Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2018

01-09-2018 | Original Paper

Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA

Authors: María Belén Ruiz-Roso, Elena Olivares-Álvaro, José Carlos Quintela, Sandra Ballesteros, Juan F. Espinosa-Parrilla, Baltasar Ruiz-Roso, Vicente Lahera, Natalia de las Heras, Beatriz Martín-Fernández

Published in: NeuroMolecular Medicine | Issue 3/2018

Login to get access

Abstract

Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H2O2) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O2) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H2O2-induced cell viability reduction in BV-2 activated cells and O2 production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.
Appendix
Available only for authorised users
Literature
go back to reference Batchelor, P. E., Liberatore, G. T., Wong, J. Y., Porritt, M. J., Frerichs, F., Donnan, G. A., et al. (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Journal of Neuroscience, 19(5), 1708–1716.PubMedCrossRef Batchelor, P. E., Liberatore, G. T., Wong, J. Y., Porritt, M. J., Frerichs, F., Donnan, G. A., et al. (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Journal of Neuroscience, 19(5), 1708–1716.PubMedCrossRef
go back to reference Budd, S. L., Castilho, R. F., & Nicholls, D. G. (1997). Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Letters, 415(1), 21–24.PubMedCrossRef Budd, S. L., Castilho, R. F., & Nicholls, D. G. (1997). Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Letters, 415(1), 21–24.PubMedCrossRef
go back to reference Butovsky, O., Koronyo-Hamaoui, M., Kunis, G., Ophir, E., Landa, G., Cohen, H., et al. (2006). Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proceedings of the National Academy of Sciences, 103(31), 11784–11789. https://doi.org/10.1073/pnas.0604681103.CrossRef Butovsky, O., Koronyo-Hamaoui, M., Kunis, G., Ophir, E., Landa, G., Cohen, H., et al. (2006). Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proceedings of the National Academy of Sciences, 103(31), 11784–11789. https://​doi.​org/​10.​1073/​pnas.​0604681103.CrossRef
go back to reference Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., & Peterson, P. K. (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. The Journal of Immunology, 149, 2736–2741.PubMed Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., & Peterson, P. K. (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. The Journal of Immunology, 149, 2736–2741.PubMed
go back to reference Coombes, E., Jiang, J., Xiang-Ping, C., Inoue, K., Seeds, J., Branigan, D., et al. (2011). Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxidants & Redox Signaling, 14(10), 1815–1827. https://doi.org/10.1089/ars.2010.349.CrossRef Coombes, E., Jiang, J., Xiang-Ping, C., Inoue, K., Seeds, J., Branigan, D., et al. (2011). Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxidants & Redox Signaling, 14(10), 1815–1827. https://​doi.​org/​10.​1089/​ars.​2010.​349.CrossRef
go back to reference Desagher, S., & Martinou, J. C. (2000). Mitochondria as the central control point of apoptosis. Trends in Cell Biology, 10(9), 369–377.PubMedCrossRef Desagher, S., & Martinou, J. C. (2000). Mitochondria as the central control point of apoptosis. Trends in Cell Biology, 10(9), 369–377.PubMedCrossRef
go back to reference Ghazale, H., Ramadan, N., Mantash, S., Zibara, K., El-Sitt, S., Darwish, H., Chamaa, F., Boustany, R. M., Mondello, S., Abou-Kheir, W., Soueid, J., & Kobeissy, F. (2018). Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury. Behavioural Brain Research. https://doi.org/10.1016/j.bbr.2017.11.007.CrossRefPubMed Ghazale, H., Ramadan, N., Mantash, S., Zibara, K., El-Sitt, S., Darwish, H., Chamaa, F., Boustany, R. M., Mondello, S., Abou-Kheir, W., Soueid, J., & Kobeissy, F. (2018). Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury. Behavioural Brain Research. https://​doi.​org/​10.​1016/​j.​bbr.​2017.​11.​007.CrossRefPubMed
go back to reference Hashimoto, M., Hossain, S., Al Mamun, A., Matsuzaki, K., & Arai, H. (2016). Docosahexaenoic acid: One molecule diverse functions. Critical Reviews in Biotechnology, 37(5), 1–19. Hashimoto, M., Hossain, S., Al Mamun, A., Matsuzaki, K., & Arai, H. (2016). Docosahexaenoic acid: One molecule diverse functions. Critical Reviews in Biotechnology, 37(5), 1–19.
go back to reference Hashimoto, M., Katakura, M., Tanabe, Y., Al Mamun, A., Inoue, T., Hossain, S., et al. (2015). n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats. Biochimica et Biophysica Acta (BBA): Molecular and Cell Biology of Lipids, 1851(2), 203–209. https://doi.org/10.1016/j.bbalip.2014.10.009.CrossRef Hashimoto, M., Katakura, M., Tanabe, Y., Al Mamun, A., Inoue, T., Hossain, S., et al. (2015). n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats. Biochimica et Biophysica Acta (BBA): Molecular and Cell Biology of Lipids, 1851(2), 203–209. https://​doi.​org/​10.​1016/​j.​bbalip.​2014.​10.​009.CrossRef
go back to reference Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurology, 14(4), 388–405.PubMedCrossRef Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurology, 14(4), 388–405.PubMedCrossRef
go back to reference Hong, S., Lu, Y., Yang, R., Gotlinger, K. H., Petasis, N. A., & Serhan, C. N. (2007). Resolvin D1, protectin D1, and related docosahexaenoic acid-derived products: Analysis via electrospray/low energy tandem mass spectrometry based on spectra and fragmentation mechanisms. Journal of the American Society for Mass Spectrometry, 18(1), 128–144. https://doi.org/10.1016/j.jasms.2006.09.002.PubMedCrossRef Hong, S., Lu, Y., Yang, R., Gotlinger, K. H., Petasis, N. A., & Serhan, C. N. (2007). Resolvin D1, protectin D1, and related docosahexaenoic acid-derived products: Analysis via electrospray/low energy tandem mass spectrometry based on spectra and fragmentation mechanisms. Journal of the American Society for Mass Spectrometry, 18(1), 128–144. https://​doi.​org/​10.​1016/​j.​jasms.​2006.​09.​002.PubMedCrossRef
go back to reference Jain, S., Banerjee, B. D., Ahmed, R. S., Arora, V. K., & Mediratta, P. K. (2013). Possible role of oxidative stress and brain derived neurotrophic factor in triazophos induced cognitive impairment in rats. Neurochemical Research, 38, 2136–2147.PubMedCrossRef Jain, S., Banerjee, B. D., Ahmed, R. S., Arora, V. K., & Mediratta, P. K. (2013). Possible role of oxidative stress and brain derived neurotrophic factor in triazophos induced cognitive impairment in rats. Neurochemical Research, 38, 2136–2147.PubMedCrossRef
go back to reference Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., et al. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. Journal of Biological Chemistry, 278(44), 43807–43817. https://doi.org/10.1074/jbc.M305841200.CrossRef Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., et al. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. Journal of Biological Chemistry, 278(44), 43807–43817. https://​doi.​org/​10.​1074/​jbc.​M305841200.CrossRef
go back to reference McColl, A. J., & Converse, C. A. (1995). Lipid studies in retinitis pigmentosa. Progress in Lipid Research, 34(1), 1–16.PubMedCrossRef McColl, A. J., & Converse, C. A. (1995). Lipid studies in retinitis pigmentosa. Progress in Lipid Research, 34(1), 1–16.PubMedCrossRef
go back to reference McGahon, B. M., Martin, D. S., Horrobin, D. F., & Lynch, M. A. (1999). Age-related changes in synaptic function: Analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience, 94(1), 305–314.PubMedCrossRef McGahon, B. M., Martin, D. S., Horrobin, D. F., & Lynch, M. A. (1999). Age-related changes in synaptic function: Analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience, 94(1), 305–314.PubMedCrossRef
go back to reference Minghetti, L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. Journal of Neuropathology & Experimental Neurology, 63(9), 901–910.CrossRef Minghetti, L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. Journal of Neuropathology & Experimental Neurology, 63(9), 901–910.CrossRef
go back to reference Ronicke, S., Kruska, N., Kahlert, S., & Reiser, G. (2009). The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiology of Disease, 36(2), 401–410. https://doi.org/10.1016/j.nbd.2009.08.005.PubMedCrossRef Ronicke, S., Kruska, N., Kahlert, S., & Reiser, G. (2009). The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiology of Disease, 36(2), 401–410. https://​doi.​org/​10.​1016/​j.​nbd.​2009.​08.​005.PubMedCrossRef
go back to reference Schonfeld, P., & Struy, H. (1999). Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria. FEBS Letter, 457(2), 179–183.CrossRef Schonfeld, P., & Struy, H. (1999). Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria. FEBS Letter, 457(2), 179–183.CrossRef
go back to reference Stewart, V. C., & Heales, S. J. (2003). Nitric oxide-induced mitochondrial dysfunction: Implications for neurodegeneration. Free Radical Biology and Medicine, 34(3), 287–303.PubMedCrossRef Stewart, V. C., & Heales, S. J. (2003). Nitric oxide-induced mitochondrial dysfunction: Implications for neurodegeneration. Free Radical Biology and Medicine, 34(3), 287–303.PubMedCrossRef
go back to reference Tuller, E. R., Beavers, C. T., Lou, J. R., Ihnat, M. A., Benbrook, D. M., & Ding, W. Q. (2009). Docosahexaenoic acid inhibits superoxide dismutase 1 gene transcription in human cancer cells: The involvement of peroxisome proliferator-activated receptor alpha and hypoxia-inducible factor-2 alpha signalling. Molecular Pharmacology, 76(3), 588–595. https://doi.org/10.1124/mol.109.057430.PubMedCrossRef Tuller, E. R., Beavers, C. T., Lou, J. R., Ihnat, M. A., Benbrook, D. M., & Ding, W. Q. (2009). Docosahexaenoic acid inhibits superoxide dismutase 1 gene transcription in human cancer cells: The involvement of peroxisome proliferator-activated receptor alpha and hypoxia-inducible factor-2 alpha signalling. Molecular Pharmacology, 76(3), 588–595. https://​doi.​org/​10.​1124/​mol.​109.​057430.PubMedCrossRef
go back to reference Tyagi, E., Zhuang, Y., Agrawal, R., Ying, Z., & Gomez-Pinilla, F. (2015). Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiology of Disease, 73, 307–318.PubMedCrossRef Tyagi, E., Zhuang, Y., Agrawal, R., Ying, Z., & Gomez-Pinilla, F. (2015). Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiology of Disease, 73, 307–318.PubMedCrossRef
go back to reference Virgili, N., Espinosa-Parrilla, J. F., Mancera, P., Pastén-Zamorano, A., Gimeno-Bayon, J., Rodríguez, M. J., et al. (2011). Oral administration of the kATP channel opener diazoxide ameliorates disease progression in a murine model of multiple sclerosis. Journal of Neuroscience, 8, 149. https://doi.org/10.1186/1742-2094-8-149.CrossRef Virgili, N., Espinosa-Parrilla, J. F., Mancera, P., Pastén-Zamorano, A., Gimeno-Bayon, J., Rodríguez, M. J., et al. (2011). Oral administration of the kATP channel opener diazoxide ameliorates disease progression in a murine model of multiple sclerosis. Journal of Neuroscience, 8, 149. https://​doi.​org/​10.​1186/​1742-2094-8-149.CrossRef
go back to reference Williams, C. M., & Burdge, G. (2006). Long-chain n-3 PUFA: Plant v. marine sources. Proceedings of the Nutrition Society, 65(1), 42–50.CrossRef Williams, C. M., & Burdge, G. (2006). Long-chain n-3 PUFA: Plant v. marine sources. Proceedings of the Nutrition Society, 65(1), 42–50.CrossRef
go back to reference Yan, S. D., Stern, D., Kane, M. D., Kuo, Y. M., Lampert, H. C., & Roher, A. E. (1998). RAGE-abeta interactions in the pathophysiology of Alzheimer’s disease. Restorative Neurology and Neuroscience, 12(2–3), 167–173.PubMed Yan, S. D., Stern, D., Kane, M. D., Kuo, Y. M., Lampert, H. C., & Roher, A. E. (1998). RAGE-abeta interactions in the pathophysiology of Alzheimer’s disease. Restorative Neurology and Neuroscience, 12(2–3), 167–173.PubMed
Metadata
Title
Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA
Authors
María Belén Ruiz-Roso
Elena Olivares-Álvaro
José Carlos Quintela
Sandra Ballesteros
Juan F. Espinosa-Parrilla
Baltasar Ruiz-Roso
Vicente Lahera
Natalia de las Heras
Beatriz Martín-Fernández
Publication date
01-09-2018
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 3/2018
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8496-8

Other articles of this Issue 3/2018

NeuroMolecular Medicine 3/2018 Go to the issue