Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation

Authors: Kai Fan, Xuefei Wu, Bin Fan, Ning Li, Yongzhong Lin, Yiwen Yao, Jianmei Ma

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Cathepsin C (Cat C) functions as a central coordinator for activation of many serine proteases in inflammatory cells. It has been recognized that Cat C is responsible for neutrophil recruitment and production of chemokines and cytokines in many inflammatory diseases. However, Cat C expression and its functional role in the brain under normal conditions or in neuroinflammatory processes remain unclear. Our previous study showed that Cat C promoted the progress of brain demyelination in cuprizone-treated mice. The present study further investigated the Cat C expression and activity in lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro.

Methods

C57BL/6 J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze microglial activation, TNF-α, IL-1β, IL-6, iNOS mRNAs expressions and cellular localization of Cat C in the brain. Nitrite assay was used to examine microglial activation in vitro; RT-PCR and ELISA were used to determine the expression and release of Cat C. Cat C activity was analyzed by cellular Cat C assay kit. Data were evaluated for statistical significance with paired t test.

Results

Cat C was predominantly expressed in hippocampal CA2 neurons in C57BL/6 J mice under normal conditions. Six hours after LPS injection, Cat C expression was detected in cerebral cortical neurons; whereas, twenty-four hours later, Cat C expression was captured in activated microglial cells throughout the entire brain. The duration of induced Cat C expression in neurons and in microglial cells was ten days and three days, respectively. In vitro, LPS, IL-1β and IL-6 treatments increased microglial Cat C expression in a dose-dependent manner and upregulated Cat C secretion and its activity.

Conclusions

Taken together, these data indicate that LPS and proinflammatory cytokines IL-1β, IL-6 induce the expression, release and upregulate enzymatic activity of Cat C in microglial cells. Further investigation is required to determine the functional role of Cat C in the progression of neuroinflammation, which may have implications for therapeutics for the prevention of neuroinflammation-involved neurological disorders in the future.
Literature
2.
go back to reference Whitton PS: Neuroinflammation and the prospects for anti-inflammatory treatment of Parkinson’s disease. Curr Opin Investig Drugs 2010, 11:788–794.PubMed Whitton PS: Neuroinflammation and the prospects for anti-inflammatory treatment of Parkinson’s disease. Curr Opin Investig Drugs 2010, 11:788–794.PubMed
3.
go back to reference Hensley K: Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis 2010, 21:1–14.PubMedPubMedCentral Hensley K: Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis 2010, 21:1–14.PubMedPubMedCentral
4.
go back to reference Herrera AJ, Castano A, Venero JL, Cano J, Machado A: The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 2000, 7:429–447.CrossRefPubMed Herrera AJ, Castano A, Venero JL, Cano J, Machado A: The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 2000, 7:429–447.CrossRefPubMed
5.
go back to reference Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B: Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 2002, 81:1285–1297.CrossRefPubMed Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B: Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 2002, 81:1285–1297.CrossRefPubMed
6.
go back to reference Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R: Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des 2007, 13:1925–1928.CrossRefPubMed Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R: Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des 2007, 13:1925–1928.CrossRefPubMed
7.
go back to reference Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T: Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 1994, 180:147–150.CrossRefPubMed Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T: Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 1994, 180:147–150.CrossRefPubMed
8.
go back to reference Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P: Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995, 202:17–20.CrossRefPubMed Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P: Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995, 202:17–20.CrossRefPubMed
9.
go back to reference Muller T, Blum-Degen D, Przuntek H, Kuhn W: Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson’s disease. Acta Neurol Scand 1998, 98:142–144.CrossRefPubMed Muller T, Blum-Degen D, Przuntek H, Kuhn W: Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson’s disease. Acta Neurol Scand 1998, 98:142–144.CrossRefPubMed
10.
go back to reference Knott C, Stern G, Wilkin GP: Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and −2. Mol Cell Neurosci 2000, 16:724–739.CrossRefPubMed Knott C, Stern G, Wilkin GP: Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and −2. Mol Cell Neurosci 2000, 16:724–739.CrossRefPubMed
11.
go back to reference Nagatsu T, Sawada M: Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 2005, 11:999–1016.CrossRefPubMed Nagatsu T, Sawada M: Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 2005, 11:999–1016.CrossRefPubMed
13.
go back to reference Eikelenboom P, Zhan SS, Van Gool WA, Allsop D: Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol Sci 1994, 15:447–450.CrossRefPubMed Eikelenboom P, Zhan SS, Van Gool WA, Allsop D: Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol Sci 1994, 15:447–450.CrossRefPubMed
14.
go back to reference Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT: Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflamm 2008, 5:37.CrossRef Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT: Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflamm 2008, 5:37.CrossRef
15.
go back to reference Petanceska S, Canoll P, Devi AL: Expression of rat cathepsin S in phagocytic cells. J Biol Chem 1996, 271:4403–4409.CrossRefPubMed Petanceska S, Canoll P, Devi AL: Expression of rat cathepsin S in phagocytic cells. J Biol Chem 1996, 271:4403–4409.CrossRefPubMed
16.
go back to reference Ryan RE, Sloane BF, Sameni M, Wood PL: Microglial cathepsin B: an immunological examination of cellular and secreted species. J Neurochem 1995, 65:1035–1045.CrossRefPubMed Ryan RE, Sloane BF, Sameni M, Wood PL: Microglial cathepsin B: an immunological examination of cellular and secreted species. J Neurochem 1995, 65:1035–1045.CrossRefPubMed
17.
go back to reference Kingham PJ, Pocock JM: Microglial apoptosis induced by chromogranin A is mediated by mitochondrial depolarization and the permeability transition but not by cytochrome c release. J Neurochem 2001, 74:1452–1462.CrossRef Kingham PJ, Pocock JM: Microglial apoptosis induced by chromogranin A is mediated by mitochondrial depolarization and the permeability transition but not by cytochrome c release. J Neurochem 2001, 74:1452–1462.CrossRef
18.
go back to reference Nakanishi H, Tominaga K, Amano T, Hirotsu I, Inoue T, Yamamoto K: Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues. Exp Neurol 1994, 125:1–10.CrossRef Nakanishi H, Tominaga K, Amano T, Hirotsu I, Inoue T, Yamamoto K: Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues. Exp Neurol 1994, 125:1–10.CrossRef
19.
go back to reference Bernstein HG, Brusziz S, Schmidt D, Wiederanders B, Dorn A: Immunodetection of cathepsin D in neuritic plaques found in brains of patients with dementia of Alzheimer type. J Hirnforsch 1989, 30:613–618.PubMed Bernstein HG, Brusziz S, Schmidt D, Wiederanders B, Dorn A: Immunodetection of cathepsin D in neuritic plaques found in brains of patients with dementia of Alzheimer type. J Hirnforsch 1989, 30:613–618.PubMed
20.
go back to reference Yoshiyama Y, Arai K, Oli T, Hattori T: Expression of invariant chain and pro-cathepsin L in Alzheimer’s brain. Neurosci Lett 2000, 290:125–128.CrossRefPubMed Yoshiyama Y, Arai K, Oli T, Hattori T: Expression of invariant chain and pro-cathepsin L in Alzheimer’s brain. Neurosci Lett 2000, 290:125–128.CrossRefPubMed
21.
go back to reference Czapski GA, Gajkowska B, Strosznajder JB: Systemic administration of lipopolysaccharide induces molecular and morphological alterations in the hippocampus. Brain Res 2010, 1356:85–94.CrossRefPubMed Czapski GA, Gajkowska B, Strosznajder JB: Systemic administration of lipopolysaccharide induces molecular and morphological alterations in the hippocampus. Brain Res 2010, 1356:85–94.CrossRefPubMed
22.
go back to reference Rawlings ND, Morton FR, Barrett AJ: MEROPS: the peptidase database. Nucleic Acids Res 2006, 34:270–272.CrossRef Rawlings ND, Morton FR, Barrett AJ: MEROPS: the peptidase database. Nucleic Acids Res 2006, 34:270–272.CrossRef
23.
go back to reference Deussing J, Kouadio M, Rehman S, Werber I, Schwinde A, Peters C: Identification and characterization of a dense cluster of placenta-specific cysteine peptidase genes and related genes on mouse chromosome 13. Genomics 2002, 79:225–240.CrossRefPubMed Deussing J, Kouadio M, Rehman S, Werber I, Schwinde A, Peters C: Identification and characterization of a dense cluster of placenta-specific cysteine peptidase genes and related genes on mouse chromosome 13. Genomics 2002, 79:225–240.CrossRefPubMed
24.
go back to reference Turk B, Turk D, Turk V: Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 2000, 1477:98–111.CrossRefPubMed Turk B, Turk D, Turk V: Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 2000, 1477:98–111.CrossRefPubMed
25.
go back to reference Felbor U, Kessler B, Mothes W, Goebel HH, Ploeggh HL, Bronson RT, Olsen BR: Neuronal loss and brain atrophy in mice lacking cathepsin B and L. Proc Natl Acad Sci USA 2002, 99:7883–7888.CrossRefPubMedPubMedCentral Felbor U, Kessler B, Mothes W, Goebel HH, Ploeggh HL, Bronson RT, Olsen BR: Neuronal loss and brain atrophy in mice lacking cathepsin B and L. Proc Natl Acad Sci USA 2002, 99:7883–7888.CrossRefPubMedPubMedCentral
26.
go back to reference Nakanishi H: Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev 2003, 2:367–381.CrossRefPubMed Nakanishi H: Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev 2003, 2:367–381.CrossRefPubMed
27.
go back to reference Boya P, Kroemer G: Lysosomal membrane permeabilization in cell death. Oncogene 2008, 27:6434–6451.CrossRefPubMed Boya P, Kroemer G: Lysosomal membrane permeabilization in cell death. Oncogene 2008, 27:6434–6451.CrossRefPubMed
28.
go back to reference Fei XF, Qin ZH, Xiang B, Li LY, Han F, Fukunaga K, Liang ZQ: Olomoucine inhibits cathepsin L nuclear translocation, activates autophagy and attenuates toxicity of 6-hydroxydopamine. Brain Res 2009, 1264:85–97.CrossRefPubMed Fei XF, Qin ZH, Xiang B, Li LY, Han F, Fukunaga K, Liang ZQ: Olomoucine inhibits cathepsin L nuclear translocation, activates autophagy and attenuates toxicity of 6-hydroxydopamine. Brain Res 2009, 1264:85–97.CrossRefPubMed
29.
go back to reference Ma J, Tanaka KF, Yamada G, Ikenaka K: Induced expression of cathepsins and cystatin C in a murine model of demyelination. Neurochem Res 2007, 32:311–320.CrossRefPubMed Ma J, Tanaka KF, Yamada G, Ikenaka K: Induced expression of cathepsins and cystatin C in a murine model of demyelination. Neurochem Res 2007, 32:311–320.CrossRefPubMed
30.
go back to reference Paris A, Strukelj B, Pungercar J, Renko M, Dolenc I, Turk V: Molecular cloning and sequence analysis of human preprocathepsin C. FEBS Lett 1995, 369:326–330.CrossRefPubMed Paris A, Strukelj B, Pungercar J, Renko M, Dolenc I, Turk V: Molecular cloning and sequence analysis of human preprocathepsin C. FEBS Lett 1995, 369:326–330.CrossRefPubMed
31.
go back to reference Turk D, Janjic V, Stern I, Podobnik M, Lamba D, Dahl SW, Lauritzen C, Pedersen J, Turk V, Turk B: Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J 2001, 20:6570–6582.CrossRefPubMedPubMedCentral Turk D, Janjic V, Stern I, Podobnik M, Lamba D, Dahl SW, Lauritzen C, Pedersen J, Turk V, Turk B: Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J 2001, 20:6570–6582.CrossRefPubMedPubMedCentral
32.
go back to reference Rao NV, Rao GV, Hoidal JR: Human dipeptidyl-peptidase I gene characterization, localization, and expression. J Biol Chem 1997, 11:10260–10265.CrossRef Rao NV, Rao GV, Hoidal JR: Human dipeptidyl-peptidase I gene characterization, localization, and expression. J Biol Chem 1997, 11:10260–10265.CrossRef
33.
go back to reference McGuire MJ, Lipsky PE, Thiele DL: Cloning and characterization of the cDNA encoding mouse dipeptidyl peptidase I (cathepsin C). BBA 1997, 1351:267–273.PubMed McGuire MJ, Lipsky PE, Thiele DL: Cloning and characterization of the cDNA encoding mouse dipeptidyl peptidase I (cathepsin C). BBA 1997, 1351:267–273.PubMed
34.
go back to reference Ishidoh K, Muno D, Sato N, Kominami E: Molecular cloning of cDNA for rat cathepsin C. J Biol Chem 1991, 266:16312–16317.PubMed Ishidoh K, Muno D, Sato N, Kominami E: Molecular cloning of cDNA for rat cathepsin C. J Biol Chem 1991, 266:16312–16317.PubMed
35.
go back to reference McGuire MJ, Lipsky PE, Thiele DL: Purification and characterization of dipeptidyl peptidase I from human spleen. Arch Biochem Biophys 1992, 295:280–288.CrossRefPubMed McGuire MJ, Lipsky PE, Thiele DL: Purification and characterization of dipeptidyl peptidase I from human spleen. Arch Biochem Biophys 1992, 295:280–288.CrossRefPubMed
36.
go back to reference Pham CTN, Ley TJ: Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 1999, 96:8627–8632.CrossRefPubMedPubMedCentral Pham CTN, Ley TJ: Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 1999, 96:8627–8632.CrossRefPubMedPubMedCentral
37.
go back to reference Sheth PD, Pedersen J, Walls AF, McEuen AR: Inhibition of dipeptidyl peptidase I in the human mast cell line HMC-1: blocked activation of tryptase, but not of the predominant chymotryptic activity. Biochem Pharmacol 2003, 66:2251–2262.CrossRefPubMed Sheth PD, Pedersen J, Walls AF, McEuen AR: Inhibition of dipeptidyl peptidase I in the human mast cell line HMC-1: blocked activation of tryptase, but not of the predominant chymotryptic activity. Biochem Pharmacol 2003, 66:2251–2262.CrossRefPubMed
38.
go back to reference Adkison AM, Raptis SZ, Kelley DG, Pham CTN: Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 2002, 109:363–371.CrossRefPubMedPubMedCentral Adkison AM, Raptis SZ, Kelley DG, Pham CTN: Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 2002, 109:363–371.CrossRefPubMedPubMedCentral
39.
go back to reference Hu Y, Pham CT: Dipeptidyl peptidase I regulates the development of collagen-induced arthritis. Athritis Rheum 2005, 52:2553–2558.CrossRef Hu Y, Pham CT: Dipeptidyl peptidase I regulates the development of collagen-induced arthritis. Athritis Rheum 2005, 52:2553–2558.CrossRef
40.
go back to reference Clair MJ, Pham CTN, Villalta A, Caughey GH, Wolters PJ: Mast cell dipeptidyl peptidase I mediates survival from sepsis. J Clin Invest 2004, 113:628–634.CrossRef Clair MJ, Pham CTN, Villalta A, Caughey GH, Wolters PJ: Mast cell dipeptidyl peptidase I mediates survival from sepsis. J Clin Invest 2004, 113:628–634.CrossRef
41.
go back to reference Bourbeau J, Johnson M: New and controversial therapies for chronic obstructive pulmonary disease. PATS 2009, 6:553–554. Bourbeau J, Johnson M: New and controversial therapies for chronic obstructive pulmonary disease. PATS 2009, 6:553–554.
42.
go back to reference Shi GP: Role of cathepsin C in elastase-induced mouse abdominal aortic aneurysms. Future Cardiol 2007, 3:591–593.CrossRefPubMed Shi GP: Role of cathepsin C in elastase-induced mouse abdominal aortic aneurysms. Future Cardiol 2007, 3:591–593.CrossRefPubMed
43.
go back to reference Akk AM, Simmons PM, Chan HW, Agapov E, Holtzman MJ, Grayson MH, Pham CTN: Dipeptidyl peptidase I-dependent neutrophil recruitment modulates the inflammatory response to Sendai virus infection. J Immunol 2008, 180:3535–3542.CrossRefPubMedPubMedCentral Akk AM, Simmons PM, Chan HW, Agapov E, Holtzman MJ, Grayson MH, Pham CTN: Dipeptidyl peptidase I-dependent neutrophil recruitment modulates the inflammatory response to Sendai virus infection. J Immunol 2008, 180:3535–3542.CrossRefPubMedPubMedCentral
44.
go back to reference Qin LY, Wu XF, Block ML, Liu YX, Breese GR, Hong JS, Knapp DJ, Crews FT: Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007, 55:453–462.CrossRefPubMedPubMedCentral Qin LY, Wu XF, Block ML, Liu YX, Breese GR, Hong JS, Knapp DJ, Crews FT: Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007, 55:453–462.CrossRefPubMedPubMedCentral
45.
go back to reference Ma J, Matsumoto M, Tanaka K, Takebayashi H, Ikenaka K: An animal model for late onset chronic demyelinaion disease caused by failed terminal differentiation of oligodendrocyte. Neuron Glia Biol 2006, 2:81–91.CrossRefPubMed Ma J, Matsumoto M, Tanaka K, Takebayashi H, Ikenaka K: An animal model for late onset chronic demyelinaion disease caused by failed terminal differentiation of oligodendrocyte. Neuron Glia Biol 2006, 2:81–91.CrossRefPubMed
46.
go back to reference Ma J, Tanaka K, Shimizu T: Bernard Claude CA, Kakita A, Takahashi H, Pfeiffer SE, Ikenaka K: Microglial cystatin F expression is a sensitive indicator for ongoing demyelination with concurrent remyelination. J Neurosci Res 2011, 89:639–649.CrossRefPubMed Ma J, Tanaka K, Shimizu T: Bernard Claude CA, Kakita A, Takahashi H, Pfeiffer SE, Ikenaka K: Microglial cystatin F expression is a sensitive indicator for ongoing demyelination with concurrent remyelination. J Neurosci Res 2011, 89:639–649.CrossRefPubMed
47.
go back to reference Jones E, Adcock IM, Ahmed BY, Punchard NA: Modulation of LPS stimulated NF-κB mediated nitric oxide production by PKCε and JAK2 in RAW macrophages. J Inflamm 2007, 4:23.CrossRef Jones E, Adcock IM, Ahmed BY, Punchard NA: Modulation of LPS stimulated NF-κB mediated nitric oxide production by PKCε and JAK2 in RAW macrophages. J Inflamm 2007, 4:23.CrossRef
48.
go back to reference Ward RJ, Wilmet S, Legssyer R, Deroy D, Toussaint L, Crichton RR, Pierreux C, Hue L, Piette J, Srai SK, Solanky N, Klein D, Summer K: Iron supplementation to pregnant rats: effects on pregnancy outcome, iron homeostasis and immune function. Biometals 2009, 22:211–223.CrossRefPubMed Ward RJ, Wilmet S, Legssyer R, Deroy D, Toussaint L, Crichton RR, Pierreux C, Hue L, Piette J, Srai SK, Solanky N, Klein D, Summer K: Iron supplementation to pregnant rats: effects on pregnancy outcome, iron homeostasis and immune function. Biometals 2009, 22:211–223.CrossRefPubMed
49.
go back to reference Perry VH: The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 2004, 18:407–413.CrossRefPubMed Perry VH: The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 2004, 18:407–413.CrossRefPubMed
50.
go back to reference Sparkman NL, Martin LA, Calvert WS, Boehm GW: Effects of intraperitoneal lipopolysaccharide on Morris maze performance in year-old and 2-month-old female C57BL/6J mice. Behav Brain Res 2005, 159:145–151.CrossRefPubMed Sparkman NL, Martin LA, Calvert WS, Boehm GW: Effects of intraperitoneal lipopolysaccharide on Morris maze performance in year-old and 2-month-old female C57BL/6J mice. Behav Brain Res 2005, 159:145–151.CrossRefPubMed
51.
go back to reference Shaw KN, Commins S, O’Mara SM: Lipopolysaccharide causes deficits in spatial learning in the water maze but not in BDNF expression in the rat dentate gyrus. Behav Brain Res 2001, 124:47–54.CrossRefPubMed Shaw KN, Commins S, O’Mara SM: Lipopolysaccharide causes deficits in spatial learning in the water maze but not in BDNF expression in the rat dentate gyrus. Behav Brain Res 2001, 124:47–54.CrossRefPubMed
52.
go back to reference Fink MP, Fiallo V, Stein KL, Gardiner WM: Systemic and regional hemodynamic changes after intraperitoneal endotoxin in rabbits: development of a new model of the clinical syndrome of hyperdynamic sepsis. Circ Shock 1987, 22:73–81.PubMed Fink MP, Fiallo V, Stein KL, Gardiner WM: Systemic and regional hemodynamic changes after intraperitoneal endotoxin in rabbits: development of a new model of the clinical syndrome of hyperdynamic sepsis. Circ Shock 1987, 22:73–81.PubMed
53.
go back to reference Opal SM: The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int J Med Microbiol 2007, 297:365–377.CrossRefPubMed Opal SM: The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int J Med Microbiol 2007, 297:365–377.CrossRefPubMed
54.
go back to reference Beishuizen A, Thijs LG: Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotox Res 2003, 9:3–24. Beishuizen A, Thijs LG: Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotox Res 2003, 9:3–24.
55.
go back to reference Gabellec MM, Griffais R, Fillion G, Haour F: Expression of interleukin 1 alpha, interleukin 1 beta and interleukin 1 receptor antagonist mRNA in mouse brain: regulation by bacterial lipopolysaccharide (LPS) treatment. Brain Res Mol Brain Res 1995, 31:122–130.CrossRefPubMed Gabellec MM, Griffais R, Fillion G, Haour F: Expression of interleukin 1 alpha, interleukin 1 beta and interleukin 1 receptor antagonist mRNA in mouse brain: regulation by bacterial lipopolysaccharide (LPS) treatment. Brain Res Mol Brain Res 1995, 31:122–130.CrossRefPubMed
56.
go back to reference Hansen MK, Nguyen KT, Goehler LE, Gaykema RP, Fleshner M, Maier SF, Watkins LR: Effects of vagotomy on lipopolysaccharide-induced brain interleukin-1beta protein in rats. Auton Neurosci 2000, 85:119–126.CrossRefPubMed Hansen MK, Nguyen KT, Goehler LE, Gaykema RP, Fleshner M, Maier SF, Watkins LR: Effects of vagotomy on lipopolysaccharide-induced brain interleukin-1beta protein in rats. Auton Neurosci 2000, 85:119–126.CrossRefPubMed
57.
go back to reference Turrin NP, Gayle D, Ilyin SE, Flynn MC, Langhans W, Schwartz GJ, Plata-Salaman CR: Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Res Bull 2001, 54:443–453.CrossRefPubMed Turrin NP, Gayle D, Ilyin SE, Flynn MC, Langhans W, Schwartz GJ, Plata-Salaman CR: Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Res Bull 2001, 54:443–453.CrossRefPubMed
58.
go back to reference Jann B, Reske K, Jann K: Heterogeneity of lipopolysaccharides. Analysis of polysaccharide chain lengths by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Eur J Biochem 1975, 60:239–246.CrossRefPubMed Jann B, Reske K, Jann K: Heterogeneity of lipopolysaccharides. Analysis of polysaccharide chain lengths by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Eur J Biochem 1975, 60:239–246.CrossRefPubMed
59.
go back to reference Banks WA, Robinson SM: Minimal penetration of lipopolysaccharide across the murine blood–brain barrier. Brain Behav Immun 2010, 24:102–109.CrossRefPubMed Banks WA, Robinson SM: Minimal penetration of lipopolysaccharide across the murine blood–brain barrier. Brain Behav Immun 2010, 24:102–109.CrossRefPubMed
60.
go back to reference Laflamme N, Rivest S: Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 2001, 15:155–163.CrossRefPubMed Laflamme N, Rivest S: Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 2001, 15:155–163.CrossRefPubMed
61.
go back to reference Thibeault I, Laflamme N, Rivest S: Regulation of the gene encoding the monocyte chemoattractant protein (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 2001, 434:461–477.CrossRefPubMed Thibeault I, Laflamme N, Rivest S: Regulation of the gene encoding the monocyte chemoattractant protein (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 2001, 434:461–477.CrossRefPubMed
62.
go back to reference Tomás-Camardiel M, Rite I, Herrera AJ, de Pablos RM, Cano J, Machado A, Venero JL: Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 2004, 16:190–201.CrossRefPubMed Tomás-Camardiel M, Rite I, Herrera AJ, de Pablos RM, Cano J, Machado A, Venero JL: Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 2004, 16:190–201.CrossRefPubMed
63.
go back to reference Ji KA, Yang MS, Jeong HK, Min KJ, Kang SH, Jou I, Joe EH: Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia 2007, 55:1577–1588.CrossRefPubMed Ji KA, Yang MS, Jeong HK, Min KJ, Kang SH, Jou I, Joe EH: Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia 2007, 55:1577–1588.CrossRefPubMed
64.
go back to reference Jeong HK, Jou I, Joe EH: Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Exp Mol Med 2010, 12:823–832.CrossRef Jeong HK, Jou I, Joe EH: Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Exp Mol Med 2010, 12:823–832.CrossRef
65.
go back to reference Hart PS, Zhang Y, Firatli E, Uygur C, Lotfazar M, Michalec MD, Marks JJ, Lu X, Coates B: Identification of cathepsin C mutations in ethnically diverse Papillon-Lefèvre syndrome patients. J Med Genet 2001, 37:927–932.CrossRef Hart PS, Zhang Y, Firatli E, Uygur C, Lotfazar M, Michalec MD, Marks JJ, Lu X, Coates B: Identification of cathepsin C mutations in ethnically diverse Papillon-Lefèvre syndrome patients. J Med Genet 2001, 37:927–932.CrossRef
66.
go back to reference Xi G, Reiser G, Keep RF: The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J Neurochem 2003, 84:3–9.CrossRefPubMed Xi G, Reiser G, Keep RF: The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J Neurochem 2003, 84:3–9.CrossRefPubMed
67.
go back to reference Striggow F, Riek M, Breder J, Henrich-Noack P, Reymann KG, Reiser G: The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci USA 2000, 97:2264–2269.CrossRefPubMedPubMedCentral Striggow F, Riek M, Breder J, Henrich-Noack P, Reymann KG, Reiser G: The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci USA 2000, 97:2264–2269.CrossRefPubMedPubMedCentral
68.
go back to reference Sawada K, Nishibori M, Nakaya N, Wang Z, Saeki K: Purification and characterization of a trypsin-like serine proteinase from rat brain slices that degrades laminin and type IV collagen and stimulates protease-activated receptor-2. J Neurochem 2000, 74:1731–1738.CrossRefPubMed Sawada K, Nishibori M, Nakaya N, Wang Z, Saeki K: Purification and characterization of a trypsin-like serine proteinase from rat brain slices that degrades laminin and type IV collagen and stimulates protease-activated receptor-2. J Neurochem 2000, 74:1731–1738.CrossRefPubMed
69.
71.
go back to reference Giulian D, Corpuz M: Microglial secretion products and their impact on the nervous system. Adv Neurol 1993, 59:315–320.PubMed Giulian D, Corpuz M: Microglial secretion products and their impact on the nervous system. Adv Neurol 1993, 59:315–320.PubMed
72.
go back to reference Dahl SW, Halkier T, Lauritzen C, Dolenc I, Pedersen J, Turk V, Turk B: Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsin L and S but not by autocatalytic processing. Biochemistry 2001, 40:1671–1678.CrossRefPubMed Dahl SW, Halkier T, Lauritzen C, Dolenc I, Pedersen J, Turk V, Turk B: Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsin L and S but not by autocatalytic processing. Biochemistry 2001, 40:1671–1678.CrossRefPubMed
Metadata
Title
Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation
Authors
Kai Fan
Xuefei Wu
Bin Fan
Ning Li
Yongzhong Lin
Yiwen Yao
Jianmei Ma
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-96

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue