute lung injury. Blood Transfus. 2013;11:53–60.PubMedPubMedCentral
90.
go back to reference Graca-Souza AV, Arruda MA, de Freitas MS, Barja-Fidalgo C, Oliveira PL. Neutrophil activation by heme: implications for inflammatory processes. Blood. 2002;99:4160–5.PubMedCrossRef Graca-Souza AV, Arruda MA, de Freitas MS, Barja-Fidalgo C, Oliveira PL. Neutrophil activation by heme: implications for inflammatory processes. Blood. 2002;99:4160–5.PubMedCrossRef
91.
go back to reference Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014;123:3818–27.PubMedPubMedCentralCrossRef Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014;123:3818–27.PubMedPubMedCentralCrossRef
92.
go back to reference Tran H, Jha R, Nguyen J, Jarrett S, Rodriguez J, Mittal A, et al. Hemin-induced mast cell-extracellular traps impart resistance to therapy in a sickle microenvironment. Blood. 2015;126:Abstract 3385. Tran H, Jha R, Nguyen J, Jarrett S, Rodriguez J, Mittal A, et al. Hemin-induced mast cell-extracellular traps impart resistance to therapy in a sickle microenvironment. Blood. 2015;126:Abstract 3385.
94.
go back to reference Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007;7:31–40.PubMedCrossRef Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007;7:31–40.PubMedCrossRef
95.
go back to reference Kang JY, Lee JO. Structural biology of the toll-like receptor family. Annu Rev Biochem. 2011;80:917–41.PubMedCrossRef Kang JY, Lee JO. Structural biology of the toll-like receptor family. Annu Rev Biochem. 2011;80:917–41.PubMedCrossRef
96.
go back to reference Goulopoulou S, McCarthy CG, Webb RC. Toll-like receptors in the vascular system: sensing the dangers within. Pharmacol Rev. 2016;68:142–67.PubMedCrossRef Goulopoulou S, McCarthy CG, Webb RC. Toll-like receptors in the vascular system: sensing the dangers within. Pharmacol Rev. 2016;68:142–67.PubMedCrossRef
97.
go back to reference Wang Y, Song E, Bai B, Vanhoutte PM. Toll-like receptors mediating vascular malfunction: lessons from receptor subtypes. Pharmacol Ther. 2016;158:91–100.PubMedCrossRef Wang Y, Song E, Bai B, Vanhoutte PM. Toll-like receptors mediating vascular malfunction: lessons from receptor subtypes. Pharmacol Ther. 2016;158:91–100.PubMedCrossRef
98.
go back to reference Bellocchio S, Moretti S, Perruccio K, Fallarino F, Bozza S, Montagnoli C, et al. TLRs govern neutrophil activity in aspergillosis. J Immunol. 2004;173:7406–15.PubMedCrossRef Bellocchio S, Moretti S, Perruccio K, Fallarino F, Bozza S, Montagnoli C, et al. TLRs govern neutrophil activity in aspergillosis. J Immunol. 2004;173:7406–15.PubMedCrossRef
99.
go back to reference Belcher JD, Nath KA, Vercellotti GM. Vasculotoxic and Proinflammatory Effects of Plasma Heme: Cell Signaling and Cytoprotective Responses. ISRN Oxidative Med. 2013;2013:831596.PubMedPubMedCentralCrossRef Belcher JD, Nath KA, Vercellotti GM. Vasculotoxic and Proinflammatory Effects of Plasma Heme: Cell Signaling and Cytoprotective Responses. ISRN Oxidative Med. 2013;2013:831596.PubMedPubMedCentralCrossRef
100.
go back to reference Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflamm. 2012;9:46.CrossRef Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflamm. 2012;9:46.CrossRef
101.
go back to reference Kwon MS, Woo SK, Kurland DB, Yoon SH, Palmer AF, Banerjee U, et al. Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci. 2015;16:5028–46.PubMedPubMedCentralCrossRef Kwon MS, Woo SK, Kurland DB, Yoon SH, Palmer AF, Banerjee U, et al. Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci. 2015;16:5028–46.PubMedPubMedCentralCrossRef
102.
go back to reference Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D, Fernandez PL, et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 2012;119:2368–75.PubMedPubMedCentralCrossRef Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D, Fernandez PL, et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 2012;119:2368–75.PubMedPubMedCentralCrossRef
103.
go back to reference Teng W, Wang L, Xue W, Guan C. Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats. Mediat Inflamm. 2009;2009:473276.CrossRef Teng W, Wang L, Xue W, Guan C. Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats. Mediat Inflamm. 2009;2009:473276.CrossRef
104.
go back to reference Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843:2563–82.PubMedCrossRef Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843:2563–82.PubMedCrossRef
105.
go back to reference Lanaro C, Franco-Penteado CF, Albuqueque DM, Saad ST, Conran N, Costa FF. Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol. 2009;85:235–42.PubMedCrossRef Lanaro C, Franco-Penteado CF, Albuqueque DM, Saad ST, Conran N, Costa FF. Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol. 2009;85:235–42.PubMedCrossRef
106.
go back to reference Pathare A, Al Kindi S, Alnaqdy AA, Daar S, Knox-Macaulay H, Dennison D. Cytokine profile of sickle cell disease in Oman. Am J Hematol. 2004;77:323–8.PubMedCrossRef Pathare A, Al Kindi S, Alnaqdy AA, Daar S, Knox-Macaulay H, Dennison D. Cytokine profile of sickle cell disease in Oman. Am J Hematol. 2004;77:323–8.PubMedCrossRef
107.
go back to reference Qari MH, Dier U, Mousa SA. Biomarkers of inflammation, growth factor, and coagulation activation in patients with sickle cell disease. Clin Appl Thromb Hemost. 2012;18:195–200.PubMedCrossRef Qari MH, Dier U, Mousa SA. Biomarkers of inflammation, growth factor, and coagulation activation in patients with sickle cell disease. Clin Appl Thromb Hemost. 2012;18:195–200.PubMedCrossRef
108.
go back to reference Randall LM, Engwerda CR. TNF family members and malaria: old observations, new insights and future directions. Exp Parasitol. 2010;126:326–31.PubMedCrossRef Randall LM, Engwerda CR. TNF family members and malaria: old observations, new insights and future directions. Exp Parasitol. 2010;126:326–31.PubMedCrossRef
109.
go back to reference Ghosh S, Adisa OA, Chappa P, Tan F, Jackson KA, Archer DR, et al. Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J Clin Invest. 2013;123:4809–20.PubMedPubMedCentralCrossRef Ghosh S, Adisa OA, Chappa P, Tan F, Jackson KA, Archer DR, et al. Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J Clin Invest. 2013;123:4809–20.PubMedPubMedCentralCrossRef
110.
go back to reference van Beers EJ, Yang Y, Raghavachari N, Tian X, Allen DT, Nichols JS, et al. Iron, inflammation, and early death in adults with sickle cell disease. Circ Res. 2015;116:298–306.PubMedCrossRef van Beers EJ, Yang Y, Raghavachari N, Tian X, Allen DT, Nichols JS, et al. Iron, inflammation, and early death in adults with sickle cell disease. Circ Res. 2015;116:298–306.PubMedCrossRef
111.
go back to reference Vincent L, Vang D, Nguyen J, Gupta M, Luk K, Ericson ME, et al. Mast cell activation contributes to sickle cell pathobiology and pain in mice. Blood. 2013;122:1853–62.PubMedPubMedCentralCrossRef Vincent L, Vang D, Nguyen J, Gupta M, Luk K, Ericson ME, et al. Mast cell activation contributes to sickle cell pathobiology and pain in mice. Blood. 2013;122:1853–62.PubMedPubMedCentralCrossRef
112.
go back to reference Pamplona A, Hanscheid T, Epiphanio S, Mota MM, Vigario AM. Cerebral malaria and the hemolysis/methemoglobin/heme hypothesis: shedding new light on an old disease. Int J Biochem Cell Biol. 2009;41:711–6.PubMedCrossRef Pamplona A, Hanscheid T, Epiphanio S, Mota MM, Vigario AM. Cerebral malaria and the hemolysis/methemoglobin/heme hypothesis: shedding new light on an old disease. Int J Biochem Cell Biol. 2009;41:711–6.PubMedCrossRef
113.
go back to reference Dickinson-Copeland CM, Wilson NO, Liu M, Driss A, Salifu H, Adjei AA, et al. Heme-mediated induction of CXCL10 and depletion of CD34+ progenitor cells is toll-like receptor 4 dependent. PLoS One. 2015;10:e0142328.PubMedPubMedCentralCrossRef Dickinson-Copeland CM, Wilson NO, Liu M, Driss A, Salifu H, Adjei AA, et al. Heme-mediated induction of CXCL10 and depletion of CD34+ progenitor cells is toll-like receptor 4 dependent. PLoS One. 2015;10:e0142328.PubMedPubMedCentralCrossRef
114.
go back to reference Zhao H, Perez JS, Lu K, George AJ, Ma D. Role of toll-like receptor-4 in renal graft ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2014;306:F801–11.PubMedPubMedCentralCrossRef Zhao H, Perez JS, Lu K, George AJ, Ma D. Role of toll-like receptor-4 in renal graft ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2014;306:F801–11.PubMedPubMedCentralCrossRef
115.
go back to reference Kwok YH, Tuke J, Nicotra LL, Grace PM, Rolan PE, Hutchinson MR. TLR 2 and 4 responsiveness from isolated peripheral blood mononuclear cells from rats and humans as potential chronic pain biomarkers. PLoS One. 2013;8:e77799.PubMedPubMedCentralCrossRef Kwok YH, Tuke J, Nicotra LL, Grace PM, Rolan PE, Hutchinson MR. TLR 2 and 4 responsiveness from isolated peripheral blood mononuclear cells from rats and humans as potential chronic pain biomarkers. PLoS One. 2013;8:e77799.PubMedPubMedCentralCrossRef
116.
go back to reference Kato J, Svensson CI. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog Mol Biol Transl Sci. 2015;131:251–79.PubMedCrossRef Kato J, Svensson CI. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog Mol Biol Transl Sci. 2015;131:251–79.PubMedCrossRef
117.
go back to reference Kohli DR, Li Y, Khasabov SG, Gupta P, Kehl LJ, Ericson ME, et al. Pain-related behaviors and neurochemical alterations in mice expressing sickle hemoglobin: modulation by cannabinoids. Blood. 2010;116:456–65.PubMedPubMedCentralCrossRef Kohli DR, Li Y, Khasabov SG, Gupta P, Kehl LJ, Ericson ME, et al. Pain-related behaviors and neurochemical alterations in mice expressing sickle hemoglobin: modulation by cannabinoids. Blood. 2010;116:456–65.PubMedPubMedCentralCrossRef
118.
go back to reference Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.PubMedCrossRef Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.PubMedCrossRef
119.
go back to reference Krishnan SM, Sobey CG, Latz E, Mansell A, Drummond GR. IL-1beta and IL-18: inflammatory markers or mediators of hypertension? Br J Pharmacol. 2014;171:5589–602.PubMedPubMedCentralCrossRef Krishnan SM, Sobey CG, Latz E, Mansell A, Drummond GR. IL-1beta and IL-18: inflammatory markers or mediators of hypertension? Br J Pharmacol. 2014;171:5589–602.PubMedPubMedCentralCrossRef
121.
go back to reference Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res. 2015;8:15–27.PubMedPubMedCentral Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res. 2015;8:15–27.PubMedPubMedCentral
123.
go back to reference Dunne A. Inflammasome activation: from inflammatory disease to infection. Biochem Soc Trans. 2011;39:669–73.PubMedCrossRef Dunne A. Inflammasome activation: from inflammatory disease to infection. Biochem Soc Trans. 2011;39:669–73.PubMedCrossRef
125.
go back to reference Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trend Cell Biol. 2015;25:308–15.CrossRef Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trend Cell Biol. 2015;25:308–15.CrossRef
126.
go back to reference Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53.PubMedPubMedCentralCrossRef Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53.PubMedPubMedCentralCrossRef
127.
go back to reference Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–5.PubMedCrossRef Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–5.PubMedCrossRef
128.
129.
go back to reference Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15:727–37.PubMedPubMedCentralCrossRef Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15:727–37.PubMedPubMedCentralCrossRef
130.
go back to reference Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol. 2013;190:1217–26.PubMedCrossRef Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol. 2013;190:1217–26.PubMedCrossRef
131.
go back to reference Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–20.PubMedPubMedCentralCrossRef Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–20.PubMedPubMedCentralCrossRef
132.
go back to reference Li Q, Fu W, Yao J, Ji Z, Wang Y, Zhou Z, et al. Heme induces IL-1beta secretion through activating NLRP3 in kidney inflammation. Cell Biochem Biophys. 2014;69:495–502.PubMedCrossRef Li Q, Fu W, Yao J, Ji Z, Wang Y, Zhou Z, et al. Heme induces IL-1beta secretion through activating NLRP3 in kidney inflammation. Cell Biochem Biophys. 2014;69:495–502.PubMedCrossRef
133.
go back to reference Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, et al. Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem. 2001;276:125–32.PubMedCrossRef Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, et al. Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem. 2001;276:125–32.PubMedCrossRef
134.
135.
go back to reference Mehta NU, Reddy ST. Role of hemoglobin/heme scavenger protein hemopexin in atherosclerosis and inflammatory diseases. Curr Opin Lipidol. 2015;26:384–7.PubMedCrossRef Mehta NU, Reddy ST. Role of hemoglobin/heme scavenger protein hemopexin in atherosclerosis and inflammatory diseases. Curr Opin Lipidol. 2015;26:384–7.PubMedCrossRef
136.
go back to reference Ijas P, Saksi J, Soinne L, Tuimala J, Jauhiainen M, Jula A, et al. Haptoglobin 2 allele associates with unstable carotid plaque and major cardiovascular events. Atherosclerosis. 2013;230:228–34.PubMedCrossRef Ijas P, Saksi J, Soinne L, Tuimala J, Jauhiainen M, Jula A, et al. Haptoglobin 2 allele associates with unstable carotid plaque and major cardiovascular events. Atherosclerosis. 2013;230:228–34.PubMedCrossRef
137.
go back to reference Suleiman M, Kapeliovich MR, Roguin A, Aronson D, Meisel SR, Shochat M, et al. Haptoglobin type and 30-day mortality in diabetic individuals presenting with acute myocardial infarction. Diabetes Care. 2003;26:2699–700.PubMedCrossRef Suleiman M, Kapeliovich MR, Roguin A, Aronson D, Meisel SR, Shochat M, et al. Haptoglobin type and 30-day mortality in diabetic individuals presenting with acute myocardial infarction. Diabetes Care. 2003;26:2699–700.PubMedCrossRef
138.
go back to reference Lipiski M, Deuel JW, Baek JH, Engelsberger WR, Buehler PW, Schaer DJ. Human Hp1-1 and Hp2-2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toxicity. Antioxid Redox Signal. 2013;19:1619–33.PubMedPubMedCentralCrossRef Lipiski M, Deuel JW, Baek JH, Engelsberger WR, Buehler PW, Schaer DJ. Human Hp1-1 and Hp2-2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toxicity. Antioxid Redox Signal. 2013;19:1619–33.PubMedPubMedCentralCrossRef
139.
go back to reference Mollan TL, Jia Y, Banerjee S, Wu G, Kreulen RT, Tsai AL, et al. Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin. Free Radic Biol Med. 2014;69:265–77.PubMedPubMedCentralCrossRef Mollan TL, Jia Y, Banerjee S, Wu G, Kreulen RT, Tsai AL, et al. Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin. Free Radic Biol Med. 2014;69:265–77.PubMedPubMedCentralCrossRef
140.
go back to reference Purushothaman M, Krishnan P, Purushothaman KR, Baber U, Tarricone A, Perez JS, et al. Genotype-dependent impairment of hemoglobin clearance increases oxidative and inflammatory response in human diabetic atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2769–75.PubMedCrossRef Purushothaman M, Krishnan P, Purushothaman KR, Baber U, Tarricone A, Perez JS, et al. Genotype-dependent impairment of hemoglobin clearance increases oxidative and inflammatory response in human diabetic atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2769–75.PubMedCrossRef
141.
go back to reference Landis RC, Philippidis P, Domin J, Boyle JJ, Haskard DO. Haptoglobin genotype-dependent anti-inflammatory signaling in cd163(+) macrophages. Int J Inflamm. 2013;2013:980327. Landis RC, Philippidis P, Domin J, Boyle JJ, Haskard DO. Haptoglobin genotype-dependent anti-inflammatory signaling in cd163(+) macrophages. Int J Inflamm. 2013;2013:980327.
142.
go back to reference Levy AP, Purushothaman KR, Levy NS, Purushothaman M, Strauss M, Asleh R, et al. Downregulation of the hemoglobin scavenger receptor in individuals with diabetes and the Hp 2-2 genotype: implications for the response to intraplaque hemorrhage and plaque vulnerability. Circ Res. 2007;101:106–10.PubMedCrossRef Levy AP, Purushothaman KR, Levy NS, Purushothaman M, Strauss M, Asleh R, et al. Downregulation of the hemoglobin scavenger receptor in individuals with diabetes and the Hp 2-2 genotype: implications for the response to intraplaque hemorrhage and plaque vulnerability. Circ Res. 2007;101:106–10.PubMedCrossRef
143.
go back to reference Ragab SM, Safan MA, Badr EA, Ebeid OM. Haptoglobin genotypes polymorphism as a risk factor for subclinical atherosclerosis in beta-thalassemia major children; a single center Egyptian study. Hematology. 2015;20:477–86.CrossRef Ragab SM, Safan MA, Badr EA, Ebeid OM. Haptoglobin genotypes polymorphism as a risk factor for subclinical atherosclerosis in beta-thalassemia major children; a single center Egyptian study. Hematology. 2015;20:477–86.CrossRef
144.
go back to reference Pierrot-Gallo BS, Vicari P, Matsuda SS, Adegoke SA, Mecabo G, Figueiredo MS. Haptoglobin gene polymorphisms and interleukin-6 and -8 levels in patients with sickle cell anemia. Rev Bras Hematol Hemoter. 2015;37:329–35.PubMedPubMedCentralCrossRef Pierrot-Gallo BS, Vicari P, Matsuda SS, Adegoke SA, Mecabo G, Figueiredo MS. Haptoglobin gene polymorphisms and interleukin-6 and -8 levels in patients with sickle cell anemia. Rev Bras Hematol Hemoter. 2015;37:329–35.PubMedPubMedCentralCrossRef
145.
go back to reference Atkinson SH, Mwangi TW, Uyoga SM, Ogada E, Macharia AW, Marsh K, et al. The haptoglobin 2-2 genotype is associated with a reduced incidence of plasmodium falciparum malaria in children on the coast of Kenya. Clin Infect Dis. 2007;44:802–9.PubMedPubMedCentralCrossRef Atkinson SH, Mwangi TW, Uyoga SM, Ogada E, Macharia AW, Marsh K, et al. The haptoglobin 2-2 genotype is associated with a reduced incidence of plasmodium falciparum malaria in children on the coast of Kenya. Clin Infect Dis. 2007;44:802–9.PubMedPubMedCentralCrossRef
146.
go back to reference Bienzle U, Eggelte TA, Adjei LA, Dietz E, Ehrhardt S, Cramer JP, et al. Limited influence of haptoglobin genotypes on severe malaria in Ghanaian children. Trop Med Int Health. 2005;10:668–71.PubMedCrossRef Bienzle U, Eggelte TA, Adjei LA, Dietz E, Ehrhardt S, Cramer JP, et al. Limited influence of haptoglobin genotypes on severe malaria in Ghanaian children. Trop Med Int Health. 2005;10:668–71.PubMedCrossRef
147.
go back to reference Quaye IK, Ekuban FA, Goka BQ, Adabayeri V, Kurtzhals JA, Gyan B, et al. Haptoglobin 1-1 is associated with susceptibility to severe plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 2000;94:216–9.PubMedCrossRef Quaye IK, Ekuban FA, Goka BQ, Adabayeri V, Kurtzhals JA, Gyan B, et al. Haptoglobin 1-1 is associated with susceptibility to severe plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 2000;94:216–9.PubMedCrossRef
148.
go back to reference Perdijk O, Arama C, Giusti P, Maiga B, Troye-Blomberg M, Dolo A, et al. Haptoglobin phenotype prevalence and cytokine profiles during plasmodium falciparum infection in dogon and fulani ethnic groups living in Mali. Malar J. 2013;12:432.PubMedPubMedCentralCrossRef Perdijk O, Arama C, Giusti P, Maiga B, Troye-Blomberg M, Dolo A, et al. Haptoglobin phenotype prevalence and cytokine profiles during plasmodium falciparum infection in dogon and fulani ethnic groups living in Mali. Malar J. 2013;12:432.PubMedPubMedCentralCrossRef
149.
go back to reference Tolosano E, Altruda F. Hemopexin: structure, function, and regulation. DNA Cell Biol. 2002;21:297–306.PubMedCrossRef Tolosano E, Altruda F. Hemopexin: structure, function, and regulation. DNA Cell Biol. 2002;21:297–306.PubMedCrossRef
150.
go back to reference Karnaukhova K, Rutardottir S, Rajabi M, Wester Rosenlof L, Alayash AI, Akerstrom B. Characterization of heme binding to recombinant alpha1-microglobulin. Front Physiol. 2014;5:465.PubMedPubMedCentralCrossRef Karnaukhova K, Rutardottir S, Rajabi M, Wester Rosenlof L, Alayash AI, Akerstrom B. Characterization of heme binding to recombinant alpha1-microglobulin. Front Physiol. 2014;5:465.PubMedPubMedCentralCrossRef
151.
go back to reference Olsson MG, Olofsson T, Tapper H, Akerstrom B. The lipocalin alpha1-microglobulin protects erythroid K562 cells against oxidative damage induced by heme and reactive oxygen species. Free Radic Res. 2008;42:725–36.PubMedCrossRef Olsson MG, Olofsson T, Tapper H, Akerstrom B. The lipocalin alpha1-microglobulin protects erythroid K562 cells against oxidative damage induced by heme and reactive oxygen species. Free Radic Res. 2008;42:725–36.PubMedCrossRef
152.
go back to reference Boyle JJ, Johns M, Lo J, Chiodini A, Ambrose N, Evans PC, et al. Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2011;31:2685–91.PubMedCrossRef Boyle JJ, Johns M, Lo J, Chiodini A, Ambrose N, Evans PC, et al. Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2011;31:2685–91.PubMedCrossRef
153.
go back to reference Chintagari NR, Nguyen J, Belcher JD, Vercellotti GM, Alayash AI. Haptoglobin attenuates hemoglobin-induced heme oxygenase-1 in renal proximal tubule cells and kidneys of a mouse model of sickle cell disease. Blood Cells Mol Dis. 2015;54:302–6.PubMedCrossRef Chintagari NR, Nguyen J, Belcher JD, Vercellotti GM, Alayash AI. Haptoglobin attenuates hemoglobin-induced heme oxygenase-1 in renal proximal tubule cells and kidneys of a mouse model of sickle cell disease. Blood Cells Mol Dis. 2015;54:302–6.PubMedCrossRef
154.
go back to reference Ragab SM, Safan MA, Badr EA. Study of serum haptoglobin level and its relation to erythropoietic activity in beta thalassemia children. Mediterr J Hematol Infect Dis. 2015;7:e2015019.PubMedPubMedCentralCrossRef Ragab SM, Safan MA, Badr EA. Study of serum haptoglobin level and its relation to erythropoietic activity in beta thalassemia children. Mediterr J Hematol Infect Dis. 2015;7:e2015019.PubMedPubMedCentralCrossRef
155.
go back to reference Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M. Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood. 1968;32:811–5.PubMed Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M. Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood. 1968;32:811–5.PubMed
156.
go back to reference Bourantas KL, Dalekos GN, Makis A, Chaidos A, Tsiara S, Mavridis A. Acute phase proteins and interleukins in steady state sickle cell disease. Eur J Haematol. 1998;61:49–54.PubMedCrossRef Bourantas KL, Dalekos GN, Makis A, Chaidos A, Tsiara S, Mavridis A. Acute phase proteins and interleukins in steady state sickle cell disease. Eur J Haematol. 1998;61:49–54.PubMedCrossRef
157.
go back to reference Foidart M, Liem HH, Adornato BT, Engel WK, Muller-Eberhard U. Hemopexin metabolism in patients with altered serum levels. J Lab Clin Med. 1983;102:838–46.PubMed Foidart M, Liem HH, Adornato BT, Engel WK, Muller-Eberhard U. Hemopexin metabolism in patients with altered serum levels. J Lab Clin Med. 1983;102:838–46.PubMed
158.
go back to reference Wintrobe’s Clinical Hematology. In: Greer JP, Arber DA, Glader B, List AF, Means Jr RT, Paraskevas F, et al., editors. Philadelphia: Lippincott Williams & Wilkins, Wolters Kluwer 2014. Wintrobe’s Clinical Hematology. In: Greer JP, Arber DA, Glader B, List AF, Means Jr RT, Paraskevas F, et al., editors. Philadelphia: Lippincott Williams & Wilkins, Wolters Kluwer 2014.
159.
go back to reference Costa FF, Fertrin KY, Conran N. Síndrome hemolítica. Fisiopatologia e Clínica. In: Zago MA, Falcão RP, Pasquini R, editors. Tratado de Hematologia. São Paulo: Atheneu 2013. Costa FF, Fertrin KY, Conran N. Síndrome hemolítica. Fisiopatologia e Clínica. In: Zago MA, Falcão RP, Pasquini R, editors. Tratado de Hematologia. São Paulo: Atheneu 2013.
160.
go back to reference Costa FF, Conran N, K.Y. F. Anemia Falciforme. In: Zago MA, Falcão RP, Pasquini R, editors. Tratado de Hematologia 2013. Costa FF, Conran N, K.Y. F. Anemia Falciforme. In: Zago MA, Falcão RP, Pasquini R, editors. Tratado de Hematologia 2013.
Metadata
Title
Red cell DAMPs and inflammation
Authors
Rafaela Mendonça
Angélica A. A. Silveira
Nicola Conran
Publication date
01-09-2016
Publisher
Springer International Publishing
Published in
Inflammation Research / Issue 9/2016
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-016-0955-9

Other articles of this Issue 9/2016

Inflammation Research 9/2016 Go to the issue