Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2021

01-06-2021 | Metastasis | Non-Thematic Review

Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression

Authors: Saravanakumar Marimuthu, Sanchita Rauth, Koelina Ganguly, Chunmeng Zhang, Imayavaramban Lakshmanan, Surinder K. Batra, Moorthy P. Ponnusamy

Published in: Cancer and Metastasis Reviews | Issue 2/2021

Login to get access

Abstract

Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression, tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of mucin’s function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors. Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical oncogenic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC) population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin’s role in oncogenic signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of chemoresistance, tumor progression, and metastasis.
Literature
9.
go back to reference Pothuraju, R., Krishn, S. R., Gautam, S. K., Pai, P., Ganguly, K., Chaudhary, S., Rachagani, S., Kaur, S., & Batra, S. K. (2020). Mechanistic and functional shades of mucins and associated glycans in colon cancer. Cancers (Basel), 12(3). https://doi.org/10.3390/cancers12030649. Pothuraju, R., Krishn, S. R., Gautam, S. K., Pai, P., Ganguly, K., Chaudhary, S., Rachagani, S., Kaur, S., & Batra, S. K. (2020). Mechanistic and functional shades of mucins and associated glycans in colon cancer. Cancers (Basel), 12(3). https://​doi.​org/​10.​3390/​cancers12030649.
17.
go back to reference Suh, H., Pillai, K., & Morris, D. L. (2017). Mucins in pancreatic cancer: Biological role, implications in carcinogenesis and applications in diagnosis and therapy. American Journal of Cancer Research, 7(6), 1372–1383.PubMedPubMedCentral Suh, H., Pillai, K., & Morris, D. L. (2017). Mucins in pancreatic cancer: Biological role, implications in carcinogenesis and applications in diagnosis and therapy. American Journal of Cancer Research, 7(6), 1372–1383.PubMedPubMedCentral
23.
go back to reference van de Wiel-van Kemenade, E., Ligtenberg, M. J., de Boer, A. J., Buijs, F., Vos, H. L., Melief, C. J., Hilkens, J., & Figdor, C. G. (1993). Episialin (MUC1) inhibits cytotoxic lymphocyte-target cell interaction. Journal of Immunology, 151(2), 767–776. van de Wiel-van Kemenade, E., Ligtenberg, M. J., de Boer, A. J., Buijs, F., Vos, H. L., Melief, C. J., Hilkens, J., & Figdor, C. G. (1993). Episialin (MUC1) inhibits cytotoxic lymphocyte-target cell interaction. Journal of Immunology, 151(2), 767–776.
32.
go back to reference Wang, W., Abbruzzese, J. L., Evans, D. B., Larry, L., Cleary, K. R., & Chiao, P. J. (1999). The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clinical Cancer Research, 5(1), 119–127.PubMed Wang, W., Abbruzzese, J. L., Evans, D. B., Larry, L., Cleary, K. R., & Chiao, P. J. (1999). The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clinical Cancer Research, 5(1), 119–127.PubMed
36.
go back to reference Carraway, K. L., Perez, A., Idris, N., Jepson, S., Arango, M., Komatsu, M., Haq, B., Price-Schiavi A., Zhang, J., & Carraway, C. (2002). Muc4/sialomucin complex, the intramembrane ErbB2 ligand, in cancer and epithelia: To protect and to survive. Progress in Nucleic Acid Research and Molecular Biology, 71, 149–185. https://doi.org/10.1016/s0079-6603(02)71043-x. Carraway, K. L., Perez, A., Idris, N., Jepson, S., Arango, M., Komatsu, M., Haq, B., Price-Schiavi A., Zhang, J., & Carraway, C. (2002). Muc4/sialomucin complex, the intramembrane ErbB2 ligand, in cancer and epithelia: To protect and to survive. Progress in Nucleic Acid Research and Molecular Biology, 71, 149–185. https://​doi.​org/​10.​1016/​s0079-6603(02)71043-x.
40.
42.
go back to reference Sheng, Y., Ng, C. P., Lourie, R., Shah, E. T., He, Y., Wong, K. Y., Seim, I., Oancea, I., Morais, C., Jeffery, P. L., Hooper, J., Gobe, G. C., & McGuckin, M. A. (2017). MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. International Journal of Cancer, 140(10), 2351–2363. https://doi.org/10.1002/ijc.30651.CrossRefPubMed Sheng, Y., Ng, C. P., Lourie, R., Shah, E. T., He, Y., Wong, K. Y., Seim, I., Oancea, I., Morais, C., Jeffery, P. L., Hooper, J., Gobe, G. C., & McGuckin, M. A. (2017). MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. International Journal of Cancer, 140(10), 2351–2363. https://​doi.​org/​10.​1002/​ijc.​30651.CrossRefPubMed
43.
go back to reference Xu, Z., Liu, Y., Yang, Y., Wang, J., Zhang, G., Liu, Z., Fu, H., Wang, Z., Liu, H., & Xu, J. (2017). High expression of Mucin13 associates with grimmer postoperative prognosis of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget, 8(5), 7548–7558. https://doi.org/10.18632/oncotarget.13692. Xu, Z., Liu, Y., Yang, Y., Wang, J., Zhang, G., Liu, Z., Fu, H., Wang, Z., Liu, H., & Xu, J. (2017). High expression of Mucin13 associates with grimmer postoperative prognosis of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget, 8(5), 7548–7558. https://​doi.​org/​10.​18632/​oncotarget.​13692.
45.
go back to reference Das, S., Rachagani, S., Torres-Gonzalez, M. P., Lakshmanan, I., Majhi, P. D., Smith, L. M., Wagner, K., & Batra, S. K. (2015). Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 6(8), 5772–5787. https://doi.org/10.18632/oncotarget.3308. Das, S., Rachagani, S., Torres-Gonzalez, M. P., Lakshmanan, I., Majhi, P. D., Smith, L. M., Wagner, K., & Batra, S. K. (2015). Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 6(8), 5772–5787. https://​doi.​org/​10.​18632/​oncotarget.​3308.
55.
go back to reference Stroopinsky, D., Rosenblatt, J., Ito, K., Mills, H., Yin, L., Rajabi, H., Vasir, B., Kufe, T., Luptakova, K., Arnason, J., Nardella, C., Levine, J. D., Joyce, R. M., Galinsky, I., Reiter, Y., Stone, R. M., Pandolfi, P. P., Kufe, D., & Avigan, D. (2013). MUC1 is a potential target for the treatment of acute myeloid leukemia stem cells. Cancer Research, 73(17), 5569–5579. https://doi.org/10.1158/0008-5472.Can-13-0677.CrossRefPubMedPubMedCentral Stroopinsky, D., Rosenblatt, J., Ito, K., Mills, H., Yin, L., Rajabi, H., Vasir, B., Kufe, T., Luptakova, K., Arnason, J., Nardella, C., Levine, J. D., Joyce, R. M., Galinsky, I., Reiter, Y., Stone, R. M., Pandolfi, P. P., Kufe, D., & Avigan, D. (2013). MUC1 is a potential target for the treatment of acute myeloid leukemia stem cells. Cancer Research, 73(17), 5569–5579. https://​doi.​org/​10.​1158/​0008-5472.​Can-13-0677.CrossRefPubMedPubMedCentral
58.
go back to reference Curry, J. M., Thompson, K. J., Rao, S. G., Besmer, D. M., Murphy, A. M., Grdzelishvili, V. Z., Ahrens, W. A., McKillop, I. H., Sindram, D., Iannitti, D. A., Martinie, J. B., & Mukherjee, P. (2013). The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. Journal of Surgical Oncology, 107(7), 713–722. https://doi.org/10.1002/jso.23316.CrossRefPubMed Curry, J. M., Thompson, K. J., Rao, S. G., Besmer, D. M., Murphy, A. M., Grdzelishvili, V. Z., Ahrens, W. A., McKillop, I. H., Sindram, D., Iannitti, D. A., Martinie, J. B., & Mukherjee, P. (2013). The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. Journal of Surgical Oncology, 107(7), 713–722. https://​doi.​org/​10.​1002/​jso.​23316.CrossRefPubMed
63.
go back to reference Ganguly, K., Krishn, S. R., Rachagani, S., Jahan, R., Shah, A., Nallasamy, P., Rauth, S., Atri, P., Cox, J. L., Pothuraju, R., Smith, L. M., Ayala, S., Evans, C., Ponusamy, M. P., Kumar, S., Kaur, S., & Batra, S. K. (2020). Secretory mucin 5 AC promotes neoplastic progression by augmenting KLF4-mediated pancreatic cancer cell stemness. Cancer Research. https://doi.org/10.1158/0008-5472.Can-20-1293. Ganguly, K., Krishn, S. R., Rachagani, S., Jahan, R., Shah, A., Nallasamy, P., Rauth, S., Atri, P., Cox, J. L., Pothuraju, R., Smith, L. M., Ayala, S., Evans, C., Ponusamy, M. P., Kumar, S., Kaur, S., & Batra, S. K. (2020). Secretory mucin 5 AC promotes neoplastic progression by augmenting KLF4-mediated pancreatic cancer cell stemness. Cancer Research. https://​doi.​org/​10.​1158/​0008-5472.​Can-20-1293.
67.
69.
go back to reference Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., Bajaj, E., Shanmugam, K., Lee, Y. Y., Hwang, S. I. L., Gendler, S. J., & Mukherjee, P. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30(12), 1449–1459. https://doi.org/10.1038/onc.2010.526.CrossRefPubMed Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., Bajaj, E., Shanmugam, K., Lee, Y. Y., Hwang, S. I. L., Gendler, S. J., & Mukherjee, P. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30(12), 1449–1459. https://​doi.​org/​10.​1038/​onc.​2010.​526.CrossRefPubMed
71.
go back to reference Lakshmanan, I., Rachagani, S., Hauke, R., Krishn, S. R., Paknikar, S., Seshacharyulu, P., Karmakar, S., Nimmakayala, R. K., Kaushik, G., Johansson, S. L., Carey, G. B., Ponnusamy, M. P., Kaur, S., Batra, S. K., & Ganti, A. K. (2016). MUC5AC interactions with integrin β4 enhances the migration of lung cancer cells through FAK signaling. Oncogene, 35(31), 4112–4121. https://doi.org/10.1038/onc.2015.478.CrossRefPubMedPubMedCentral Lakshmanan, I., Rachagani, S., Hauke, R., Krishn, S. R., Paknikar, S., Seshacharyulu, P., Karmakar, S., Nimmakayala, R. K., Kaushik, G., Johansson, S. L., Carey, G. B., Ponnusamy, M. P., Kaur, S., Batra, S. K., & Ganti, A. K. (2016). MUC5AC interactions with integrin β4 enhances the migration of lung cancer cells through FAK signaling. Oncogene, 35(31), 4112–4121. https://​doi.​org/​10.​1038/​onc.​2015.​478.CrossRefPubMedPubMedCentral
76.
go back to reference Muniyan, S., Haridas, D., Chugh, S., Rachagani, S., Lakshmanan, I., Gupta, S., Seshacharyulu, P., Smith, L. M., Ponnusamy, M. P., & Batra S. K. (2016). MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes & Cancer, 7(3–4), 110–124. https://doi.org/10.18632/genesandcancer.104. Muniyan, S., Haridas, D., Chugh, S., Rachagani, S., Lakshmanan, I., Gupta, S., Seshacharyulu, P., Smith, L. M., Ponnusamy, M. P., & Batra S. K. (2016). MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes & Cancer, 7(3–4), 110–124. https://​doi.​org/​10.​18632/​genesandcancer.​104.
80.
go back to reference Chaika, N. V., Gebregiworgis, T., Lewallen, M. E., Purohit, V., Radhakrishnan, P., Liu, X., Zhang, B., Mehla, K., Brown, R. B., Caffrey, T., Yu, F., Johnson, K. R., Powers, R., Hollingsworth, M. A., & Singh, P. K. (2012). MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13787–13792. https://doi.org/10.1073/pnas.1203339109.CrossRefPubMedPubMedCentral Chaika, N. V., Gebregiworgis, T., Lewallen, M. E., Purohit, V., Radhakrishnan, P., Liu, X., Zhang, B., Mehla, K., Brown, R. B., Caffrey, T., Yu, F., Johnson, K. R., Powers, R., Hollingsworth, M. A., & Singh, P. K. (2012). MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13787–13792. https://​doi.​org/​10.​1073/​pnas.​1203339109.CrossRefPubMedPubMedCentral
86.
go back to reference Chiyoda, T., Hart, P. C., Eckert, M. A., McGregor, S. M., Lastra, R. R., Hamamoto, R., Nakamura, Y., Yamada, S. D., Olopade, O. I., Lengyel, E., & Romero, I. L. (2017). Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis: A window of opportunity for ovarian cancer Chemoprevention. Cancer Prevention Research (Philadelphia, Pa.), 10(4), 255–266. https://doi.org/10.1158/1940-6207.Capr-16-0281.CrossRef Chiyoda, T., Hart, P. C., Eckert, M. A., McGregor, S. M., Lastra, R. R., Hamamoto, R., Nakamura, Y., Yamada, S. D., Olopade, O. I., Lengyel, E., & Romero, I. L. (2017). Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis: A window of opportunity for ovarian cancer Chemoprevention. Cancer Prevention Research (Philadelphia, Pa.), 10(4), 255–266. https://​doi.​org/​10.​1158/​1940-6207.​Capr-16-0281.CrossRef
91.
94.
go back to reference Shukla, S. K., Gunda, V., Abrego, J., Haridas, D., Mishra, A., Souchek, J., Chaika, N. V., Yu, F., Sasson, A. R., Lazenby, A. J., Batra, S. K., & Singh, P. K. (2015). MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism. Oncotarget, 6(22), 19118–19131. https://doi.org/10.18632/oncotarget.4078. Shukla, S. K., Gunda, V., Abrego, J., Haridas, D., Mishra, A., Souchek, J., Chaika, N. V., Yu, F., Sasson, A. R., Lazenby, A. J., Batra, S. K., & Singh, P. K. (2015). MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism. Oncotarget, 6(22), 19118–19131. https://​doi.​org/​10.​18632/​oncotarget.​4078.
101.
go back to reference Martel, P. M., Bingham, C. M., McGraw, C. J., Baker, C. L., Morganelli, P. M., Meng, M. L., Armstrong, J. M., Moncur, J. T., & Kinlaw, W. B., (2006). S14 protein in breast cancer cells: Direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Experimental Cell Research, 312(3), 278–288. https://doi.org/10.1016/j.yexcr.2005.10.022. Martel, P. M., Bingham, C. M., McGraw, C. J., Baker, C. L., Morganelli, P. M., Meng, M. L., Armstrong, J. M., Moncur, J. T., & Kinlaw, W. B., (2006). S14 protein in breast cancer cells: Direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Experimental Cell Research, 312(3), 278–288. https://​doi.​org/​10.​1016/​j.​yexcr.​2005.​10.​022.
102.
104.
go back to reference Furuta, E., Pai, S. K., Zhan, R., Bandyopadhyay, S., Watabe, M., Mo, Y. Y., Hirota, S., Hosobe, S., Tsukada, T., Miura, K., Kamada, S., Saito, K., Iiizumi, M., Liu, W., Ericsson, J., & Watabe, K. (2008). Fatty acid synthase gene is upregulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Research, 68(4), 1003–1011. https://doi.org/10.1158/0008-5472.Can-07-2489.CrossRefPubMed Furuta, E., Pai, S. K., Zhan, R., Bandyopadhyay, S., Watabe, M., Mo, Y. Y., Hirota, S., Hosobe, S., Tsukada, T., Miura, K., Kamada, S., Saito, K., Iiizumi, M., Liu, W., Ericsson, J., & Watabe, K. (2008). Fatty acid synthase gene is upregulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Research, 68(4), 1003–1011. https://​doi.​org/​10.​1158/​0008-5472.​Can-07-2489.CrossRefPubMed
106.
go back to reference Panchamoorthy, G., Jin, C., Raina, D., Bharti, A., Yamamoto, M., Adeebge, D., Zhao, Q., Bronson, R., Jiang, S., Li, L., Suzuki, Y., Tagde, A., Ghoroghchian, P. P., Wong, K. K., Kharbanda, S., & Kufe, D. (2018). Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight, 3(12). https://doi.org/10.1172/jci.insight.99880. Panchamoorthy, G., Jin, C., Raina, D., Bharti, A., Yamamoto, M., Adeebge, D., Zhao, Q., Bronson, R., Jiang, S., Li, L., Suzuki, Y., Tagde, A., Ghoroghchian, P. P., Wong, K. K., Kharbanda, S., & Kufe, D. (2018). Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight, 3(12). https://​doi.​org/​10.​1172/​jci.​insight.​99880.
110.
go back to reference Patel, S. P., Bristol, A., Saric, O., Wang, X. P., Dubeykovskiy, A., Arlen, P. M., & Morse, M. A. (2013). Anti-tumor activity of a novel monoclonal antibody, NPC-1C, optimized for recognition of tumor antigen MUC5AC variant in preclinical models. Cancer Immunology, Immunotherapy, 62(6), 1011–1019. https://doi.org/10.1007/s00262-013-1420-z.CrossRefPubMed Patel, S. P., Bristol, A., Saric, O., Wang, X. P., Dubeykovskiy, A., Arlen, P. M., & Morse, M. A. (2013). Anti-tumor activity of a novel monoclonal antibody, NPC-1C, optimized for recognition of tumor antigen MUC5AC variant in preclinical models. Cancer Immunology, Immunotherapy, 62(6), 1011–1019. https://​doi.​org/​10.​1007/​s00262-013-1420-z.CrossRefPubMed
Metadata
Title
Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression
Authors
Saravanakumar Marimuthu
Sanchita Rauth
Koelina Ganguly
Chunmeng Zhang
Imayavaramban Lakshmanan
Surinder K. Batra
Moorthy P. Ponnusamy
Publication date
01-06-2021
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2021
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-021-09959-1

Other articles of this Issue 2/2021

Cancer and Metastasis Reviews 2/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine