Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2022

14-06-2022 | Non-Thematic Review

Oncogenic functions of the FOXC2 transcription factor: a hallmarks of cancer perspective

Authors: Kristian M. Hargadon, Travis B. Goodloe III, Nathaniel D. Lloyd

Published in: Cancer and Metastasis Reviews | Issue 4/2022

Login to get access

Abstract

Epigenetic regulation of gene expression is a fundamental determinant of molecular and cellular function, and epigenetic reprogramming in the context of cancer has emerged as one of the key enabling characteristics associated with acquisition of the core hallmarks of this disease. As such, there has been renewed interest in studying the role of transcription factors as epigenetic regulators of gene expression in cancer. In this review, we discuss the current state of knowledge surrounding the oncogenic functions of FOXC2, a transcription factor that frequently becomes dysregulated in a variety of cancer types. In addition to highlighting the clinical impact of aberrant FOXC2 activity in cancer, we discuss mechanisms by which this transcription factor becomes dysregulated in both tumor and tumor-associated cells, placing particular emphasis on the ways in which FOXC2 promotes key hallmarks of cancer progression. Finally, we bring attention to important issues related to the oncogenic dysregulation of FOXC2 that must be addressed going forward in order to improve our understanding of FOXC2-mediated cancer progression and to guide prognostic and therapeutic applications of this knowledge in clinical settings.
Literature
2.
go back to reference Xue, Y., Cao, R., Nilsson, D., Chen, S., Westergren, R., Hedlund, E. M., et al. (2008). FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 10167–10172. https://doi.org/10.1073/pnas.0802486105CrossRef Xue, Y., Cao, R., Nilsson, D., Chen, S., Westergren, R., Hedlund, E. M., et al. (2008). FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 10167–10172. https://​doi.​org/​10.​1073/​pnas.​0802486105CrossRef
8.
9.
10.
go back to reference Christofides, A., Papagregoriou, G., Dweep, H., Makrides, N., Gretz, N., Felekkis, K., & Deltas, C. (2020). Evidence for miR-548c-5p regulation of FOXC2 transcription through a distal genomic target site in human podocytes. Cellular and Molecular Life Sciences, 77(12), 2441–2459. https://doi.org/10.1007/S00018-019-03294-ZCrossRef Christofides, A., Papagregoriou, G., Dweep, H., Makrides, N., Gretz, N., Felekkis, K., & Deltas, C. (2020). Evidence for miR-548c-5p regulation of FOXC2 transcription through a distal genomic target site in human podocytes. Cellular and Molecular Life Sciences, 77(12), 2441–2459. https://​doi.​org/​10.​1007/​S00018-019-03294-ZCrossRef
27.
go back to reference Werden, S. J., Sphyris, N., Sarkar, T. R., Paranjape, A. N., LaBaff, A. M., Taube, J. H., et al. (2016). Phosphorylation of serine 367 of FOXC2 by p38 regulates ZEB1 and breast cancer metastasis, without impacting primary tumor growth. Oncogene, 35(46), 5977–5988. https://doi.org/10.1038/onc.2016.203CrossRef Werden, S. J., Sphyris, N., Sarkar, T. R., Paranjape, A. N., LaBaff, A. M., Taube, J. H., et al. (2016). Phosphorylation of serine 367 of FOXC2 by p38 regulates ZEB1 and breast cancer metastasis, without impacting primary tumor growth. Oncogene, 35(46), 5977–5988. https://​doi.​org/​10.​1038/​onc.​2016.​203CrossRef
28.
go back to reference Danciu, T. E., Chupreta, S., Cruz, O., Fox, J. E., Whitman, M., & Iñiguez-Lluhí, J. A. (2012). Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2. The Journal of Biological Chemistry, 287(22), 18318–18329. https://doi.org/10.1074/JBC.M112.339424CrossRef Danciu, T. E., Chupreta, S., Cruz, O., Fox, J. E., Whitman, M., & Iñiguez-Lluhí, J. A. (2012). Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2. The Journal of Biological Chemistry, 287(22), 18318–18329. https://​doi.​org/​10.​1074/​JBC.​M112.​339424CrossRef
30.
31.
33.
go back to reference Li, Y., Yang, W., Yang, Q., & Zhou, S. (2012). Nuclear localization of GLI1 and elevated expression of FOXC2 in breast cancer is associated with the basal-like phenotype. Histology and Histopathology, 27(4), 475–84. https://doi.org/10.14670/HH-27.475 Li, Y., Yang, W., Yang, Q., & Zhou, S. (2012). Nuclear localization of GLI1 and elevated expression of FOXC2 in breast cancer is associated with the basal-like phenotype. Histology and Histopathology, 27(4), 475–84. https://​doi.​org/​10.​14670/​HH-27.​475
34.
go back to reference Li, Q., Wu, J., Wei, P., Xu, Y., Zhuo, C., Wang, Y., et al. (2015). Overexpression of forkhead Box C2 promotes tumor metastasis and indicates poor prognosis in colon cancer via regulating epithelial-mesenchymal transition. American Journal of Cancer Research, 5(6), 2022–34. http://www.ncbi.nlm.nih.gov/pubmed/26269761 Li, Q., Wu, J., Wei, P., Xu, Y., Zhuo, C., Wang, Y., et al. (2015). Overexpression of forkhead Box C2 promotes tumor metastasis and indicates poor prognosis in colon cancer via regulating epithelial-mesenchymal transition. American Journal of Cancer Research, 5(6), 2022–34. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26269761
36.
37.
go back to reference Børretzen, A., Gravdal, K., Haukaas, S. A., Beisland, C., Akslen, L. A., & Halvorsen, O. J. (2019). FOXC2 expression and epithelial–mesenchymal phenotypes are associated with castration resistance, metastasis and survival in prostate cancer. The Journal of Pathology: Clinical Research, 5(4), 272–286. https://doi.org/10.1002/cjp2.142CrossRef Børretzen, A., Gravdal, K., Haukaas, S. A., Beisland, C., Akslen, L. A., & Halvorsen, O. J. (2019). FOXC2 expression and epithelial–mesenchymal phenotypes are associated with castration resistance, metastasis and survival in prostate cancer. The Journal of Pathology: Clinical Research, 5(4), 272–286. https://​doi.​org/​10.​1002/​cjp2.​142CrossRef
43.
go back to reference Hargadon, K. M., Györffy, B., Strong, E. W., Tarnai, B. D., Thompson, J. C., Bushhouse, D. Z., et al. (2019). The FOXC2 transcription factor promotes melanoma outgrowth and regulates expression of genes associated with drug resistance and interferon responsiveness. Cancer Genomics & Proteomics, 16(6), 491–503. https://doi.org/10.21873/cgp.20152 Hargadon, K. M., Györffy, B., Strong, E. W., Tarnai, B. D., Thompson, J. C., Bushhouse, D. Z., et al. (2019). The FOXC2 transcription factor promotes melanoma outgrowth and regulates expression of genes associated with drug resistance and interferon responsiveness. Cancer Genomics & Proteomics, 16(6), 491–503. https://​doi.​org/​10.​21873/​cgp.​20152
45.
49.
50.
go back to reference Shibue, T., & Weinberg, R. A. (2009). Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10290–10295. https://doi.org/10.1073/PNAS.0904227106CrossRef Shibue, T., & Weinberg, R. A. (2009). Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10290–10295. https://​doi.​org/​10.​1073/​PNAS.​0904227106CrossRef
56.
go back to reference Li, C., Ding, H., Tian, J., Wu, L., Wang, Y., Xing, Y., & Chen, M. (2016). Forkhead box protein C2 (FOXC2) promotes the resistance of human ovarian cancer cells to cisplatin in vitro and in vivo. Cellular Physiology and Biochemistry, 39(1), 242–252. https://doi.org/10.1159/000445620CrossRef Li, C., Ding, H., Tian, J., Wu, L., Wang, Y., Xing, Y., & Chen, M. (2016). Forkhead box protein C2 (FOXC2) promotes the resistance of human ovarian cancer cells to cisplatin in vitro and in vivo. Cellular Physiology and Biochemistry, 39(1), 242–252. https://​doi.​org/​10.​1159/​000445620CrossRef
60.
go back to reference Mani, S. A., Yang, J., Brooks, M., Schwaninger, G., Zhou, A., Miura, N., A., et al. (2007). Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10069–10074. https://doi.org/10.1073/pnas.0703900104CrossRef Mani, S. A., Yang, J., Brooks, M., Schwaninger, G., Zhou, A., Miura, N., A., et al. (2007). Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10069–10074. https://​doi.​org/​10.​1073/​pnas.​0703900104CrossRef
61.
go back to reference Li, C., Ding, H., Tian, J., Wu, L., Wang, Y., Xing, Y., & Chen, M. (2016). Forkhead box protein C2 promotes epithelial-mesenchymal transition, migration and invasion in cisplatin-resistant human ovarian cancer cell line (SKOV3/CDDP). Cellular Physiology and Biochemistry, 39(3), 1098–1110. https://doi.org/10.1159/000447818CrossRef Li, C., Ding, H., Tian, J., Wu, L., Wang, Y., Xing, Y., & Chen, M. (2016). Forkhead box protein C2 promotes epithelial-mesenchymal transition, migration and invasion in cisplatin-resistant human ovarian cancer cell line (SKOV3/CDDP). Cellular Physiology and Biochemistry, 39(3), 1098–1110. https://​doi.​org/​10.​1159/​000447818CrossRef
66.
70.
go back to reference Watanabe, A., Suzuki, H., Yokobori, T., Altan, B., Kubo, N., Araki, K., et al. (2013). Forkhead box protein C2 contributes to invasion and metastasis of extrahepatic cholangiocarcinoma, resulting in a poor prognosis. Cancer Science, 104(11), 1427–1432. https://doi.org/10.1111/CAS.12249CrossRef Watanabe, A., Suzuki, H., Yokobori, T., Altan, B., Kubo, N., Araki, K., et al. (2013). Forkhead box protein C2 contributes to invasion and metastasis of extrahepatic cholangiocarcinoma, resulting in a poor prognosis. Cancer Science, 104(11), 1427–1432. https://​doi.​org/​10.​1111/​CAS.​12249CrossRef
78.
go back to reference Lin, Y., Mckinnon, K. E., Ha, S. W., & Beck, G. R. (2015). Inorganic phosphate induces cancer cell mediated angiogenesis dependent on forkhead box protein C2 (FOXC2) regulated osteopontin expression. Molecular Carcinogenesis, 54(9), 926–934. https://doi.org/10.1002/MC.22153CrossRef Lin, Y., Mckinnon, K. E., Ha, S. W., & Beck, G. R. (2015). Inorganic phosphate induces cancer cell mediated angiogenesis dependent on forkhead box protein C2 (FOXC2) regulated osteopontin expression. Molecular Carcinogenesis, 54(9), 926–934. https://​doi.​org/​10.​1002/​MC.​22153CrossRef
85.
go back to reference Xia, S., Menden, H. L., Korfhagen, T. R., Kume, T., & Sampath, V. (2018). Endothelial immune activation programmes cell-fate decisions and angiogenesis by inducing angiogenesis regulator DLL4 through TLR4-ERK-FOXC2 signalling. The Journal of Physiology, 596(8), 1397–1417. https://doi.org/10.1113/JP275453CrossRef Xia, S., Menden, H. L., Korfhagen, T. R., Kume, T., & Sampath, V. (2018). Endothelial immune activation programmes cell-fate decisions and angiogenesis by inducing angiogenesis regulator DLL4 through TLR4-ERK-FOXC2 signalling. The Journal of Physiology, 596(8), 1397–1417. https://​doi.​org/​10.​1113/​JP275453CrossRef
88.
go back to reference Sphyris, N., King, C., Hoar, J., Werden, S. J., Vijay, G. V., Miura, N., et al. (2021). Carcinoma cells that have undergone an epithelial-mesenchymal transition differentiate into endothelial cells and contribute to tumor growth. Oncotarget, 12(8), 823–844. https://doi.org/10.18632/ONCOTARGET.27940 Sphyris, N., King, C., Hoar, J., Werden, S. J., Vijay, G. V., Miura, N., et al. (2021). Carcinoma cells that have undergone an epithelial-mesenchymal transition differentiate into endothelial cells and contribute to tumor growth. Oncotarget, 12(8), 823–844. https://​doi.​org/​10.​18632/​ONCOTARGET.​27940
91.
go back to reference Fang, J., Dagenais, S. L., Erickson, R. P., Arlt, M. F., Glynn, M. W., Gorski, J. L., et al. (2000). Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. American Journal of Human Genetics, 67(6), 1382–1388. https://doi.org/10.1086/316915CrossRef Fang, J., Dagenais, S. L., Erickson, R. P., Arlt, M. F., Glynn, M. W., Gorski, J. L., et al. (2000). Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. American Journal of Human Genetics, 67(6), 1382–1388. https://​doi.​org/​10.​1086/​316915CrossRef
92.
go back to reference Tavian, D., Missaglia, S., Maltese, P. E., Michelini, S., Fiorentino, A., Ricci, M., et al. (2016). FOXC2 disease-mutations identified in lymphedema-distichiasis patients cause both loss and gain of protein function. Oncotarget, 7(34), 54228–54239. https://doi.org/10.18632/ONCOTARGET.9797 Tavian, D., Missaglia, S., Maltese, P. E., Michelini, S., Fiorentino, A., Ricci, M., et al. (2016). FOXC2 disease-mutations identified in lymphedema-distichiasis patients cause both loss and gain of protein function. Oncotarget, 7(34), 54228–54239. https://​doi.​org/​10.​18632/​ONCOTARGET.​9797
93.
go back to reference González-Loyola, A., Bovay, E., Kim, J., Lozano, T. W., Sabine, A., Renevey, F., et al. (2021). FOXC2 controls adult lymphatic endothelial specialization, function, and gut lymphatic barrier preventing multiorgan failure. Science Advances, 7(29), eabf4335. https://doi.org/10.1126/SCIADV.ABF4335 González-Loyola, A., Bovay, E., Kim, J., Lozano, T. W., Sabine, A., Renevey, F., et al. (2021). FOXC2 controls adult lymphatic endothelial specialization, function, and gut lymphatic barrier preventing multiorgan failure. Science Advances, 7(29), eabf4335. https://​doi.​org/​10.​1126/​SCIADV.​ABF4335
96.
go back to reference Fatima, A., Wang, Y., Uchida, Y., Norden, P., Liu, T., Culver, A., et al. (2016). Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation. The Journal of Clinical Investigation, 126(7), 2437–2451. https://doi.org/10.1172/JCI80465CrossRef Fatima, A., Wang, Y., Uchida, Y., Norden, P., Liu, T., Culver, A., et al. (2016). Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation. The Journal of Clinical Investigation, 126(7), 2437–2451. https://​doi.​org/​10.​1172/​JCI80465CrossRef
105.
go back to reference Peng, Y. H., Wang, P., He, X. Q., Hong, M. Z., & Liu, F. (2022). Micro ribonucleic acid-363 regulates the phosphatidylinositol 3-kinase/threonine protein kinase axis by targeting NOTCH1 and forkhead box C2, leading to hepatic glucose and lipids metabolism disorder in type 2 diabetes mellitus. Journal of Diabetes Investigation, 13(2), 236–248. https://doi.org/10.1111/JDI.13695CrossRef Peng, Y. H., Wang, P., He, X. Q., Hong, M. Z., & Liu, F. (2022). Micro ribonucleic acid-363 regulates the phosphatidylinositol 3-kinase/threonine protein kinase axis by targeting NOTCH1 and forkhead box C2, leading to hepatic glucose and lipids metabolism disorder in type 2 diabetes mellitus. Journal of Diabetes Investigation, 13(2), 236–248. https://​doi.​org/​10.​1111/​JDI.​13695CrossRef
106.
go back to reference Lidell, M. E., Seifert, E. L., Westergren, R., Heglind, M., Gowing, A., Sukonina, V., et al. (2011). The adipocyte-expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function. Diabetes, 60(2), 427–435. https://doi.org/10.2337/DB10-0409CrossRef Lidell, M. E., Seifert, E. L., Westergren, R., Heglind, M., Gowing, A., Sukonina, V., et al. (2011). The adipocyte-expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function. Diabetes, 60(2), 427–435. https://​doi.​org/​10.​2337/​DB10-0409CrossRef
111.
go back to reference Ramirez-Peña, E., Arnold, J., Shivakumar, V., Joseph, R., Vidhya Vijay, G., den Hollander, P., … Mani, S. A. (2019). The epithelial to mesenchymal transition promotes glutamine independence by suppressing GLS2 expression. Cancers, 11(10), 1610. https://doi.org/10.3390/cancers11101610 Ramirez-Peña, E., Arnold, J., Shivakumar, V., Joseph, R., Vidhya Vijay, G., den Hollander, P., … Mani, S. A. (2019). The epithelial to mesenchymal transition promotes glutamine independence by suppressing GLS2 expression. Cancers, 11(10), 1610. https://​doi.​org/​10.​3390/​cancers11101610
112.
116.
121.
122.
128.
133.
Metadata
Title
Oncogenic functions of the FOXC2 transcription factor: a hallmarks of cancer perspective
Authors
Kristian M. Hargadon
Travis B. Goodloe III
Nathaniel D. Lloyd
Publication date
14-06-2022
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2022
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-022-10045-3

Other articles of this Issue 4/2022

Cancer and Metastasis Reviews 4/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine