Skip to main content
Top
Published in: Journal of Clinical Immunology 8/2022

28-07-2022 | Primary Immunodeficiency | Original Article

TREC/KREC Newborn Screening followed by Next-Generation Sequencing for Severe Combined Immunodeficiency in Japan

Authors: Manabu Wakamatsu, Daiei Kojima, Hideki Muramatsu, Yusuke Okuno, Shinsuke Kataoka, Fumiko Nakamura, Yoshimi Sakai, Ikuya Tsuge, Tsuyoshi Ito, Kazuto Ueda, Akiko Saito, Eiji Morihana, Yasuhiko Ito, Naoki Ohashi, Makito Tanaka, Taihei Tanaka, Seiji Kojima, Yoko Nakajima, Tetsuya Ito, Yoshiyuki Takahashi

Published in: Journal of Clinical Immunology | Issue 8/2022

Login to get access

Abstract

Purpose

The aim of this study is to evaluate the usefulness of T cell receptor excision circle (TREC) and/or kappa-deleting recombination excision circle (KREC) measurements integrated with diagnostic next-generation sequencing (NGS) analysis using a severe combined immunodeficiency (SCID) newborn screening (NBS) program.

Methods

TREC and/or KREC values were measured in 137,484 newborns between April 2017 and December 2021 using EnLite TREC (n = 80,791) or TREC/KREC kits (n = 56,693). For newborns with positive screening results, diagnostic NGS analysis was performed with a 349-gene panel to detect genetic mutations associated with primary immunodeficiencies (PIDs).

Results

A total of 145 newborns (0.11%) had abnormal TREC and/or KREC values, and a genetic diagnosis was established in 2 patients with SCID (1 in 68,742 newborns) (IL2RG-SCID and reticular dysgenesis) and 10 with non-SCID PIDs with T and/or B cell deficiencies (1 in 13,748 newborns) using NGS analysis. Furthermore, TREC values of 2849 newborns were measured and confirmed the significant correlation between the results of both TREC and TREC/KREC kits (P < 0.001) and naïve T cell counts.

Conclusions

We performed the first large-scale TREC and TREC/KREC NBS programs in Japan. Our NBS programs followed by the diagnostic NGS analysis for newborns with abnormal TREC and/or KREC values are useful for the early identification and rapid molecular evaluation of not only SCID but also different non-SCID PIDs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Heimall J. Severe combined immunodeficiency (SCID): an overview. UpToDate, Post TW (Ed), UpToDate, Waltham, MA.(Accessed on December 12, 2019.) Heimall J. Severe combined immunodeficiency (SCID): an overview. UpToDate, Post TW (Ed), UpToDate, Waltham, MA.(Accessed on December 12, 2019.)
3.
go back to reference Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312:729–38.CrossRefPubMedPubMedCentral Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312:729–38.CrossRefPubMedPubMedCentral
4.
go back to reference Chan SB, Zhong Y, Lim SCJ, Poh S, Teh KL, Soh JY, et al. Implementation of universal newborn screening for severe combined immunodeficiency in Singapore while continuing routine Bacille-Calmette-Guerin Vaccination given at birth. Front Immunol. 2021;12:794221.CrossRefPubMed Chan SB, Zhong Y, Lim SCJ, Poh S, Teh KL, Soh JY, et al. Implementation of universal newborn screening for severe combined immunodeficiency in Singapore while continuing routine Bacille-Calmette-Guerin Vaccination given at birth. Front Immunol. 2021;12:794221.CrossRefPubMed
5.
go back to reference Barbaro M, Ohlsson A, Borte S, Jonsson S, Zetterstrom RH, King J, et al. Newborn screening for severe primary immunodeficiency diseases in Sweden-a 2-year pilot TREC and KREC screening study. J Clin Immunol. 2017;37:51–60.CrossRefPubMed Barbaro M, Ohlsson A, Borte S, Jonsson S, Zetterstrom RH, King J, et al. Newborn screening for severe primary immunodeficiency diseases in Sweden-a 2-year pilot TREC and KREC screening study. J Clin Immunol. 2017;37:51–60.CrossRefPubMed
7.
go back to reference Strand J, Gul KA, Erichsen HC, Lundman E, Berge MC, Tromborg AK, et al. Second-tier next generation sequencing integrated in nationwide newborn screening provides rapid molecular diagnostics of severe combined immunodeficiency. Front Immunol. 2020;11:1417.CrossRefPubMedPubMedCentral Strand J, Gul KA, Erichsen HC, Lundman E, Berge MC, Tromborg AK, et al. Second-tier next generation sequencing integrated in nationwide newborn screening provides rapid molecular diagnostics of severe combined immunodeficiency. Front Immunol. 2020;11:1417.CrossRefPubMedPubMedCentral
8.
go back to reference Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40:24–64.CrossRefPubMedPubMedCentral Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40:24–64.CrossRefPubMedPubMedCentral
9.
go back to reference Markert ML, Gupton SE, McCarthy EA. Experience with cultured thymus tissue in 105 children. J Allergy Clin Immunol. 2022;149:747–57.CrossRefPubMed Markert ML, Gupton SE, McCarthy EA. Experience with cultured thymus tissue in 105 children. J Allergy Clin Immunol. 2022;149:747–57.CrossRefPubMed
10.
go back to reference Blom M, Zetterstrom RH, Stray-Pedersen A, Gilmour K, Gennery AR, Puck JM, et al. Recommendations for uniform definitions used in newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol. 2022;149:1428–36.CrossRefPubMed Blom M, Zetterstrom RH, Stray-Pedersen A, Gilmour K, Gennery AR, Puck JM, et al. Recommendations for uniform definitions used in newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol. 2022;149:1428–36.CrossRefPubMed
11.
go back to reference Kojima D, Wang X, Muramatsu H, Okuno Y, Nishio N, Hama A, et al. Application of extensively targeted next-generation sequencing for the diagnosis of primary immunodeficiencies. J Allergy Clin Immunol. 2016;138:303-5.e3.CrossRefPubMed Kojima D, Wang X, Muramatsu H, Okuno Y, Nishio N, Hama A, et al. Application of extensively targeted next-generation sequencing for the diagnosis of primary immunodeficiencies. J Allergy Clin Immunol. 2016;138:303-5.e3.CrossRefPubMed
13.
go back to reference Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–76.CrossRefPubMedPubMedCentral Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–76.CrossRefPubMedPubMedCentral
14.
go back to reference Muramatsu H, Okuno Y, Yoshida K, Shiraishi Y, Doisaki S, Narita A, et al. Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genet Med. 2017;19:796–802.CrossRefPubMed Muramatsu H, Okuno Y, Yoshida K, Shiraishi Y, Doisaki S, Narita A, et al. Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genet Med. 2017;19:796–802.CrossRefPubMed
15.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral
16.
go back to reference Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefPubMed Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefPubMed
18.
go back to reference Adhikari AN, Gallagher RC, Wang Y, Currier RJ, Amatuni G, Bassaganyas L, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med. 2020;26:1392–7.CrossRefPubMedPubMedCentral Adhikari AN, Gallagher RC, Wang Y, Currier RJ, Amatuni G, Bassaganyas L, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med. 2020;26:1392–7.CrossRefPubMedPubMedCentral
19.
go back to reference Blom M, Bredius RGM, Jansen ME, Weijman G, Kemper EA, Vermont CL, et al. Parents’ perspectives and societal acceptance of implementation of newborn screening for SCID in the Netherlands. J Clin Immunol. 2021;41:99–108.CrossRefPubMed Blom M, Bredius RGM, Jansen ME, Weijman G, Kemper EA, Vermont CL, et al. Parents’ perspectives and societal acceptance of implementation of newborn screening for SCID in the Netherlands. J Clin Immunol. 2021;41:99–108.CrossRefPubMed
20.
go back to reference de Felipe B, Olbrich P, Lucenas JM, Delgado-Pecellin C, Pavon-Delgado A, Marquez J, et al. Prospective neonatal screening for severe T- and B-lymphocyte deficiencies in Seville. Pediatr Allergy Immunol. 2016;27:70–7.CrossRefPubMed de Felipe B, Olbrich P, Lucenas JM, Delgado-Pecellin C, Pavon-Delgado A, Marquez J, et al. Prospective neonatal screening for severe T- and B-lymphocyte deficiencies in Seville. Pediatr Allergy Immunol. 2016;27:70–7.CrossRefPubMed
21.
go back to reference Lougaris V, Soresina A, Baronio M, Montin D, Martino S, Signa S, et al. Long-term follow-up of 168 patients with X-linked agammaglobulinemia reveals increased morbidity and mortality. J Allergy Clin Immunol. 2020;146:429–37.CrossRefPubMed Lougaris V, Soresina A, Baronio M, Montin D, Martino S, Signa S, et al. Long-term follow-up of 168 patients with X-linked agammaglobulinemia reveals increased morbidity and mortality. J Allergy Clin Immunol. 2020;146:429–37.CrossRefPubMed
22.
go back to reference Matamoros Flori N, Mila Llambi J, Espanol Boren T, Raga Borja S, Fontan CG. Primary immunodeficiency syndrome in Spain: first report of the National Registry in Children and Adults. J Clin Immunol. 1997;17:333–9.CrossRefPubMed Matamoros Flori N, Mila Llambi J, Espanol Boren T, Raga Borja S, Fontan CG. Primary immunodeficiency syndrome in Spain: first report of the National Registry in Children and Adults. J Clin Immunol. 1997;17:333–9.CrossRefPubMed
23.
go back to reference Ryser O, Morell A, Hitzig WH. Primary immunodeficiencies in Switzerland: first report of the national registry in adults and children. J Clin Immunol. 1988;8:479–85.CrossRefPubMed Ryser O, Morell A, Hitzig WH. Primary immunodeficiencies in Switzerland: first report of the national registry in adults and children. J Clin Immunol. 1988;8:479–85.CrossRefPubMed
24.
go back to reference Nakagawa N, Imai K, Kanegane H, Sato H, Yamada M, Kondoh K, et al. Quantification of kappa-deleting recombination excision circles in Guthrie cards for the identification of early B-cell maturation defects. J Allergy Clin Immunol. 2011;128:223-5.e2.CrossRefPubMed Nakagawa N, Imai K, Kanegane H, Sato H, Yamada M, Kondoh K, et al. Quantification of kappa-deleting recombination excision circles in Guthrie cards for the identification of early B-cell maturation defects. J Allergy Clin Immunol. 2011;128:223-5.e2.CrossRefPubMed
25.
go back to reference Borte S, von Dobeln U, Fasth A, Wang N, Janzi M, Winiarski J, et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood. 2012;119:2552–5.CrossRefPubMed Borte S, von Dobeln U, Fasth A, Wang N, Janzi M, Winiarski J, et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood. 2012;119:2552–5.CrossRefPubMed
26.
go back to reference Speckmann C, Neumann C, Borte S, la Marca G, Sass JO, Wiech E, et al. Delayed-onset adenosine deaminase deficiency: strategies for an early diagnosis. J Allergy Clin Immunol. 2012;130:991–4.CrossRefPubMed Speckmann C, Neumann C, Borte S, la Marca G, Sass JO, Wiech E, et al. Delayed-onset adenosine deaminase deficiency: strategies for an early diagnosis. J Allergy Clin Immunol. 2012;130:991–4.CrossRefPubMed
27.
go back to reference Sharapova SO, Pashchenko OE, Bondarenko AV, Vakhlyarskaya SS, Prokofjeva T, Fedorova AS, et al. Geographical distribution, incidence, malignancies, and outcome of 136 Eastern Slavic patients with Nijmegen Breakage syndrome and NBN founder variant c.657_661del5. Front Immunol. 2020;11:602482.CrossRefPubMed Sharapova SO, Pashchenko OE, Bondarenko AV, Vakhlyarskaya SS, Prokofjeva T, Fedorova AS, et al. Geographical distribution, incidence, malignancies, and outcome of 136 Eastern Slavic patients with Nijmegen Breakage syndrome and NBN founder variant c.657_661del5. Front Immunol. 2020;11:602482.CrossRefPubMed
29.
go back to reference Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Med (Baltimore). 2006;85:193–202.CrossRef Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Med (Baltimore). 2006;85:193–202.CrossRef
Metadata
Title
TREC/KREC Newborn Screening followed by Next-Generation Sequencing for Severe Combined Immunodeficiency in Japan
Authors
Manabu Wakamatsu
Daiei Kojima
Hideki Muramatsu
Yusuke Okuno
Shinsuke Kataoka
Fumiko Nakamura
Yoshimi Sakai
Ikuya Tsuge
Tsuyoshi Ito
Kazuto Ueda
Akiko Saito
Eiji Morihana
Yasuhiko Ito
Naoki Ohashi
Makito Tanaka
Taihei Tanaka
Seiji Kojima
Yoko Nakajima
Tetsuya Ito
Yoshiyuki Takahashi
Publication date
28-07-2022
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 8/2022
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-022-01335-0

Other articles of this Issue 8/2022

Journal of Clinical Immunology 8/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.