Skip to main content
Top
Published in: Current Allergy and Asthma Reports 8/2016

01-08-2016 | Otitis (D Skoner, Section Editor)

Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation

Authors: Shigeharu Ueki, Takahiro Tokunaga, Shigeharu Fujieda, Kohei Honda, Makoto Hirokawa, Lisa A. Spencer, Peter F. Weller

Published in: Current Allergy and Asthma Reports | Issue 8/2016

Login to get access

Abstract

The traditional paradigm of eosinophils as end-stage damaging cells has mainly relied on their release of cytotoxic proteins. Cytokine-induced cell survival and secretion of granular contents from tissue-dwelling eosinophil are thought to be important mechanisms for eosinophilic inflammatory disorders, although the occurrence of cytolysis and its products (i.e., free extracellular granules) has been observed in affected lesions. Recent evidence indicates that activated eosinophils can exhibit a non-apoptotic cell death pathway, namely extracellular trap cell death (ETosis) that mediates the eosinophil cytolytic degranulation. Here, we discuss the current concept of eosinophil ETosis which provides a new look at eosinophilic inflammation. Lessons from eosinophilic chronic rhinosinusitis revealed that ETosis-derived DNA traps, composed of stable web-like chromatin, contribute to the properties of highly viscous eosinophilic mucin and impairments in its clearance. Intact granules entrapped in DNA traps are causing long-lasting inflammation but also might have immunoregulatory roles. Eosinophils possess a way to have post-postmortem impacts on innate immunity, local immune response, sterile inflammation, and tissue damage.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moqbel RLP, Adamko DJ, Odemuyiwa SO. Biology of Eosinophils. 7th ed. Philadelphia: Elsevier Science; 2009. Moqbel RLP, Adamko DJ, Odemuyiwa SO. Biology of Eosinophils. 7th ed. Philadelphia: Elsevier Science; 2009.
2.••
go back to reference Ueki S, Melo RC, Ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121:2074–83. First report showing EETosis-mediates cytolysis and production of intact free granules.CrossRefPubMedPubMedCentral Ueki S, Melo RC, Ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121:2074–83. First report showing EETosis-mediates cytolysis and production of intact free granules.CrossRefPubMedPubMedCentral
4.•
go back to reference Spencer LA, Bonjour K, Melo RC, Weller PF. Eosinophil secretion of granule-derived cytokines. Front Immunol. 2014;5:496. Up-to-date review of mechanisms of eosinophil secretory functions.CrossRefPubMedPubMedCentral Spencer LA, Bonjour K, Melo RC, Weller PF. Eosinophil secretion of granule-derived cytokines. Front Immunol. 2014;5:496. Up-to-date review of mechanisms of eosinophil secretory functions.CrossRefPubMedPubMedCentral
5.
go back to reference Melo RC, Liu L, Xenakis JJ, Spencer LA. Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy. 2013;68:274–84.CrossRefPubMedPubMedCentral Melo RC, Liu L, Xenakis JJ, Spencer LA. Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy. 2013;68:274–84.CrossRefPubMedPubMedCentral
6.••
go back to reference Persson C, Uller L. Theirs but to die and do: primary lysis of eosinophils and free eosinophil granules in asthma. Am J Respr Crit Care Med. 2014;189:628–33. Up-to-date review for current knowledge for eosinophil lysis and free eosinophil granules.CrossRef Persson C, Uller L. Theirs but to die and do: primary lysis of eosinophils and free eosinophil granules in asthma. Am J Respr Crit Care Med. 2014;189:628–33. Up-to-date review for current knowledge for eosinophil lysis and free eosinophil granules.CrossRef
7.
go back to reference Saffari H, Hoffman LH, Peterson KA, Fang JC, Leiferman KM, Pease 3rd LF, et al. Electron microscopy elucidates eosinophil degranulation patterns in patients with eosinophilic esophagitis. J Allergy Clin Immunol. 2014;133:1728–34. e1721.CrossRefPubMed Saffari H, Hoffman LH, Peterson KA, Fang JC, Leiferman KM, Pease 3rd LF, et al. Electron microscopy elucidates eosinophil degranulation patterns in patients with eosinophilic esophagitis. J Allergy Clin Immunol. 2014;133:1728–34. e1721.CrossRefPubMed
8.
go back to reference Persson CG, Erjefalt JS. Eosinophil lysis and free granules: an in vivo paradigm for cell activation and drug development. Trends Pharmacol Sci. 1997;18:117–23.CrossRefPubMed Persson CG, Erjefalt JS. Eosinophil lysis and free granules: an in vivo paradigm for cell activation and drug development. Trends Pharmacol Sci. 1997;18:117–23.CrossRefPubMed
9.
go back to reference Erjefalt JS, Greiff L, Andersson M, Matsson E, Petersen H, Linden M, et al. Allergen-induced eosinophil cytolysis is a primary mechanism for granule protein release in human upper airways. Am J Respr Crit Care Med. 1999;160:304–12.CrossRef Erjefalt JS, Greiff L, Andersson M, Matsson E, Petersen H, Linden M, et al. Allergen-induced eosinophil cytolysis is a primary mechanism for granule protein release in human upper airways. Am J Respr Crit Care Med. 1999;160:304–12.CrossRef
10.
go back to reference Persson CG, Erjefalt JS. “Ultimate activation” of eosinophils in vivo: lysis and release of clusters of free eosinophil granules (Cfegs). Thorax. 1997;52:569–74.CrossRefPubMedPubMedCentral Persson CG, Erjefalt JS. “Ultimate activation” of eosinophils in vivo: lysis and release of clusters of free eosinophil granules (Cfegs). Thorax. 1997;52:569–74.CrossRefPubMedPubMedCentral
13.
go back to reference Akdis CA, Bachert C, Cingi C, Dykewicz MS, Hellings PW, Naclerio RM, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2013;131:1479–90.CrossRefPubMedPubMedCentral Akdis CA, Bachert C, Cingi C, Dykewicz MS, Hellings PW, Naclerio RM, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2013;131:1479–90.CrossRefPubMedPubMedCentral
14.
go back to reference Takabayashi T, Kato A, Peters AT, Suh LA, Carter R, Norton J, et al. Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2012;130:410–20. e415.CrossRefPubMedPubMedCentral Takabayashi T, Kato A, Peters AT, Suh LA, Carter R, Norton J, et al. Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2012;130:410–20. e415.CrossRefPubMedPubMedCentral
15.
go back to reference Nakayama T, Yoshikawa M, Asaka D, Okushi T, Matsuwaki Y, Otori N, et al. Mucosal eosinophilia and recurrence of nasal polyps - new classification of chronic rhinosinusitis. Rhinology. 2011;49:392–6.PubMed Nakayama T, Yoshikawa M, Asaka D, Okushi T, Matsuwaki Y, Otori N, et al. Mucosal eosinophilia and recurrence of nasal polyps - new classification of chronic rhinosinusitis. Rhinology. 2011;49:392–6.PubMed
16.
go back to reference Soler ZM, Sauer D, Mace J, Smith TL. Impact of mucosal eosinophilia and nasal polyposis on quality-of-life outcomes after sinus surgery. Otolaryngol Head Neck Surg. 2010;142:64–71.CrossRefPubMed Soler ZM, Sauer D, Mace J, Smith TL. Impact of mucosal eosinophilia and nasal polyposis on quality-of-life outcomes after sinus surgery. Otolaryngol Head Neck Surg. 2010;142:64–71.CrossRefPubMed
17.
go back to reference Nakayama T, Asaka D, Yoshikawa M, Okushi T, Matsuwaki Y, Moriyama H, et al. Identification of chronic rhinosinusitis phenotypes using cluster analysis. Am J Rhinol Allergy. 2012;26:172–6.PubMed Nakayama T, Asaka D, Yoshikawa M, Okushi T, Matsuwaki Y, Moriyama H, et al. Identification of chronic rhinosinusitis phenotypes using cluster analysis. Am J Rhinol Allergy. 2012;26:172–6.PubMed
18.
go back to reference Saito H, Honda K, Asaka C, Ueki S, Ishikawa K. Eosinophil chemotaxis assay in nasal polyps by using a novel optical device EZ-TAXIScan: Role of CC-chemokine receptor 3. Allergol Int. 2016. in press. Saito H, Honda K, Asaka C, Ueki S, Ishikawa K. Eosinophil chemotaxis assay in nasal polyps by using a novel optical device EZ-TAXIScan: Role of CC-chemokine receptor 3. Allergol Int. 2016. in press.
19.
go back to reference Armengot M, Garin L, Carda C. Eosinophil degranulation patterns in nasal polyposis: an ultrastructural study. Am J Rhinol Allergy. 2009;23:466–70.CrossRefPubMed Armengot M, Garin L, Carda C. Eosinophil degranulation patterns in nasal polyposis: an ultrastructural study. Am J Rhinol Allergy. 2009;23:466–70.CrossRefPubMed
20.••
go back to reference Tokunaga T, Sakashita M, Haruna T, Asaka D, Takeno S, Ikeda H, et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy. 2015;70:995–1003. First large scale epidemiological multi-center retrospective study for eosinophilic rhinosinusitis in Japan.CrossRefPubMed Tokunaga T, Sakashita M, Haruna T, Asaka D, Takeno S, Ikeda H, et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy. 2015;70:995–1003. First large scale epidemiological multi-center retrospective study for eosinophilic rhinosinusitis in Japan.CrossRefPubMed
21.
go back to reference Iino Y, Tomioka-Matsutani S, Matsubara A, Nakagawa T, Nonaka M. Diagnostic criteria of eosinophilic otitis media, a newly recognized middle ear disease. Auris Nasus Larynx. 2011;38:456–61.CrossRefPubMed Iino Y, Tomioka-Matsutani S, Matsubara A, Nakagawa T, Nonaka M. Diagnostic criteria of eosinophilic otitis media, a newly recognized middle ear disease. Auris Nasus Larynx. 2011;38:456–61.CrossRefPubMed
22.
go back to reference Adelson RT, Marple BF. Fungal rhinosinusitis: state-of-the-art diagnosis and treatment. J Otolaryngol. 2005;34 Suppl 1:S18–23.PubMed Adelson RT, Marple BF. Fungal rhinosinusitis: state-of-the-art diagnosis and treatment. J Otolaryngol. 2005;34 Suppl 1:S18–23.PubMed
23.
go back to reference Slavin RG. Sinusitis: viral, bacterial, or fungal and what is the role of Staph? Allergy Asthma Proc. 2006;27:447–50.CrossRefPubMed Slavin RG. Sinusitis: viral, bacterial, or fungal and what is the role of Staph? Allergy Asthma Proc. 2006;27:447–50.CrossRefPubMed
24.
go back to reference de Shazo RD, Swain RE. Diagnostic criteria for allergic fungal sinusitis. J Allergy Clin Immunol. 1995;96:24–35.CrossRef de Shazo RD, Swain RE. Diagnostic criteria for allergic fungal sinusitis. J Allergy Clin Immunol. 1995;96:24–35.CrossRef
25.
go back to reference Collins MM, Nair SB, Der-Haroutian V, Close D, Rees GL, Grove DI, et al. Effect of using multiple culture media for the diagnosis of noninvasive fungal sinusitis. Am J Rhinol. 2005;19:41–5.PubMed Collins MM, Nair SB, Der-Haroutian V, Close D, Rees GL, Grove DI, et al. Effect of using multiple culture media for the diagnosis of noninvasive fungal sinusitis. Am J Rhinol. 2005;19:41–5.PubMed
26.
go back to reference Ferguson BJ. Eosinophilic mucin rhinosinusitis: a distinct clinicopathological entity. Laryngoscope. 2000;110:799–813.CrossRefPubMed Ferguson BJ. Eosinophilic mucin rhinosinusitis: a distinct clinicopathological entity. Laryngoscope. 2000;110:799–813.CrossRefPubMed
27.
go back to reference Healy DY, Leid JG, Sanderson AR, Hunsaker DH. Biofilms with fungi in chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2008;138:641–7.CrossRefPubMed Healy DY, Leid JG, Sanderson AR, Hunsaker DH. Biofilms with fungi in chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2008;138:641–7.CrossRefPubMed
28.
go back to reference Ponikau JU, Sherris DA, Kephart GM, Kern EB, Congdon DJ, Adolphson CR, et al. Striking deposition of toxic eosinophil major basic protein in mucus: implications for chronic rhinosinusitis. J Allergy Clin Immunol. 2005;116:362–9.CrossRefPubMed Ponikau JU, Sherris DA, Kephart GM, Kern EB, Congdon DJ, Adolphson CR, et al. Striking deposition of toxic eosinophil major basic protein in mucus: implications for chronic rhinosinusitis. J Allergy Clin Immunol. 2005;116:362–9.CrossRefPubMed
29.
go back to reference Harlin SL, Ansel DG, Lane SR, Myers J, Kephart GM, Gleich GJ. A clinical and pathologic study of chronic sinusitis: the role of the eosinophil. J Allergy Clin Immunol. 1988;81:867–75.CrossRefPubMed Harlin SL, Ansel DG, Lane SR, Myers J, Kephart GM, Gleich GJ. A clinical and pathologic study of chronic sinusitis: the role of the eosinophil. J Allergy Clin Immunol. 1988;81:867–75.CrossRefPubMed
30.
go back to reference Hamilos DL. Host-microbial interactions in patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2014;133:640–53. e644.CrossRefPubMed Hamilos DL. Host-microbial interactions in patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2014;133:640–53. e644.CrossRefPubMed
31.
go back to reference Burgel PR, Lazarus SC, Tam DC, Ueki IF, Atabai K, Birch M, et al. Human eosinophils induce mucin production in airway epithelial cells via epidermal growth factor receptor activation. J Immunol. 2001;167:5948–54.CrossRefPubMed Burgel PR, Lazarus SC, Tam DC, Ueki IF, Atabai K, Birch M, et al. Human eosinophils induce mucin production in airway epithelial cells via epidermal growth factor receptor activation. J Immunol. 2001;167:5948–54.CrossRefPubMed
33.
go back to reference Braun H, Buzina W, Freudenschuss K, Beham A, Stammberger H. ‘Eosinophilic fungal rhinosinusitis’: a common disorder in Europe? Laryngoscope. 2003;113:264–9.CrossRefPubMed Braun H, Buzina W, Freudenschuss K, Beham A, Stammberger H. ‘Eosinophilic fungal rhinosinusitis’: a common disorder in Europe? Laryngoscope. 2003;113:264–9.CrossRefPubMed
34.
go back to reference Watanabe K, Misu T, Ohde S, Edamatsu H. Characteristics of eosinophils migrating around fungal hyphae in nasal discharge. Ann Otol Rhinol Laryngol. 2004;113:200–4.CrossRefPubMed Watanabe K, Misu T, Ohde S, Edamatsu H. Characteristics of eosinophils migrating around fungal hyphae in nasal discharge. Ann Otol Rhinol Laryngol. 2004;113:200–4.CrossRefPubMed
35.
go back to reference Granville L, Chirala M, Cernoch P, Ostrowski M, Truong LD. Fungal sinusitis: histologic spectrum and correlation with culture. Hum Pathol. 2004;35:474–81.CrossRefPubMed Granville L, Chirala M, Cernoch P, Ostrowski M, Truong LD. Fungal sinusitis: histologic spectrum and correlation with culture. Hum Pathol. 2004;35:474–81.CrossRefPubMed
36.
go back to reference Schubert MS, Goetz DW. Evaluation and treatment of allergic fungal sinusitis. I. Demographics and diagnosis. J Allergy Clin Immunol. 1998;102:387–94.CrossRefPubMed Schubert MS, Goetz DW. Evaluation and treatment of allergic fungal sinusitis. I. Demographics and diagnosis. J Allergy Clin Immunol. 1998;102:387–94.CrossRefPubMed
37.••
go back to reference Ueki S, Konno Y, Takeda M, Moritoki Y, Hirokawa M, Matsuwaki Y, et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes. J Allergy Clin Immunol. 2016;137:258–67. Demonstration of clinical and experimental properties of eosinophil DNA traps.CrossRefPubMed Ueki S, Konno Y, Takeda M, Moritoki Y, Hirokawa M, Matsuwaki Y, et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes. J Allergy Clin Immunol. 2016;137:258–67. Demonstration of clinical and experimental properties of eosinophil DNA traps.CrossRefPubMed
38.
go back to reference Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–41.CrossRefPubMedPubMedCentral Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–41.CrossRefPubMedPubMedCentral
39.
go back to reference Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007;5:577–82.CrossRefPubMed Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007;5:577–82.CrossRefPubMed
40.
go back to reference Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. Semin Immunol. 2015;27:200–15.CrossRefPubMedPubMedCentral Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. Semin Immunol. 2015;27:200–15.CrossRefPubMedPubMedCentral
41.
go back to reference Weiler CR, Kita H, Hukee M, Gleich GJ. Eosinophil viability during immunoglobulin-induced degranulation. J Leukoc Biol. 1996;60:493–501.PubMed Weiler CR, Kita H, Hukee M, Gleich GJ. Eosinophil viability during immunoglobulin-induced degranulation. J Leukoc Biol. 1996;60:493–501.PubMed
42.
go back to reference Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 2011;343:57–83.CrossRefPubMed Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 2011;343:57–83.CrossRefPubMed
43.
go back to reference Ueki S, Nishikawa J, Yamauchi Y, Konno Y, Tamaki M, Itoga M, et al. Retinoic acids up-regulate functional eosinophil-driving receptor CCR3. Allergy. 2013;68:953–6.CrossRefPubMed Ueki S, Nishikawa J, Yamauchi Y, Konno Y, Tamaki M, Itoga M, et al. Retinoic acids up-regulate functional eosinophil-driving receptor CCR3. Allergy. 2013;68:953–6.CrossRefPubMed
44.
go back to reference Kobayashi T, Kouzaki H, Kita H. Human eosinophils recognize endogenous danger signal crystalline uric acid and produce proinflammatory cytokines mediated by autocrine ATP. J Immunol. 2010;184:6350–8.CrossRefPubMedPubMedCentral Kobayashi T, Kouzaki H, Kita H. Human eosinophils recognize endogenous danger signal crystalline uric acid and produce proinflammatory cytokines mediated by autocrine ATP. J Immunol. 2010;184:6350–8.CrossRefPubMedPubMedCentral
45.
go back to reference Schorn C, Janko C, Latzko M, Chaurio R, Schett G, Herrmann M. Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Front Immunol. 2012;3:277.PubMedPubMedCentral Schorn C, Janko C, Latzko M, Chaurio R, Schett G, Herrmann M. Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Front Immunol. 2012;3:277.PubMedPubMedCentral
46.
go back to reference Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184:205–13.CrossRefPubMedPubMedCentral Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184:205–13.CrossRefPubMedPubMedCentral
47.
go back to reference Fukuda T, Ackerman SJ, Reed CE, Peters MS, Dunnette SL, Gleich GJ. Calcium ionophore A23187 calcium-dependent cytolytic degranulation in human eosinophils. J Immunol. 1985;135:1349–56.PubMed Fukuda T, Ackerman SJ, Reed CE, Peters MS, Dunnette SL, Gleich GJ. Calcium ionophore A23187 calcium-dependent cytolytic degranulation in human eosinophils. J Immunol. 1985;135:1349–56.PubMed
48.•
go back to reference Neves JS, Perez SA, Spencer LA, Melo RC, Reynolds L, Ghiran I, et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc Natl Acad Sci U S A. 2008;105:18478–83. First describe the cell-free eosinophil granules posses independent secretory functions.CrossRefPubMedPubMedCentral Neves JS, Perez SA, Spencer LA, Melo RC, Reynolds L, Ghiran I, et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc Natl Acad Sci U S A. 2008;105:18478–83. First describe the cell-free eosinophil granules posses independent secretory functions.CrossRefPubMedPubMedCentral
49.
go back to reference Muniz-Junqueira MI, Barbosa-Marques SM, Junqueira Jr LF. Morphological changes in eosinophils are reliable markers of the severity of an acute asthma exacerbation in children. Allergy. 2013;68:911–20.CrossRefPubMed Muniz-Junqueira MI, Barbosa-Marques SM, Junqueira Jr LF. Morphological changes in eosinophils are reliable markers of the severity of an acute asthma exacerbation in children. Allergy. 2013;68:911–20.CrossRefPubMed
50.
go back to reference Kano G, Almanan M, Bochner BS, Zimmermann N. Mechanism of Siglec-8-mediated cell death in IL-5-activated eosinophils: role for reactive oxygen species-enhanced MEK/ERK activation. J Allergy Clin Immunol. 2013;132:437–45.CrossRefPubMedPubMedCentral Kano G, Almanan M, Bochner BS, Zimmermann N. Mechanism of Siglec-8-mediated cell death in IL-5-activated eosinophils: role for reactive oxygen species-enhanced MEK/ERK activation. J Allergy Clin Immunol. 2013;132:437–45.CrossRefPubMedPubMedCentral
51.
go back to reference Prince LR, Graham KJ, Connolly J, Anwar S, Ridley R, Sabroe I, et al. Staphylococcus aureus induces eosinophil cell death mediated by alpha-hemolysin. PLoS One. 2012;7:e31506.CrossRefPubMedPubMedCentral Prince LR, Graham KJ, Connolly J, Anwar S, Ridley R, Sabroe I, et al. Staphylococcus aureus induces eosinophil cell death mediated by alpha-hemolysin. PLoS One. 2012;7:e31506.CrossRefPubMedPubMedCentral
52.
go back to reference Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15:1017–25.CrossRefPubMedPubMedCentral Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15:1017–25.CrossRefPubMedPubMedCentral
53.
go back to reference Malm-Erjefalt M, Greiff L, Ankerst J, Andersson M, Wallengren J, Cardell LO, et al. Circulating eosinophils in asthma, allergic rhinitis, and atopic dermatitis lack morphological signs of degranulation. Clin Exp Allergy. 2005;35:1334–40.CrossRefPubMed Malm-Erjefalt M, Greiff L, Ankerst J, Andersson M, Wallengren J, Cardell LO, et al. Circulating eosinophils in asthma, allergic rhinitis, and atopic dermatitis lack morphological signs of degranulation. Clin Exp Allergy. 2005;35:1334–40.CrossRefPubMed
54.
go back to reference Nadeem A, Siddiqui N, Alharbi NO, Alharbi MM. Airway and systemic oxidant-antioxidant dysregulation in asthma: a possible scenario of oxidants spill over from lung into blood. Pulm Pharmacol Ther. 2014;29:31–40.CrossRefPubMed Nadeem A, Siddiqui N, Alharbi NO, Alharbi MM. Airway and systemic oxidant-antioxidant dysregulation in asthma: a possible scenario of oxidants spill over from lung into blood. Pulm Pharmacol Ther. 2014;29:31–40.CrossRefPubMed
55.
go back to reference Ito W, Kobayashi N, Takeda M, Ueki S, Kayaba H, Nakamura H, et al. Thioredoxin in allergic inflammation. Int Arch Allergy Immunol. 2011;155 Suppl 1:142–6.CrossRefPubMed Ito W, Kobayashi N, Takeda M, Ueki S, Kayaba H, Nakamura H, et al. Thioredoxin in allergic inflammation. Int Arch Allergy Immunol. 2011;155 Suppl 1:142–6.CrossRefPubMed
57.
go back to reference Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.CrossRefPubMed Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.CrossRefPubMed
58.
go back to reference Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8:668–76.CrossRefPubMed Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8:668–76.CrossRefPubMed
59.
go back to reference Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12:109–16.CrossRefPubMed Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12:109–16.CrossRefPubMed
60.
go back to reference Robb CT, Dyrynda EA, Gray RD, Rossi AG, Smith VJ. Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon. Nat Commun. 2014;5:4627.CrossRefPubMedPubMedCentral Robb CT, Dyrynda EA, Gray RD, Rossi AG, Smith VJ. Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon. Nat Commun. 2014;5:4627.CrossRefPubMedPubMedCentral
61.
go back to reference Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14:949–53.CrossRefPubMed Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14:949–53.CrossRefPubMed
62.
go back to reference Morshed M, Yousefi S, Stockle C, Simon HU, Simon D. Thymic stromal lymphopoietin stimulates the formation of eosinophil extracellular traps. Allergy. 2012;67:1127–37.CrossRefPubMed Morshed M, Yousefi S, Stockle C, Simon HU, Simon D. Thymic stromal lymphopoietin stimulates the formation of eosinophil extracellular traps. Allergy. 2012;67:1127–37.CrossRefPubMed
63.
go back to reference Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden Berghe T. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 2011;18:581–8.CrossRefPubMedPubMedCentral Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden Berghe T. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 2011;18:581–8.CrossRefPubMedPubMedCentral
64.
go back to reference Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18:1386–93.CrossRefPubMedPubMedCentral Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18:1386–93.CrossRefPubMedPubMedCentral
65.
go back to reference Brehmer-Andersson E, Kaaman T, Skog E, Frithz A. The histopathogenesis of the flame figure in Wells’ syndrome based on five cases. Acta Derm Venereol. 1986;66:213–9.PubMed Brehmer-Andersson E, Kaaman T, Skog E, Frithz A. The histopathogenesis of the flame figure in Wells’ syndrome based on five cases. Acta Derm Venereol. 1986;66:213–9.PubMed
66.
go back to reference Wouters J, Waelkens E, Vandoninck S, Segaert S, van den Oord JJ. Mass Spectrometry of Flame Figures. Acta Derm Venereol. 2015;95:734–5. Wouters J, Waelkens E, Vandoninck S, Segaert S, van den Oord JJ. Mass Spectrometry of Flame Figures. Acta Derm Venereol. 2015;95:734–5.
67.
go back to reference Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21.CrossRefPubMedPubMedCentral Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21.CrossRefPubMedPubMedCentral
68.
go back to reference Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012;7:e32366.CrossRefPubMedPubMedCentral Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012;7:e32366.CrossRefPubMedPubMedCentral
69.
go back to reference Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med. 2011;17:996–1002.CrossRefPubMed Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med. 2011;17:996–1002.CrossRefPubMed
70.
go back to reference McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12:324–33.CrossRefPubMed McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12:324–33.CrossRefPubMed
71.
go back to reference Oehmcke S, Morgelin M, Herwald H. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun. 2009;1:225–30.CrossRefPubMed Oehmcke S, Morgelin M, Herwald H. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun. 2009;1:225–30.CrossRefPubMed
72.
go back to reference Wartha F, Beiter K, Normark S, Henriques-Normark B. Neutrophil extracellular traps: casting the NET over pathogenesis. Curr Opin Microbiol. 2007;10:52–6.CrossRefPubMed Wartha F, Beiter K, Normark S, Henriques-Normark B. Neutrophil extracellular traps: casting the NET over pathogenesis. Curr Opin Microbiol. 2007;10:52–6.CrossRefPubMed
73.
go back to reference Doyle RJ. Contribution of the hydrophobic effect to microbial infection. Microbes Infect. 2000;2:391–400.CrossRefPubMed Doyle RJ. Contribution of the hydrophobic effect to microbial infection. Microbes Infect. 2000;2:391–400.CrossRefPubMed
74.
go back to reference Arazna M, Pruchniak MP, Demkow U. Neutrophil extracellular traps in bacterial infections: strategies for escaping from killing. Resp Physiol Neurobiol. 2013;187:74–7.CrossRef Arazna M, Pruchniak MP, Demkow U. Neutrophil extracellular traps in bacterial infections: strategies for escaping from killing. Resp Physiol Neurobiol. 2013;187:74–7.CrossRef
75.
go back to reference Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191:677–91.CrossRefPubMedPubMedCentral Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191:677–91.CrossRefPubMedPubMedCentral
76.
go back to reference Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014;8:883–96.CrossRefPubMedPubMedCentral Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014;8:883–96.CrossRefPubMedPubMedCentral
77.
go back to reference Muniz VS, Baptista-Dos-Reis R, Neves JS. Functional extracellular eosinophil granules: a bomb caught in a trap. Int Arch Allergy Immunol. 2013;162:276–82.CrossRefPubMed Muniz VS, Baptista-Dos-Reis R, Neves JS. Functional extracellular eosinophil granules: a bomb caught in a trap. Int Arch Allergy Immunol. 2013;162:276–82.CrossRefPubMed
78.
go back to reference Neves JS, Radke AL, Weller PF. Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. J Allergy Clin Immunol. 2010;125:477–82.CrossRefPubMedPubMedCentral Neves JS, Radke AL, Weller PF. Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. J Allergy Clin Immunol. 2010;125:477–82.CrossRefPubMedPubMedCentral
79.
go back to reference Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009;5:e1000639.CrossRefPubMedPubMedCentral Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009;5:e1000639.CrossRefPubMedPubMedCentral
80.
81.
go back to reference Papayannopoulos V, Staab D, Zychlinsky A. Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS One. 2011;6:e28526.CrossRefPubMedPubMedCentral Papayannopoulos V, Staab D, Zychlinsky A. Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS One. 2011;6:e28526.CrossRefPubMedPubMedCentral
83.
go back to reference Rosenberg HF, Foster PS. Reply to eosinophil cytolysis and release of cell-free granules. Nat Rev Immunol. 2013;13:902.CrossRefPubMed Rosenberg HF, Foster PS. Reply to eosinophil cytolysis and release of cell-free granules. Nat Rev Immunol. 2013;13:902.CrossRefPubMed
84.
go back to reference Persson C, Uller L. Primary lysis of eosinophils as a major mode of activation of eosinophils in human diseased tissues. Nat Rev Immunol. 2013;13:902.CrossRefPubMed Persson C, Uller L. Primary lysis of eosinophils as a major mode of activation of eosinophils in human diseased tissues. Nat Rev Immunol. 2013;13:902.CrossRefPubMed
Metadata
Title
Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation
Authors
Shigeharu Ueki
Takahiro Tokunaga
Shigeharu Fujieda
Kohei Honda
Makoto Hirokawa
Lisa A. Spencer
Peter F. Weller
Publication date
01-08-2016
Publisher
Springer US
Published in
Current Allergy and Asthma Reports / Issue 8/2016
Print ISSN: 1529-7322
Electronic ISSN: 1534-6315
DOI
https://doi.org/10.1007/s11882-016-0634-5

Other articles of this Issue 8/2016

Current Allergy and Asthma Reports 8/2016 Go to the issue

Asthma (WJ Calhoun and V Ortega, Section Editors)

New Insights Into the Relationship Between Chitinase-3-Like-1 and Asthma

Immunologic/Diagnostic Tests in Allergy (M Chapman and A Pomés, Section Editors)

Pros and Cons of Clinical Basophil Testing (BAT)

Rhinitis (JJ Oppenheimer and J Corren, Section Editors)

Capsaicin for Rhinitis

Asthma (WJ Calhoun and V Ortega, Section Editors)

Airway Microbiota and the Implications of Dysbiosis in Asthma