Skip to main content
Top
Published in: Insights into Imaging 3/2011

Open Access 01-06-2011 | Review

The future of hybrid imaging—part 3: PET/MR, small-animal imaging and beyond

Authors: Thomas Beyer, Lutz S. Freudenberg, Johannes Czernin, David W. Townsend

Published in: Insights into Imaging | Issue 3/2011

Login to get access

Abstract

Since the 1990s, hybrid imaging by means of software and hardware image fusion alike allows the intrinsic combination of functional and anatomical image information. This review summarises in three parts the state of the art of dual-technique imaging with a focus on clinical applications. We will attempt to highlight selected areas of potential improvement of combined imaging technologies and new applications. In this third part, we discuss briefly the origins of combined positron emission tomography (PET)/magnetic resonance imaging (MRI). Unlike PET/computed tomography (CT), PET/MRI started out from developments in small-animal imaging technology, and, therefore, we add a section on advances in dual- and multi-modality imaging technology for small animals. Finally, we highlight a number of important aspects beyond technology that should be addressed for a sustained future of hybrid imaging. In short, we predict that, within 10 years, we may see all existing multi-modality imaging systems in clinical routine, including PET/MRI. Despite the current lack of clinical evidence, integrated PET/MRI may become particularly important and clinically useful in improved therapy planning for neurodegenerative diseases and subsequent response assessment, as well as in complementary loco-regional oncology imaging. Although desirable, other combinations of imaging systems, such as single-photon emission computed tomography (SPECT)/MRI may be anticipated, but will first need to go through the process of viable clinical prototyping. In the interim, a combination of PET and ultrasound may become available. As exciting as these new possible triple-technique—imaging systems sound, we need to be aware that they have to be technologically feasible, applicable in clinical routine and cost-effective.
Literature
1.
go back to reference Padhani A, Miles K (2010) Multiparametric imaging of tumor response to therapy. Radiology 256(2):348–364CrossRefPubMed Padhani A, Miles K (2010) Multiparametric imaging of tumor response to therapy. Radiology 256(2):348–364CrossRefPubMed
2.
go back to reference Hammer B, Christensen N, Heil BG (1994) Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys 21:1917–1920CrossRefPubMed Hammer B, Christensen N, Heil BG (1994) Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys 21:1917–1920CrossRefPubMed
3.
go back to reference Christensen N et al (1995) Positron emission tomography within a magnetic field using photomultiplier tubes and lightguides. Phys Med Biol 40:691–697CrossRefPubMed Christensen N et al (1995) Positron emission tomography within a magnetic field using photomultiplier tubes and lightguides. Phys Med Biol 40:691–697CrossRefPubMed
4.
go back to reference Shao Y et al (1997) Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 44(3):1167–1171CrossRef Shao Y et al (1997) Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 44(3):1167–1171CrossRef
5.
go back to reference Slates R et al (1999) Design of a small animal MR compatible PET scanner. IEEE Trans Nucl Sci 46:565–570CrossRef Slates R et al (1999) Design of a small animal MR compatible PET scanner. IEEE Trans Nucl Sci 46:565–570CrossRef
6.
go back to reference Pichler B et al (2006) Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47(4):639–647PubMed Pichler B et al (2006) Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47(4):639–647PubMed
7.
go back to reference Judenhofer MS et al (2007) PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology 244(3):807–814CrossRefPubMed Judenhofer MS et al (2007) PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology 244(3):807–814CrossRefPubMed
8.
go back to reference Wehrl H et al (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36(Suppl 1):S56–S68CrossRefPubMed Wehrl H et al (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36(Suppl 1):S56–S68CrossRefPubMed
9.
go back to reference Schmand M et al (2007) BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 48(6):45P Schmand M et al (2007) BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 48(6):45P
10.
go back to reference Von Schulthess G, Burger C (2010) Integrating imaging modalities: what makes sense from a workflow perspective? Eur J Nucl Med Mol Imaging 37(5):980–990CrossRef Von Schulthess G, Burger C (2010) Integrating imaging modalities: what makes sense from a workflow perspective? Eur J Nucl Med Mol Imaging 37(5):980–990CrossRef
11.
go back to reference Hofmann M et al (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):S93–S103CrossRefPubMed Hofmann M et al (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):S93–S103CrossRefPubMed
12.
go back to reference Zaidi H (2007) Is MR-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 244(3):639–642CrossRefPubMed Zaidi H (2007) Is MR-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 244(3):639–642CrossRefPubMed
13.
go back to reference Beyer T et al (2008) MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging 35(6):1142–1146CrossRefPubMed Beyer T et al (2008) MR-based attenuation correction for torso-PET/MR imaging: pitfalls in mapping MR to CT data. Eur J Nucl Med Mol Imaging 35(6):1142–1146CrossRefPubMed
14.
go back to reference Hofmann M et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49(11):1875–1883CrossRefPubMed Hofmann M et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49(11):1875–1883CrossRefPubMed
16.
go back to reference Hofmann M et al (2006) A machine learning approach for determining the PET attenuation map from magnetic resonance images. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego Hofmann M et al (2006) A machine learning approach for determining the PET attenuation map from magnetic resonance images. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego
17.
go back to reference Brix G et al (2005) Radiation exposure of patients undergoing whole-body dual-modality FDG-PET/CT examinations. J Nucl Med 46(4):608–613PubMed Brix G et al (2005) Radiation exposure of patients undergoing whole-body dual-modality FDG-PET/CT examinations. J Nucl Med 46(4):608–613PubMed
18.
go back to reference Huang B, Law M, Khong P (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251(1):166–174CrossRefPubMed Huang B, Law M, Khong P (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251(1):166–174CrossRefPubMed
19.
go back to reference Brix G et al (2009) Risks and safety aspects related to PET/MR examinations. Eur J Nucl Med Mol Imaging 36(Suppl 1):S131–S138CrossRefPubMed Brix G et al (2009) Risks and safety aspects related to PET/MR examinations. Eur J Nucl Med Mol Imaging 36(Suppl 1):S131–S138CrossRefPubMed
21.
go back to reference Beyer T, Pichler B (2009) A decade of combined imaging: from a PET attached to a CT to a PET inside an MR. Eur J Nucl Med Mol Imaging 36(Suppl 1):S1–S2CrossRefPubMed Beyer T, Pichler B (2009) A decade of combined imaging: from a PET attached to a CT to a PET inside an MR. Eur J Nucl Med Mol Imaging 36(Suppl 1):S1–S2CrossRefPubMed
22.
go back to reference Bisdas S et al (2009) Switching on the lights for real-time multimodality tumor neuroimaging: the integrated positron-emission tomography/MR imaging system. AJNR Am J Neuroradiol 31(4):610–614CrossRefPubMed Bisdas S et al (2009) Switching on the lights for real-time multimodality tumor neuroimaging: the integrated positron-emission tomography/MR imaging system. AJNR Am J Neuroradiol 31(4):610–614CrossRefPubMed
23.
go back to reference Boss A et al (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51(8):1198–1205CrossRefPubMed Boss A et al (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51(8):1198–1205CrossRefPubMed
24.
go back to reference Heiss W (2009) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 36(Suppl 1):S105–S112CrossRefPubMed Heiss W (2009) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 36(Suppl 1):S105–S112CrossRefPubMed
25.
go back to reference Antoch G et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290(24):3199–3206CrossRefPubMed Antoch G et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290(24):3199–3206CrossRefPubMed
26.
go back to reference Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med 36(Suppl 1):S113–S120CrossRef Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med 36(Suppl 1):S113–S120CrossRef
27.
go back to reference Nekolla S, Martinez-Moeller A, Saraste A (2009) PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med 36(Suppl 1):S121–S130CrossRef Nekolla S, Martinez-Moeller A, Saraste A (2009) PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med 36(Suppl 1):S121–S130CrossRef
28.
go back to reference Keereman V et al (2010) MRI-based attenuation correction for PET/MRI using ultra-short echo time sequences. J Nucl Med 51(5):812–818CrossRefPubMed Keereman V et al (2010) MRI-based attenuation correction for PET/MRI using ultra-short echo time sequences. J Nucl Med 51(5):812–818CrossRefPubMed
29.
go back to reference Delso G et al (2010) Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner. Phys Med Biol 55(15):4361–1374CrossRefPubMed Delso G et al (2010) Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner. Phys Med Biol 55(15):4361–1374CrossRefPubMed
30.
go back to reference Mantlik F et al (2010) The effect of positioning aids on PET quantification following MR-based attenuation correction (AC) in PET/MR imaging. J Nucl Med 51(Suppl 2):278P Mantlik F et al (2010) The effect of positioning aids on PET quantification following MR-based attenuation correction (AC) in PET/MR imaging. J Nucl Med 51(Suppl 2):278P
31.
go back to reference Beyer T et al (2010) The effect of MR radiofrequency coils on PET quantification in whole-body PET/MR. Eur J Nucl Med Mol Imaging 37(Suppl 2):S220 Beyer T et al (2010) The effect of MR radiofrequency coils on PET quantification in whole-body PET/MR. Eur J Nucl Med Mol Imaging 37(Suppl 2):S220
32.
go back to reference Schlemmer H et al (2008) Simultaneous PET/MRimaging of the human brain: feasibility study. Radiology 248(3):1028–1035CrossRefPubMed Schlemmer H et al (2008) Simultaneous PET/MRimaging of the human brain: feasibility study. Radiology 248(3):1028–1035CrossRefPubMed
33.
go back to reference Ratib O et al (2010) Whole body PET-MRI scanner: first experience in oncology. J Nucl Med 51(Suppl 2):165 Ratib O et al (2010) Whole body PET-MRI scanner: first experience in oncology. J Nucl Med 51(Suppl 2):165
34.
go back to reference Kolb A et al (2010) Evaluation of Geiger-mode APDs for PET block detector designs. Phys Med Biol 55(7):1815–1832CrossRefPubMed Kolb A et al (2010) Evaluation of Geiger-mode APDs for PET block detector designs. Phys Med Biol 55(7):1815–1832CrossRefPubMed
35.
go back to reference Lecomte R (2009) Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging 36(Suppl 1):S69–S85CrossRefPubMed Lecomte R (2009) Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging 36(Suppl 1):S69–S85CrossRefPubMed
36.
go back to reference Cherry SR (2001) Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 41(5):482–491CrossRefPubMed Cherry SR (2001) Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 41(5):482–491CrossRefPubMed
37.
go back to reference Jong MD, Maina T (2010) Of mice and humans: are they the same?—Implications in cancer translational research. J Nucl Med 51(4):501–504CrossRefPubMed Jong MD, Maina T (2010) Of mice and humans: are they the same?—Implications in cancer translational research. J Nucl Med 51(4):501–504CrossRefPubMed
38.
go back to reference Meikle S et al (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50(22):R45–R61CrossRefPubMed Meikle S et al (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50(22):R45–R61CrossRefPubMed
40.
go back to reference Pichler B et al (2008) Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 38(3):199–208PubMedCentralCrossRefPubMed Pichler B et al (2008) Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 38(3):199–208PubMedCentralCrossRefPubMed
41.
go back to reference Judenhofer M et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–465CrossRefPubMed Judenhofer M et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–465CrossRefPubMed
42.
go back to reference Wagenaar D et al (2006) Rationale for the combination of nuclear medicine with magnetic resonance for pre-clinical imaging. Technol Cancer Res Treat 5(4):343–350CrossRefPubMed Wagenaar D et al (2006) Rationale for the combination of nuclear medicine with magnetic resonance for pre-clinical imaging. Technol Cancer Res Treat 5(4):343–350CrossRefPubMed
43.
45.
go back to reference Hamamura M et al (2010) Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol 55:1563–1575CrossRefPubMed Hamamura M et al (2010) Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol 55:1563–1575CrossRefPubMed
47.
go back to reference Delaloye AB et al (2007) White paper of the European Association of Nuclear Medicine (EANM) and the European Society of Radiology (ESR) on multimodality imaging. Eur J Nucl Med Mol Imaging 34(8):1147–1151CrossRef Delaloye AB et al (2007) White paper of the European Association of Nuclear Medicine (EANM) and the European Society of Radiology (ESR) on multimodality imaging. Eur J Nucl Med Mol Imaging 34(8):1147–1151CrossRef
48.
go back to reference Hahn S et al (2010) Computer-aided detection (CAD) and assessment of malignant lesions in the liver and lung using a novel PET/CT software tool: initial results. Rofo 183(2):243–247CrossRef Hahn S et al (2010) Computer-aided detection (CAD) and assessment of malignant lesions in the liver and lung using a novel PET/CT software tool: initial results. Rofo 183(2):243–247CrossRef
49.
go back to reference Delbeke D et al (2006) Procedure guideline for SPECT/CT imaging 1.0. J Nucl Med 47(7):1227–1234PubMed Delbeke D et al (2006) Procedure guideline for SPECT/CT imaging 1.0. J Nucl Med 47(7):1227–1234PubMed
50.
go back to reference Delbeke D et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47(5):885–895PubMed Delbeke D et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47(5):885–895PubMed
51.
52.
53.
go back to reference Beyer T, Czernin J, Freudenberg L (2011) Variations in clinical PET/CT operations: results from an international survey among active PET/CT users. J Nucl Med 52(2):303–310CrossRefPubMed Beyer T, Czernin J, Freudenberg L (2011) Variations in clinical PET/CT operations: results from an international survey among active PET/CT users. J Nucl Med 52(2):303–310CrossRefPubMed
54.
go back to reference Kotzerke J et al (2010) PET and diagnostic technology evaluation in a global clinical process. DGN’s point of view. Nuklearmedizin 49(1):6–12CrossRefPubMed Kotzerke J et al (2010) PET and diagnostic technology evaluation in a global clinical process. DGN’s point of view. Nuklearmedizin 49(1):6–12CrossRefPubMed
55.
go back to reference Goyen M, Debatin J (2009) Healthcare costs for new technologies. Eur J Nucl Med Mol Imaging 36(Suppl 1):S139–S143CrossRefPubMed Goyen M, Debatin J (2009) Healthcare costs for new technologies. Eur J Nucl Med Mol Imaging 36(Suppl 1):S139–S143CrossRefPubMed
56.
57.
go back to reference Buck A et al (2010) Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med Technol 38(1):6–17CrossRefPubMed Buck A et al (2010) Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med Technol 38(1):6–17CrossRefPubMed
58.
go back to reference Williams M et al (2002) Combined structural and functional imaging of the breast. Technol Cancer Res Treat 1(1):39–42CrossRefPubMed Williams M et al (2002) Combined structural and functional imaging of the breast. Technol Cancer Res Treat 1(1):39–42CrossRefPubMed
59.
go back to reference Goodsitt M, Chan H, Hadjiiski L (2000) Stereomammography: evaluation of depth perception using a virtual 3D cursor. Med Phys 27(6):1305–1310CrossRefPubMed Goodsitt M, Chan H, Hadjiiski L (2000) Stereomammography: evaluation of depth perception using a virtual 3D cursor. Med Phys 27(6):1305–1310CrossRefPubMed
60.
go back to reference Madhav P et al (2009) Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph. Phys Med Biol 54(12):3659–3676PubMedCentralCrossRefPubMed Madhav P et al (2009) Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph. Phys Med Biol 54(12):3659–3676PubMedCentralCrossRefPubMed
Metadata
Title
The future of hybrid imaging—part 3: PET/MR, small-animal imaging and beyond
Authors
Thomas Beyer
Lutz S. Freudenberg
Johannes Czernin
David W. Townsend
Publication date
01-06-2011
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 3/2011
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-011-0085-4

Other articles of this Issue 3/2011

Insights into Imaging 3/2011 Go to the issue