Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2018

01-09-2018 | Original Paper

Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation

Authors: Muskan Gupta, Gurcharan Kaur

Published in: NeuroMolecular Medicine | Issue 3/2018

Login to get access

Abstract

Reactive gliosis, microgliosis, and subsequent secretion of various inflammatory mediators like cytokines, proteases, reactive oxygen, and nitrogen species are the suggested key players associated with systemic inflammation-driven neuroinflammation and cognitive impairments in various neurological disorders. Conventionally, non-steroidal anti-inflammatory drugs are prescribed to suppress inflammation but due to their adverse effects, their usage is not well accepted. Natural products are emerging better therapeutic agents due to their affordability and inherent pleiotropic biological activities. In Ayurveda, Ashwagandha (Withania somnifera) is well known for its immunomodulatory properties. The current study is an extension of our previous report on in vitro model system and was aimed to investigate anti-neuroinflammatory potential of water extract from the Ashwagandha leaves (ASH-WEX) against systemic LPS-induced neuroinflammation and associated behavioral impairments using in vivo rat model system. Oral feeding of ASH-WEX for 8 weeks significantly ameliorated the anxiety-like behavior as evident from Elevated plus maze test. Suppression of reactive gliosis, inflammatory cytokines production like TNF-α, IL-1β, IL-6, and expression of nitro-oxidative stress enzymes like iNOS, COX2, NOX2 etc were observed in ASH-WEX-treated animals. NFκB, P38, and JNK MAPKs pathways analysis showed their involvement in inflammation suppression which was further confirmed by inhibitor studies. The current study provides first ever preclinical evidence and scientific validation that ASH-WEX exhibits the anti-neuroinflammatory potential against systemic LPS-induced neuroinflammation and ameliorates associated behavioral abnormalities. Aqueous extract from Ashwagandha leaves and its active phytochemicals may prove to be promising candidates to prevent neuroinflammation associated with various neuropathologies.
Literature
go back to reference Aid, S., Langenbach, R., & Bosetti, F. (2008). Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2. Journal of Neuroinflammation, 5(1), 17.CrossRefPubMedPubMedCentral Aid, S., Langenbach, R., & Bosetti, F. (2008). Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2. Journal of Neuroinflammation, 5(1), 17.CrossRefPubMedPubMedCentral
go back to reference Allan, S. M., & Rothwell, N. J. (2003). Inflammation in central nervous system injury. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1438), 1669–1677.CrossRef Allan, S. M., & Rothwell, N. J. (2003). Inflammation in central nervous system injury. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1438), 1669–1677.CrossRef
go back to reference Archana, R., & Namasivayam, A. (1998). Antistressor effect of Withania somnifera. Journal of Ethnopharmacology, 64(1), 91–93.CrossRef Archana, R., & Namasivayam, A. (1998). Antistressor effect of Withania somnifera. Journal of Ethnopharmacology, 64(1), 91–93.CrossRef
go back to reference Bachstetter, A. D., Xing, B., de Almeida, L., Dimayuga, E. R., Watterson, D. M., & Van Eldik, L. J. (2011). Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). Journal of Neuroinflammation, 8(1), 79.CrossRefPubMedPubMedCentral Bachstetter, A. D., Xing, B., de Almeida, L., Dimayuga, E. R., Watterson, D. M., & Van Eldik, L. J. (2011). Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). Journal of Neuroinflammation, 8(1), 79.CrossRefPubMedPubMedCentral
go back to reference Badger, A. M., Cook, M. N., Lark, M. W., Newman-Tarr, T. M., Swift, B. A., Nelson, A. H., et al. (1998). SB 203580 inhibits p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes. The Journal of Immunology, 161(1), 467–473.PubMed Badger, A. M., Cook, M. N., Lark, M. W., Newman-Tarr, T. M., Swift, B. A., Nelson, A. H., et al. (1998). SB 203580 inhibits p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes. The Journal of Immunology, 161(1), 467–473.PubMed
go back to reference Baitharu, I., Jain, V., Deep, S. N., Hota, K. B., Hota, S. K., Prasad, D., & Ilavazhagan, G. (2013). Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. Journal of Ethnopharmacology, 145(2), 431–441.CrossRefPubMed Baitharu, I., Jain, V., Deep, S. N., Hota, K. B., Hota, S. K., Prasad, D., & Ilavazhagan, G. (2013). Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. Journal of Ethnopharmacology, 145(2), 431–441.CrossRefPubMed
go back to reference Bargagna-Mohan, P., Paranthan, R. R., Hamza, A., Dimova, N., Trucchi, B., Srinivasan, C., et al. (2010). Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis. Journal of Biological Chemistry, 285(10), 7657–7669.CrossRefPubMed Bargagna-Mohan, P., Paranthan, R. R., Hamza, A., Dimova, N., Trucchi, B., Srinivasan, C., et al. (2010). Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis. Journal of Biological Chemistry, 285(10), 7657–7669.CrossRefPubMed
go back to reference Barrientos, R. M., Watkins, L. R., Rudy, J. W., & Maier, S. F. (2009). Characterization of the sickness response in young and aging rats following E. coli infection. Brain, Behavior, and Immunity, 23(4), 450–454.CrossRefPubMedPubMedCentral Barrientos, R. M., Watkins, L. R., Rudy, J. W., & Maier, S. F. (2009). Characterization of the sickness response in young and aging rats following E. coli infection. Brain, Behavior, and Immunity, 23(4), 450–454.CrossRefPubMedPubMedCentral
go back to reference Bassi, G. S., Kanashiro, A., Santin, F. M., de Souza, G. E., Nobre, M. J., & Coimbra, N. C. (2012). Lipopolysaccharide-induced sickness behaviour evaluated in different models of anxiety and innate fear in rats. Basic & Clinical Pharmacology & Toxicology, 110(4), 359–369.CrossRef Bassi, G. S., Kanashiro, A., Santin, F. M., de Souza, G. E., Nobre, M. J., & Coimbra, N. C. (2012). Lipopolysaccharide-induced sickness behaviour evaluated in different models of anxiety and innate fear in rats. Basic & Clinical Pharmacology & Toxicology, 110(4), 359–369.CrossRef
go back to reference Bhatnagar, M., Sisodia, S. S., & Bhatnagar, R. (2005). Antiulcer and antioxidant activity of Asparagus racemosus Willd and Withania somnifera Dunal in rats. Annals of the New York Academy of Sciences, 1056(1), 261–278.CrossRefPubMed Bhatnagar, M., Sisodia, S. S., & Bhatnagar, R. (2005). Antiulcer and antioxidant activity of Asparagus racemosus Willd and Withania somnifera Dunal in rats. Annals of the New York Academy of Sciences, 1056(1), 261–278.CrossRefPubMed
go back to reference Bhattacharya, S. K., Bhattacharya, A., Sairam, K., & Ghosal, S. (2000). Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine, 7(6), 463–469.CrossRefPubMed Bhattacharya, S. K., Bhattacharya, A., Sairam, K., & Ghosal, S. (2000). Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine, 7(6), 463–469.CrossRefPubMed
go back to reference Biesmans, S., Meert, T. F., Bouwknecht, J. A., Acton, P. D., Davoodi, N., De Haes, P., et al. (2013). Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators of Inflammation, 2013, 271359.CrossRefPubMedPubMedCentral Biesmans, S., Meert, T. F., Bouwknecht, J. A., Acton, P. D., Davoodi, N., De Haes, P., et al. (2013). Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators of Inflammation, 2013, 271359.CrossRefPubMedPubMedCentral
go back to reference Block, M. L., Zecca, L., & Hong, J. S. (2007). Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nature Reviews Neuroscience, 8(1), 57.CrossRefPubMed Block, M. L., Zecca, L., & Hong, J. S. (2007). Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nature Reviews Neuroscience, 8(1), 57.CrossRefPubMed
go back to reference Bossù, P., Cutuli, D., Palladino, I., Caporali, P., Angelucci, F., Laricchiuta, D., et al. (2012). A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL-18. Journal of Neuroinflammation, 9(1), 101.CrossRefPubMedPubMedCentral Bossù, P., Cutuli, D., Palladino, I., Caporali, P., Angelucci, F., Laricchiuta, D., et al. (2012). A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL-18. Journal of Neuroinflammation, 9(1), 101.CrossRefPubMedPubMedCentral
go back to reference Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews, 75(1), 50–83.CrossRefPubMed Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews, 75(1), 50–83.CrossRefPubMed
go back to reference Carvey, P. M., Chang, Q., Lipton, J. W., & Ling, Z. (2003). Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: A potential, new model of Parkinson’s disease. Frontiers in Biosciences, 8, s826–s837.CrossRef Carvey, P. M., Chang, Q., Lipton, J. W., & Ling, Z. (2003). Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: A potential, new model of Parkinson’s disease. Frontiers in Biosciences, 8, s826–s837.CrossRef
go back to reference Cho, N. H., Seong, S. Y., Choi, M. S., & Kim, I. S. (2001). Expression of chemokine genes in human dermal microvascular endothelial cell lines infected with Orientia tsutsugamushi. Infection and Immunity, 69(3), 1265–1272.CrossRefPubMedPubMedCentral Cho, N. H., Seong, S. Y., Choi, M. S., & Kim, I. S. (2001). Expression of chemokine genes in human dermal microvascular endothelial cell lines infected with Orientia tsutsugamushi. Infection and Immunity, 69(3), 1265–1272.CrossRefPubMedPubMedCentral
go back to reference Conductier, G., Blondeau, N., Guyon, A., Nahon, J. L., & Rovère, C. (2010). The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. Journal of Neuroimmunology, 224(1), 93–100.CrossRefPubMed Conductier, G., Blondeau, N., Guyon, A., Nahon, J. L., & Rovère, C. (2010). The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. Journal of Neuroimmunology, 224(1), 93–100.CrossRefPubMed
go back to reference Cuadrado, A., & Nebreda, A. R. (2010). Mechanisms and functions of p38 MAPK signalling. Biochemical Journal, 429(3), 403–417.CrossRefPubMed Cuadrado, A., & Nebreda, A. R. (2010). Mechanisms and functions of p38 MAPK signalling. Biochemical Journal, 429(3), 403–417.CrossRefPubMed
go back to reference Cunningham, C., Campion, S., Lunnon, K., Murray, C. L., Woods, J. F., Deacon, R. M., et al. (2009). Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biological Psychiatry, 65(4), 304–312.CrossRefPubMedPubMedCentral Cunningham, C., Campion, S., Lunnon, K., Murray, C. L., Woods, J. F., Deacon, R. M., et al. (2009). Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biological Psychiatry, 65(4), 304–312.CrossRefPubMedPubMedCentral
go back to reference Da Silva, J., Pierrat, B., Mary, J. L., & Lesslauer, W. (1997). Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. Journal of Biological Chemistry, 272(45), 28373–28380.CrossRefPubMed Da Silva, J., Pierrat, B., Mary, J. L., & Lesslauer, W. (1997). Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. Journal of Biological Chemistry, 272(45), 28373–28380.CrossRefPubMed
go back to reference Dantzer, R. (2004). Cytokine-induced sickness behaviour: A neuroimmune response to activation of innate immunity. European Journal of Pharmacology, 500(1–3), 399–411.CrossRefPubMed Dantzer, R. (2004). Cytokine-induced sickness behaviour: A neuroimmune response to activation of innate immunity. European Journal of Pharmacology, 500(1–3), 399–411.CrossRefPubMed
go back to reference Dantzer, R., & Kelley, K. W. (2007). Twenty years of research on cytokine-induced sickness behavior. Brain, Behavior, and Immunity, 21(2), 153–160.CrossRefPubMed Dantzer, R., & Kelley, K. W. (2007). Twenty years of research on cytokine-induced sickness behavior. Brain, Behavior, and Immunity, 21(2), 153–160.CrossRefPubMed
go back to reference Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 46.CrossRefPubMedPubMedCentral Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 46.CrossRefPubMedPubMedCentral
go back to reference Endale, M., Kim, T. H., Kwak, Y. S., Kim, N. M., Kim, S. H., Cho, J. Y., et al. (2017). Torilin inhibits inflammation by limiting TAK1-mediated MAP kinase and NF-κB activation. Mediators of Inflammation, 2017, 13.CrossRef Endale, M., Kim, T. H., Kwak, Y. S., Kim, N. M., Kim, S. H., Cho, J. Y., et al. (2017). Torilin inhibits inflammation by limiting TAK1-mediated MAP kinase and NF-κB activation. Mediators of Inflammation, 2017, 13.CrossRef
go back to reference Fan, K., Wu, X., Fan, B., Li, N., Lin, Y., Yao, Y., & Ma, J. (2012). Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide -induced neuroinflammation. Journal of Neuroinflammation, 9, 96.CrossRefPubMedPubMedCentral Fan, K., Wu, X., Fan, B., Li, N., Lin, Y., Yao, Y., & Ma, J. (2012). Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide -induced neuroinflammation. Journal of Neuroinflammation, 9, 96.CrossRefPubMedPubMedCentral
go back to reference Gaestel, M. (2006). MAPKAP kinases—MKs—two’s company, three’s a crowd. Nature Reviews Molecular Cell Biology, 7(2), 120.CrossRefPubMed Gaestel, M. (2006). MAPKAP kinases—MKs—two’s company, three’s a crowd. Nature Reviews Molecular Cell Biology, 7(2), 120.CrossRefPubMed
go back to reference Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., & Liu, B. (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: Relevance to Parkinson’s disease. Journal of Neurochemistry, 81(6), 1285–1297.CrossRefPubMed Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., & Liu, B. (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: Relevance to Parkinson’s disease. Journal of Neurochemistry, 81(6), 1285–1297.CrossRefPubMed
go back to reference González, H., Elgueta, D., Montoya, A., & Pacheco, R. (2014). Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. Journal of Neuroimmunology, 274(1), 1–13.CrossRefPubMed González, H., Elgueta, D., Montoya, A., & Pacheco, R. (2014). Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. Journal of Neuroimmunology, 274(1), 1–13.CrossRefPubMed
go back to reference Grover, A., Shandilya, A., Punetha, A., Bisaria, V. S., & Sundar, D. (2010). Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by Withania somnifera’s key metabolite withaferin A. BMC Genomics, 11(4), S25.CrossRefPubMedPubMedCentral Grover, A., Shandilya, A., Punetha, A., Bisaria, V. S., & Sundar, D. (2010). Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by Withania somnifera’s key metabolite withaferin A. BMC Genomics, 11(4), S25.CrossRefPubMedPubMedCentral
go back to reference Gupta, A., & Singh, S. (2014). Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats. Pharmaceutical Biology, 52(3), 308–320.CrossRefPubMed Gupta, A., & Singh, S. (2014). Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats. Pharmaceutical Biology, 52(3), 308–320.CrossRefPubMed
go back to reference Gupta, M., & Kaur, G. (2016). Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: A mechanistic study. Journal of Neuroinflammation, 13(1), 193.CrossRefPubMedPubMedCentral Gupta, M., & Kaur, G. (2016). Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: A mechanistic study. Journal of Neuroinflammation, 13(1), 193.CrossRefPubMedPubMedCentral
go back to reference Han, Z., Boyle, D. L., Chang, L., Bennett, B., Karin, M., Yang, L., et al. (2001). c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. The Journal of Clinical Investigation, 108(1), 73–81.CrossRefPubMedPubMedCentral Han, Z., Boyle, D. L., Chang, L., Bennett, B., Karin, M., Yang, L., et al. (2001). c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. The Journal of Clinical Investigation, 108(1), 73–81.CrossRefPubMedPubMedCentral
go back to reference Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neuroscience & Biobehavioral Reviews, 12(2), 123–137.CrossRef Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neuroscience & Biobehavioral Reviews, 12(2), 123–137.CrossRef
go back to reference Herrera, J. A., Espinosa-Oliva, A. M., Oliva-Martin, M. J., Carrillo-Jimenez, A., Venero, J. & de Pablos, M. R. (2015). Collateral damage: Contribution of peripheral inflammation to neurodegenerative diseases. Current Topics in Medicinal Chemistry, 15(21), 2193–2210.CrossRefPubMed Herrera, J. A., Espinosa-Oliva, A. M., Oliva-Martin, M. J., Carrillo-Jimenez, A., Venero, J. & de Pablos, M. R. (2015). Collateral damage: Contribution of peripheral inflammation to neurodegenerative diseases. Current Topics in Medicinal Chemistry, 15(21), 2193–2210.CrossRefPubMed
go back to reference Heyninck, K., Lahtela-Kakkonen, M., Van der Veken, P., Haegeman, G., & Berghe, W. V. (2014). Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKβ. Biochemical Pharmacology, 91(4), 501–509.CrossRefPubMed Heyninck, K., Lahtela-Kakkonen, M., Van der Veken, P., Haegeman, G., & Berghe, W. V. (2014). Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKβ. Biochemical Pharmacology, 91(4), 501–509.CrossRefPubMed
go back to reference Johnson, G. L., & Nakamura, K. (2007). The c-jun kinase/stress-activated pathway: Regulation, function and role in human disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(8), 1341–1348.CrossRef Johnson, G. L., & Nakamura, K. (2007). The c-jun kinase/stress-activated pathway: Regulation, function and role in human disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(8), 1341–1348.CrossRef
go back to reference Kaileh, M., Berghe, W. V., Heyerick, A., Horion, J., Piette, J., Libert, C., et al. (2007). Withaferin A strongly elicits IκB kinase β hyperphosphorylation concomitant with potent inhibition of its kinase activity. Journal of Biological Chemistry, 282(7), 4253–4264.CrossRefPubMed Kaileh, M., Berghe, W. V., Heyerick, A., Horion, J., Piette, J., Libert, C., et al. (2007). Withaferin A strongly elicits IκB kinase β hyperphosphorylation concomitant with potent inhibition of its kinase activity. Journal of Biological Chemistry, 282(7), 4253–4264.CrossRefPubMed
go back to reference Kataria, H., Kumar, S., Chaudhary, H., & Kaur, G. (2016). Withania somnifera suppresses tumor growth of intracranial allograft of glioma cells. Molecular Neurobiology, 53(6), 4143–4158.CrossRefPubMed Kataria, H., Kumar, S., Chaudhary, H., & Kaur, G. (2016). Withania somnifera suppresses tumor growth of intracranial allograft of glioma cells. Molecular Neurobiology, 53(6), 4143–4158.CrossRefPubMed
go back to reference Kaur, T., & Kaur, G. (2017). Withania somnifera as a potential candidate to ameliorate high fat diet-induced anxiety and neuroinflammation. Journal of Neuroinflammation, 14(1), 201.CrossRefPubMedPubMedCentral Kaur, T., & Kaur, G. (2017). Withania somnifera as a potential candidate to ameliorate high fat diet-induced anxiety and neuroinflammation. Journal of Neuroinflammation, 14(1), 201.CrossRefPubMedPubMedCentral
go back to reference Kaur, T., Singh, H., Mishra, R., Manchanda, S., Gupta, M., Saini, V., et al. (2017). Withania somnifera as a potential anxiolytic and immunomodulatory agent in acute sleep deprived female Wistar rats. Molecular and Cellular Biochemistry, 427(1–2), 91–101.CrossRefPubMed Kaur, T., Singh, H., Mishra, R., Manchanda, S., Gupta, M., Saini, V., et al. (2017). Withania somnifera as a potential anxiolytic and immunomodulatory agent in acute sleep deprived female Wistar rats. Molecular and Cellular Biochemistry, 427(1–2), 91–101.CrossRefPubMed
go back to reference Kent, S., Bluthé, R. M., Kelley, K. W., & Dantzer, R. (1992). Sickness behavior as a new target for drug development. Trends in Pharmacological Sciences, 13, 24–28.CrossRefPubMed Kent, S., Bluthé, R. M., Kelley, K. W., & Dantzer, R. (1992). Sickness behavior as a new target for drug development. Trends in Pharmacological Sciences, 13, 24–28.CrossRefPubMed
go back to reference Khedgikar, V., Kushwaha, P., Gautam, J., Verma, A., Changkija, B., Kumar, A., et al. (2013). Withaferin A: A proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death & Disease, 4(8), e778.CrossRef Khedgikar, V., Kushwaha, P., Gautam, J., Verma, A., Changkija, B., Kumar, A., et al. (2013). Withaferin A: A proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death & Disease, 4(8), e778.CrossRef
go back to reference Konsman, J. P., Parnet, P., & Dantzer, R. (2002). Cytokine-induced sickness behaviour: Mechanisms and implications. Trends in Neurosciences, 25(3), 154–159.CrossRefPubMed Konsman, J. P., Parnet, P., & Dantzer, R. (2002). Cytokine-induced sickness behaviour: Mechanisms and implications. Trends in Neurosciences, 25(3), 154–159.CrossRefPubMed
go back to reference Kumar, S., Harris, R. J., Seal, C. J., & Okello, E. J. (2012). An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytotherapy Research, 26(1), 113–117.CrossRefPubMed Kumar, S., Harris, R. J., Seal, C. J., & Okello, E. J. (2012). An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytotherapy Research, 26(1), 113–117.CrossRefPubMed
go back to reference Lacosta, S., Merali, Z., & Anisman, H. (1999). Behavioral and neurochemical consequences of lipopolysaccharide in mice: Anxiogenic-like effects. Brain Research, 818(2), 291–303.CrossRefPubMed Lacosta, S., Merali, Z., & Anisman, H. (1999). Behavioral and neurochemical consequences of lipopolysaccharide in mice: Anxiogenic-like effects. Brain Research, 818(2), 291–303.CrossRefPubMed
go back to reference Li, Q., Yu, H., Zinna, R., Martin, K., Herbert, B., Liu, A., et al. (2011). Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss. Journal of Pharmacology and Experimental Therapeutics, 336(3), 633–642.CrossRefPubMed Li, Q., Yu, H., Zinna, R., Martin, K., Herbert, B., Liu, A., et al. (2011). Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss. Journal of Pharmacology and Experimental Therapeutics, 336(3), 633–642.CrossRefPubMed
go back to reference Liang, D., Li, F., Fu, Y., Cao, Y., Song, X., Wang, T., et al. (2014). Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation, 37(1), 214–222.CrossRefPubMed Liang, D., Li, F., Fu, Y., Cao, Y., Song, X., Wang, T., et al. (2014). Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation, 37(1), 214–222.CrossRefPubMed
go back to reference Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541(7638), 481.CrossRefPubMedPubMedCentral Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541(7638), 481.CrossRefPubMedPubMedCentral
go back to reference Ling, Z., Gayle, D. A., Ma, S. Y., Lipton, J. W., Tong, C. W., Hong, J. S., & Carvey, P. M. (2002). In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Movement Disorders, 17(1), 116–124.CrossRefPubMed Ling, Z., Gayle, D. A., Ma, S. Y., Lipton, J. W., Tong, C. W., Hong, J. S., & Carvey, P. M. (2002). In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Movement Disorders, 17(1), 116–124.CrossRefPubMed
go back to reference Ling, Z., Zhu, Y., wai Tong, C., Snyder, J. A., Lipton, J. W., & Carvey, P. M. (2006). Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Experimental Neurology, 199(2), 499–512.CrossRefPubMed Ling, Z., Zhu, Y., wai Tong, C., Snyder, J. A., Lipton, J. W., & Carvey, P. M. (2006). Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Experimental Neurology, 199(2), 499–512.CrossRefPubMed
go back to reference Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25(4), 402–408.CrossRefPubMed Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25(4), 402–408.CrossRefPubMed
go back to reference Lowenstein, C. J., Alley, E. W., Raval, P., Snowman, A. M., Snyder, S. H., Russell, S. W., & Murphy, W. J. (1993). Macrophage nitric oxide synthase gene: Two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proceedings of the National Academy of Sciences USA, 90(20), 9730–9734.CrossRef Lowenstein, C. J., Alley, E. W., Raval, P., Snowman, A. M., Snyder, S. H., Russell, S. W., & Murphy, W. J. (1993). Macrophage nitric oxide synthase gene: Two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proceedings of the National Academy of Sciences USA, 90(20), 9730–9734.CrossRef
go back to reference Lynch, M. A. (2009). The multifaceted profile of activated microglia. Molecular Neurobiology, 40(2), 139–156.CrossRefPubMed Lynch, M. A. (2009). The multifaceted profile of activated microglia. Molecular Neurobiology, 40(2), 139–156.CrossRefPubMed
go back to reference Maitra, R., Porter, M. A., Huang, S., & Gilmour, B. P. (2009). Inhibition of NFκB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammation. Journal of Inflammation, 6(1), 15.CrossRefPubMed Maitra, R., Porter, M. A., Huang, S., & Gilmour, B. P. (2009). Inhibition of NFκB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammation. Journal of Inflammation, 6(1), 15.CrossRefPubMed
go back to reference Manchanda, S., & Kaur, G. (2017). Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model. BMC Complementary and Alternative Medicine, 17(1), 136.CrossRefPubMedPubMedCentral Manchanda, S., & Kaur, G. (2017). Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model. BMC Complementary and Alternative Medicine, 17(1), 136.CrossRefPubMedPubMedCentral
go back to reference Manchanda, S., Mishra, R., Singh, R., Kaur, T., & Kaur, G. (2017). Aqueous leaf extract of Withania somnifera as a potential neuroprotective agent in sleep-deprived rats: A mechanistic study. Molecular Neurobiology, 54(4), 3050–3061.CrossRefPubMed Manchanda, S., Mishra, R., Singh, R., Kaur, T., & Kaur, G. (2017). Aqueous leaf extract of Withania somnifera as a potential neuroprotective agent in sleep-deprived rats: A mechanistic study. Molecular Neurobiology, 54(4), 3050–3061.CrossRefPubMed
go back to reference Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., & Palazón, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14(7), 2373–2393.CrossRefPubMed Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., & Palazón, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14(7), 2373–2393.CrossRefPubMed
go back to reference Moon, Y. J., Lee, J. Y., Oh, M. S., Pak, Y. K., Park, K. S., Oh, T. H., & Yune, T. Y. (2012). Inhibition of inflammation and oxidative stress by Angelica dahuricae radix extract decreases apoptotic cell death and improves functional recovery after spinal cord injury. Journal of Neuroscience Research, 90(1), 243–256.CrossRefPubMed Moon, Y. J., Lee, J. Y., Oh, M. S., Pak, Y. K., Park, K. S., Oh, T. H., & Yune, T. Y. (2012). Inhibition of inflammation and oxidative stress by Angelica dahuricae radix extract decreases apoptotic cell death and improves functional recovery after spinal cord injury. Journal of Neuroscience Research, 90(1), 243–256.CrossRefPubMed
go back to reference Nagareddy, P. R., & Lakshmana, M. (2006). Withania somnifera improves bone calcification in calcium-deficient ovariectomized rats. Journal of Pharmacy and Pharmacology, 58(4), 513–519.CrossRefPubMed Nagareddy, P. R., & Lakshmana, M. (2006). Withania somnifera improves bone calcification in calcium-deficient ovariectomized rats. Journal of Pharmacy and Pharmacology, 58(4), 513–519.CrossRefPubMed
go back to reference Narinderpal, K., Junaid, N., & Raman, B. (2013). A Review on pharmacological profile of Withania somnifera (Ashwagandha). Research and Reviews: Journal of Botanical Sciences, 2, 6–14. Narinderpal, K., Junaid, N., & Raman, B. (2013). A Review on pharmacological profile of Withania somnifera (Ashwagandha). Research and Reviews: Journal of Botanical Sciences, 2, 6–14.
go back to reference Oh, J. H., Lee, T. J., Park, J. W., & Kwon, T. K. (2008). Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-κB in RAW 264.7 cells. European Journal of Pharmacology, 599(1–3), 11–17.CrossRefPubMed Oh, J. H., Lee, T. J., Park, J. W., & Kwon, T. K. (2008). Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-κB in RAW 264.7 cells. European Journal of Pharmacology, 599(1–3), 11–17.CrossRefPubMed
go back to reference Ohsawa, K., Imai, Y., Kanazawa, H., Sasaki, Y., & Kohsaka, S. (2000). Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. Journal of Cell Science, 113(17), 3073–3084.PubMed Ohsawa, K., Imai, Y., Kanazawa, H., Sasaki, Y., & Kohsaka, S. (2000). Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. Journal of Cell Science, 113(17), 3073–3084.PubMed
go back to reference Owens, T., Babcock, A. A., Millward, J. M., & Toft-Hansen, H. (2005). Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Research Reviews, 48(2), 178–184.CrossRefPubMed Owens, T., Babcock, A. A., Millward, J. M., & Toft-Hansen, H. (2005). Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Research Reviews, 48(2), 178–184.CrossRefPubMed
go back to reference Park, K. J., Gaynor, R. B., & Kwak, Y. T. (2003). Heat shock protein 27 association with the IκB kinase complex regulates tumor necrosis factor α-induced NF-κB activation. Journal of Biological Chemistry, 278(37), 35272–35278.CrossRefPubMed Park, K. J., Gaynor, R. B., & Kwak, Y. T. (2003). Heat shock protein 27 association with the IκB kinase complex regulates tumor necrosis factor α-induced NF-κB activation. Journal of Biological Chemistry, 278(37), 35272–35278.CrossRefPubMed
go back to reference Park, S. Y., Jin, M. L., Kim, Y. H., Kim, Y., & Lee, S. J. (2012). Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. International Immunopharmacology, 14(1), 13–20.CrossRefPubMed Park, S. Y., Jin, M. L., Kim, Y. H., Kim, Y., & Lee, S. J. (2012). Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. International Immunopharmacology, 14(1), 13–20.CrossRefPubMed
go back to reference Pietersma, A., Tilly, B. C., Gaestel, M., de Jong, N., Lee, J. C., Koster, J. F., & Sluiter, W. (1997). p38 mitogen activated protein kinase regulates endothelial VCAM-1 expression at the post-transcriptional level. Biochemical and Biophysical Research Communications, 230(1), 44–48.CrossRefPubMed Pietersma, A., Tilly, B. C., Gaestel, M., de Jong, N., Lee, J. C., Koster, J. F., & Sluiter, W. (1997). p38 mitogen activated protein kinase regulates endothelial VCAM-1 expression at the post-transcriptional level. Biochemical and Biophysical Research Communications, 230(1), 44–48.CrossRefPubMed
go back to reference Pratte, M. A., Nanavati, K. B., Young, V., & Morley, C. P. (2014). An alternative treatment for anxiety: A systematic review of human trial results reported for the Ayurvedic herb ashwagandha (Withania somnifera). The Journal of Alternative and Complementary Medicine, 20(12), 901–908.CrossRefPubMed Pratte, M. A., Nanavati, K. B., Young, V., & Morley, C. P. (2014). An alternative treatment for anxiety: A systematic review of human trial results reported for the Ayurvedic herb ashwagandha (Withania somnifera). The Journal of Alternative and Complementary Medicine, 20(12), 901–908.CrossRefPubMed
go back to reference Purushotham, P. M., Kim, J. M., Jo, E. K., & Senthil, K. (2017). Withanolides against TLR4-activated innate inflammatory signalling pathways: A comparative computational and experimental study. Phytotherapy Research, 31(1), 152–163.CrossRefPubMed Purushotham, P. M., Kim, J. M., Jo, E. K., & Senthil, K. (2017). Withanolides against TLR4-activated innate inflammatory signalling pathways: A comparative computational and experimental study. Phytotherapy Research, 31(1), 152–163.CrossRefPubMed
go back to reference Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S., et al. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 55(5), 453–462.CrossRefPubMedPubMedCentral Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S., et al. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 55(5), 453–462.CrossRefPubMedPubMedCentral
go back to reference Salim, S., Chugh, G., & Asghar, M. (2012). Inflammation in anxiety. Advances in Protein Chemistry and Structural Biology, 88, 1–25.CrossRefPubMed Salim, S., Chugh, G., & Asghar, M. (2012). Inflammation in anxiety. Advances in Protein Chemistry and Structural Biology, 88, 1–25.CrossRefPubMed
go back to reference Singh, N., Bhalla, M., de Jager, P., & Gilca, M. (2011). An overview on ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. African Journal of Traditional, Complementary and Alternative Medicines, 8(5S), 208–213.CrossRef Singh, N., Bhalla, M., de Jager, P., & Gilca, M. (2011). An overview on ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. African Journal of Traditional, Complementary and Alternative Medicines, 8(5S), 208–213.CrossRef
go back to reference Sinsimer, K. S., Gratacós, F. M., Knapinska, A. M., Lu, J., Krause, C. D., Wierzbowski, A. V., et al. (2008). Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay. Molecular and Cellular Biology, 28(17), 5223–5237.CrossRefPubMedPubMedCentral Sinsimer, K. S., Gratacós, F. M., Knapinska, A. M., Lu, J., Krause, C. D., Wierzbowski, A. V., et al. (2008). Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay. Molecular and Cellular Biology, 28(17), 5223–5237.CrossRefPubMedPubMedCentral
go back to reference Sivamani, S., Joseph, B., & Kar, B. (2014). Anti-inflammatory activity of Withania somnifera leaf extract in stainless steel implant induced inflammation in adult zebrafish. Journal of Genetic Engineering and Biotechnology, 12(1), 1–6.CrossRef Sivamani, S., Joseph, B., & Kar, B. (2014). Anti-inflammatory activity of Withania somnifera leaf extract in stainless steel implant induced inflammation in adult zebrafish. Journal of Genetic Engineering and Biotechnology, 12(1), 1–6.CrossRef
go back to reference Solanki, I., Parihar, P., & Parihar, M. S. (2016). Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochemistry International, 95, 100–108.CrossRefPubMed Solanki, I., Parihar, P., & Parihar, M. S. (2016). Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochemistry International, 95, 100–108.CrossRefPubMed
go back to reference Spencer, S. J., Mouihate, A., & Pittman, Q. J. (2007). Peripheral inflammation exacerbates damage after global ischemia independently of temperature and acute brain inflammation. Stroke, 38(5), 1570–1577.CrossRefPubMed Spencer, S. J., Mouihate, A., & Pittman, Q. J. (2007). Peripheral inflammation exacerbates damage after global ischemia independently of temperature and acute brain inflammation. Stroke, 38(5), 1570–1577.CrossRefPubMed
go back to reference Sun, G. Y., Li, R., Cui, J., Hannink, M., Gu, Z., Fritsche, K. L., et al. (2016). Withania somnifera and its withanolides attenuate oxidative and inflammatory responses and up-regulate antioxidant responses in BV-2 microglial cells. Neuromolecular Medicine, 18(3), 241–252.CrossRefPubMed Sun, G. Y., Li, R., Cui, J., Hannink, M., Gu, Z., Fritsche, K. L., et al. (2016). Withania somnifera and its withanolides attenuate oxidative and inflammatory responses and up-regulate antioxidant responses in BV-2 microglial cells. Neuromolecular Medicine, 18(3), 241–252.CrossRefPubMed
go back to reference Swiergiel, A. H., & Dunn, A. J. (2007). Effects of interleukin-1β and lipopolysaccharide on behavior of mice in the elevated plus-maze and open field tests. Pharmacology Biochemistry and Behavior, 86(4), 651–659.CrossRef Swiergiel, A. H., & Dunn, A. J. (2007). Effects of interleukin-1β and lipopolysaccharide on behavior of mice in the elevated plus-maze and open field tests. Pharmacology Biochemistry and Behavior, 86(4), 651–659.CrossRef
go back to reference Udayakumar, R., Kasthurirengan, S., Mariashibu, T. S., Rajesh, M., Anbazhagan, V. R., Kim, S. C., et al. (2009). Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. International Journal of Molecular Sciences, 10(5), 2367–2382.CrossRefPubMedPubMedCentral Udayakumar, R., Kasthurirengan, S., Mariashibu, T. S., Rajesh, M., Anbazhagan, V. R., Kim, S. C., et al. (2009). Hypoglycaemic and hypolipidaemic effects of Withania somnifera root and leaf extracts on alloxan-induced diabetic rats. International Journal of Molecular Sciences, 10(5), 2367–2382.CrossRefPubMedPubMedCentral
go back to reference Ven Murthy, M. R., Ranjekar, K., Ramassamy, C., & Deshpande, M. (2010). Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: 1. Ashwagandha. Central Nervous System Agents in Medicinal Chemistry, 10(3), 238–246.CrossRefPubMed Ven Murthy, M. R., Ranjekar, K., Ramassamy, C., & Deshpande, M. (2010). Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: 1. Ashwagandha. Central Nervous System Agents in Medicinal Chemistry, 10(3), 238–246.CrossRefPubMed
go back to reference Wang, A., Al-Kuhlani, M., Johnston, S. C., Ojcius, D. M., Chou, J., & Dean, D. (2013). Transcription factor complex AP-1 mediates inflammation initiated by Chlamydia pneumoniae infection. Cellular Microbiology, 15(5), 779–794.CrossRefPubMed Wang, A., Al-Kuhlani, M., Johnston, S. C., Ojcius, D. M., Chou, J., & Dean, D. (2013). Transcription factor complex AP-1 mediates inflammation initiated by Chlamydia pneumoniae infection. Cellular Microbiology, 15(5), 779–794.CrossRefPubMed
go back to reference Yamamoto, K., Arakawa, T., Ueda, N., & Yamamoto, S. (1995). Transcriptional roles of nuclear factor B and nuclear factor-interleukin-6 in the tumor necrosis factor-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. Journal of Biological Chemistry, 270(52), 31315–31320.CrossRefPubMed Yamamoto, K., Arakawa, T., Ueda, N., & Yamamoto, S. (1995). Transcriptional roles of nuclear factor B and nuclear factor-interleukin-6 in the tumor necrosis factor-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. Journal of Biological Chemistry, 270(52), 31315–31320.CrossRefPubMed
go back to reference Yuan, L., Wu, Y., Ren, X., Liu, Q., Wang, J., & Liu, X. (2014). Isoorientin attenuates lipopolysaccharide-induced pro-inflammatory responses through down-regulation of ROS-related MAPK/NF-κB signaling pathway in BV-2 microglia. Molecular and Cellular Biochemistry, 386(1–2), 153–165.CrossRefPubMed Yuan, L., Wu, Y., Ren, X., Liu, Q., Wang, J., & Liu, X. (2014). Isoorientin attenuates lipopolysaccharide-induced pro-inflammatory responses through down-regulation of ROS-related MAPK/NF-κB signaling pathway in BV-2 microglia. Molecular and Cellular Biochemistry, 386(1–2), 153–165.CrossRefPubMed
go back to reference Zeng, K. W., Wang, S., Dong, X., Jiang, Y., & Tu, P. F. (2014). Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways. Phytomedicine, 21(3), 298–306.CrossRefPubMed Zeng, K. W., Wang, S., Dong, X., Jiang, Y., & Tu, P. F. (2014). Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways. Phytomedicine, 21(3), 298–306.CrossRefPubMed
go back to reference Zeng, K. W., Zhang, T., Fu, H., Liu, G. X., & Wang, X. M. (2012). Modified Wu-Zi-Yan-Zong prescription, a traditional Chinese polyherbal formula, suppresses lipopolysaccharide-induced neuroinflammatory processes in rat astrocytes via NF-κB and JNK/p38 MAPK signaling pathways. Phytomedicine, 19(2), 122–129.CrossRefPubMed Zeng, K. W., Zhang, T., Fu, H., Liu, G. X., & Wang, X. M. (2012). Modified Wu-Zi-Yan-Zong prescription, a traditional Chinese polyherbal formula, suppresses lipopolysaccharide-induced neuroinflammatory processes in rat astrocytes via NF-κB and JNK/p38 MAPK signaling pathways. Phytomedicine, 19(2), 122–129.CrossRefPubMed
go back to reference Zhu, L. H., Bi, W., Qi, R. B., Wang, H. D., & Lu, D. X. (2011). Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. International Journal of Neuroscience, 121(6), 329–336.CrossRefPubMed Zhu, L. H., Bi, W., Qi, R. B., Wang, H. D., & Lu, D. X. (2011). Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. International Journal of Neuroscience, 121(6), 329–336.CrossRefPubMed
go back to reference Zubair Alam, M., Alam, Q., Amjad Kamal, M., Jiman-Fatani, A., Azhar, A. I., Azhar Khan, E., M., & Haque, A. (2017). Infectious Agents and neurodegenerative diseases: Exploring the links. Current Topics in Medicinal Chemistry, 17(12), 1390–1399.CrossRef Zubair Alam, M., Alam, Q., Amjad Kamal, M., Jiman-Fatani, A., Azhar, A. I., Azhar Khan, E., M., & Haque, A. (2017). Infectious Agents and neurodegenerative diseases: Exploring the links. Current Topics in Medicinal Chemistry, 17(12), 1390–1399.CrossRef
Metadata
Title
Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation
Authors
Muskan Gupta
Gurcharan Kaur
Publication date
01-09-2018
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 3/2018
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8497-7

Other articles of this Issue 3/2018

NeuroMolecular Medicine 3/2018 Go to the issue