Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2010

01-12-2010 | NON-THEMATIC REVIEW

DNA methylation or histone modification status in metastasis and angiogenesis-related genes: a new hypothesis on usage of DNMT inhibitors and S-adenosylmethionine for genome stability

Authors: Mehmet Şahin, Emel Şahin, Saadet Gümüşlü, Abdullah Erdoğan, Meral Gültekin

Published in: Cancer and Metastasis Reviews | Issue 4/2010

Login to get access

Abstract

Metastasis is a leading cause of mortality and morbidity in cancer. This process needs angiogenesis. The biology underlying cancer, metastasis, and angiogenesis has been investigated so as to determine the therapeutic targets. Invasive and metastatic cancer cells have undergone numerous genetic and epigenetic changes, manifested by cytoskeletal changes, loss of adhesion, and expression of proteolytic enzymes that degrade the basement membrane. Additionally, in endothelial cells, some epigenetic modifications occur during the formation of angiogenesis. Researchers have used some methylation inhibitors, histone deacetylase inhibitors, or methylating agents (such as S-adenosylmethionine, SAM) against cancer and angiogenesis. Although they are effective to beat these diseases, each one results in differentiation or changes in genome structure. We review epigenetically modified genes related with angiogenesis and metastasis in cancer and endothelial cells, and suggest a new proposal. This hypothesis has discussed the importance of the usage of DNA methylation inhibitors together with SAM to prevent tumor progression and genome instability or changes resulting in additional diseases.
Literature
1.
go back to reference Mollabashy, A., & Scarborough, M. (2000). The mechanism of metastasis. The Orthopedic Clinics of North America, 31(4), 529–535.PubMed Mollabashy, A., & Scarborough, M. (2000). The mechanism of metastasis. The Orthopedic Clinics of North America, 31(4), 529–535.PubMed
2.
go back to reference Ehrlich, M. (2002). DNA methylation in cancer: Too much, but also too little. Oncogene, 21(35), 5400–5413.PubMed Ehrlich, M. (2002). DNA methylation in cancer: Too much, but also too little. Oncogene, 21(35), 5400–5413.PubMed
3.
go back to reference Wolffe, A. P., & Matzke, M. A. (1999). Epigenetics: Regulation through repression. Science, 286(5439), 481–486.PubMed Wolffe, A. P., & Matzke, M. A. (1999). Epigenetics: Regulation through repression. Science, 286(5439), 481–486.PubMed
4.
go back to reference Panning, B., & Jaenisch, R. (1998). RNA and the epigenetic regulation of X chromosome inactivation. Cell, 93(3), 305–308.PubMed Panning, B., & Jaenisch, R. (1998). RNA and the epigenetic regulation of X chromosome inactivation. Cell, 93(3), 305–308.PubMed
5.
go back to reference Li, E., Beard, C., & Jaenisch, R. (1993). Role for DNA methylation in genomic imprinting. Nature, 366(6453), 362–365.PubMed Li, E., Beard, C., & Jaenisch, R. (1993). Role for DNA methylation in genomic imprinting. Nature, 366(6453), 362–365.PubMed
6.
go back to reference Richardson, B. (2003). Impact of aging on DNA methylation. Ageing Research Reviews, 2(3), 245–261.PubMed Richardson, B. (2003). Impact of aging on DNA methylation. Ageing Research Reviews, 2(3), 245–261.PubMed
7.
go back to reference Sigalotti, L., Fratta, E., Coral, S., Cortini, E., Covre, A., Nicolay, H. J., et al. (2007). Epigenetic drugs as pleiotropic agents in cancer treatment: Biomolecular aspects and clinical applications. Journal of Cellular Physiology, 212(2), 330–344.PubMed Sigalotti, L., Fratta, E., Coral, S., Cortini, E., Covre, A., Nicolay, H. J., et al. (2007). Epigenetic drugs as pleiotropic agents in cancer treatment: Biomolecular aspects and clinical applications. Journal of Cellular Physiology, 212(2), 330–344.PubMed
8.
go back to reference Hermann, A., Gowher, H., & Jeltsch, A. (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cellular and Molecular Life Sciences, 61(19–20), 2571–2587.PubMed Hermann, A., Gowher, H., & Jeltsch, A. (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cellular and Molecular Life Sciences, 61(19–20), 2571–2587.PubMed
9.
go back to reference Bussolino, F., Mantovani, A., & Persico, G. (1997). Molecular mechanisms of blood vessel formation. Trends in Biochemical Sciences, 22(7), 251–256.PubMed Bussolino, F., Mantovani, A., & Persico, G. (1997). Molecular mechanisms of blood vessel formation. Trends in Biochemical Sciences, 22(7), 251–256.PubMed
10.
go back to reference Esteller, M. (2005). DNA methylation and cancer therapy: New developments and expectations. Current Opinion in Oncology, 17(1), 55–60.PubMed Esteller, M. (2005). DNA methylation and cancer therapy: New developments and expectations. Current Opinion in Oncology, 17(1), 55–60.PubMed
11.
go back to reference Momparler, R. L., & Bovenzi, V. (2000). DNA methylation and cancer. Journal of Cellular Physiology, 183(2), 145–154.PubMed Momparler, R. L., & Bovenzi, V. (2000). DNA methylation and cancer. Journal of Cellular Physiology, 183(2), 145–154.PubMed
12.
go back to reference Razin, A., & Riggs, A. D. (1980). DNA methylation and gene function. Science, 210(4470), 604–610.PubMed Razin, A., & Riggs, A. D. (1980). DNA methylation and gene function. Science, 210(4470), 604–610.PubMed
13.
go back to reference Pulukuri, S. M., Estes, N., Patel, J., & Rao, J. S. (2007). Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Research, 67(3), 930–939.PubMed Pulukuri, S. M., Estes, N., Patel, J., & Rao, J. S. (2007). Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Research, 67(3), 930–939.PubMed
14.
go back to reference Hellebrekers, D. M., Jair, K. W., Vire, E., Eguchi, S., Hoebers, N. T., Fraga, M. F., et al. (2006). Angiostatic activity of DNA methyltransferase inhibitors. Molecular Cancer Therapeutics, 5(2), 467–475.PubMed Hellebrekers, D. M., Jair, K. W., Vire, E., Eguchi, S., Hoebers, N. T., Fraga, M. F., et al. (2006). Angiostatic activity of DNA methyltransferase inhibitors. Molecular Cancer Therapeutics, 5(2), 467–475.PubMed
15.
go back to reference Kim, M. S., Kwon, H. J., Lee, Y. M., Baek, J. H., Jang, J. E., Lee, S. W., et al. (2001). Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nature Medicine, 7(4), 437–443.PubMed Kim, M. S., Kwon, H. J., Lee, Y. M., Baek, J. H., Jang, J. E., Lee, S. W., et al. (2001). Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nature Medicine, 7(4), 437–443.PubMed
16.
go back to reference Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes & Development, 12(5), 599–606. Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes & Development, 12(5), 599–606.
17.
go back to reference Noma, K., Allis, C. D., & Grewal, S. I. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293(5532), 1150–1155.PubMed Noma, K., Allis, C. D., & Grewal, S. I. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293(5532), 1150–1155.PubMed
18.
go back to reference Nguyen, C. T., Weisenberger, D. J., Velicescu, M., Gonzales, F. A., Lin, J. C., Liang, G., et al. (2002). Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2'-deoxycytidine. Cancer Research, 62(22), 6456–6461.PubMed Nguyen, C. T., Weisenberger, D. J., Velicescu, M., Gonzales, F. A., Lin, J. C., Liang, G., et al. (2002). Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2'-deoxycytidine. Cancer Research, 62(22), 6456–6461.PubMed
19.
go back to reference Fahrner, J. A., Eguchi, S., Herman, J. G., & Baylin, S. B. (2002). Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Research, 62(24), 7213–7218.PubMed Fahrner, J. A., Eguchi, S., Herman, J. G., & Baylin, S. B. (2002). Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Research, 62(24), 7213–7218.PubMed
20.
go back to reference Hellebrekers, D. M., Melotte, V., Vire, E., Langenkamp, E., Molema, G., Fuks, F., et al. (2007). Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Research, 67(9), 4138–4148.PubMed Hellebrekers, D. M., Melotte, V., Vire, E., Langenkamp, E., Molema, G., Fuks, F., et al. (2007). Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Research, 67(9), 4138–4148.PubMed
21.
go back to reference Pedrazzani, C., Corso, G., Marrelli, D., & Roviello, F. (2007). E-cadherin and hereditary diffuse gastric cancer. Surgery, 142(5), 645–657.PubMed Pedrazzani, C., Corso, G., Marrelli, D., & Roviello, F. (2007). E-cadherin and hereditary diffuse gastric cancer. Surgery, 142(5), 645–657.PubMed
22.
go back to reference Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392(6672), 190–193.PubMed Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392(6672), 190–193.PubMed
23.
go back to reference Qian, X., Karpova, T., Sheppard, A. M., McNally, J., & Lowy, D. R. (2004). E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. The EMBO Journal, 23(8), 1739–1748.PubMed Qian, X., Karpova, T., Sheppard, A. M., McNally, J., & Lowy, D. R. (2004). E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. The EMBO Journal, 23(8), 1739–1748.PubMed
24.
go back to reference Stockinger, A., Eger, A., Wolf, J., Beug, H., & Foisner, R. (2001). E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. The Journal of Cell Biology, 154(6), 1185–1196.PubMed Stockinger, A., Eger, A., Wolf, J., Beug, H., & Foisner, R. (2001). E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. The Journal of Cell Biology, 154(6), 1185–1196.PubMed
25.
go back to reference Gottardi, C. J., Wong, E., & Gumbiner, B. M. (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. The Journal of Cell Biology, 153(5), 1049–1060.PubMed Gottardi, C. J., Wong, E., & Gumbiner, B. M. (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. The Journal of Cell Biology, 153(5), 1049–1060.PubMed
26.
go back to reference Wong, A. S., & Gumbiner, B. M. (2003). Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. The Journal of Cell Biology, 161(6), 1191–1203.PubMed Wong, A. S., & Gumbiner, B. M. (2003). Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. The Journal of Cell Biology, 161(6), 1191–1203.PubMed
27.
go back to reference Bolos, V., Peinado, H., Perez-Moreno, M. A., Fraga, M. F., Esteller, M., & Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with Snail and E47 repressors. Journal of Cell Science, 116(Pt 3), 499–511.PubMed Bolos, V., Peinado, H., Perez-Moreno, M. A., Fraga, M. F., Esteller, M., & Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with Snail and E47 repressors. Journal of Cell Science, 116(Pt 3), 499–511.PubMed
28.
go back to reference Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7(6), 1267–1278.PubMed Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7(6), 1267–1278.PubMed
29.
go back to reference De Craene, B., van Roy, F., & Berx, G. (2005). Unraveling signalling cascades for the Snail family of transcription factors. Cellular Signalling, 17(5), 535–547.PubMed De Craene, B., van Roy, F., & Berx, G. (2005). Unraveling signalling cascades for the Snail family of transcription factors. Cellular Signalling, 17(5), 535–547.PubMed
30.
go back to reference Di Croce, L., & Pelicci, P. G. (2003). Tumour-associated hypermethylation: Silencing E-cadherin expression enhances invasion and metastasis. European Journal of Cancer, 39(4), 413–414.PubMed Di Croce, L., & Pelicci, P. G. (2003). Tumour-associated hypermethylation: Silencing E-cadherin expression enhances invasion and metastasis. European Journal of Cancer, 39(4), 413–414.PubMed
31.
go back to reference Wang, H. D., Ren, J., & Zhang, L. (2004). CDH1 germline mutation in hereditary gastric carcinoma. World Journal of Gastroenterology, 10(21), 3088–3093.PubMed Wang, H. D., Ren, J., & Zhang, L. (2004). CDH1 germline mutation in hereditary gastric carcinoma. World Journal of Gastroenterology, 10(21), 3088–3093.PubMed
32.
go back to reference Hirohashi, S. (1998). Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. The American Journal of Pathology, 153(2), 333–339.PubMed Hirohashi, S. (1998). Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. The American Journal of Pathology, 153(2), 333–339.PubMed
33.
go back to reference Graff, J. R., Gabrielson, E., Fujii, H., Baylin, S. B., & Herman, J. G. (2000). Methylation patterns of the E-cadherin 5' CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. The Journal of Biological Chemistry, 275(4), 2727–2732.PubMed Graff, J. R., Gabrielson, E., Fujii, H., Baylin, S. B., & Herman, J. G. (2000). Methylation patterns of the E-cadherin 5' CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. The Journal of Biological Chemistry, 275(4), 2727–2732.PubMed
34.
go back to reference Viswanathan, M., Tsuchida, N., & Shanmugam, G. (2003). Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. International Journal of Cancer, 105(1), 41–46. Viswanathan, M., Tsuchida, N., & Shanmugam, G. (2003). Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. International Journal of Cancer, 105(1), 41–46.
35.
go back to reference de Moraes, R. V., Oliveira, D. T., Landman, G., de Carvalho, F., Caballero, O., Nonogaki, S., et al. (2008). E-cadherin abnormalities resulting from CPG methylation promoter in metastatic and nonmetastatic oral cancer. Head & Neck, 30(1), 85–92. de Moraes, R. V., Oliveira, D. T., Landman, G., de Carvalho, F., Caballero, O., Nonogaki, S., et al. (2008). E-cadherin abnormalities resulting from CPG methylation promoter in metastatic and nonmetastatic oral cancer. Head & Neck, 30(1), 85–92.
36.
go back to reference Nass, S. J., Herman, J. G., Gabrielson, E., Iversen, P. W., Parl, F. F., Davidson, N. E., et al. (2000). Aberrant methylation of the estrogen receptor and E-cadherin 5' CpG islands increases with malignant progression in human breast cancer. Cancer Research, 60(16), 4346–4348.PubMed Nass, S. J., Herman, J. G., Gabrielson, E., Iversen, P. W., Parl, F. F., Davidson, N. E., et al. (2000). Aberrant methylation of the estrogen receptor and E-cadherin 5' CpG islands increases with malignant progression in human breast cancer. Cancer Research, 60(16), 4346–4348.PubMed
37.
go back to reference Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu, R., Jarrard, D. F., et al. (1995). E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Research, 55(22), 5195–5199.PubMed Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu, R., Jarrard, D. F., et al. (1995). E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Research, 55(22), 5195–5199.PubMed
38.
go back to reference Mejlvang, J., Kriajevska, M., Berditchevski, F., Bronstein, I., Lukanidin, E. M., Pringle, J. H., et al. (2007). Characterization of E-cadherin-dependent and -independent events in a new model of c-Fos-mediated epithelial-mesenchymal transition. Experimental Cell Research, 313(2), 380–393.PubMed Mejlvang, J., Kriajevska, M., Berditchevski, F., Bronstein, I., Lukanidin, E. M., Pringle, J. H., et al. (2007). Characterization of E-cadherin-dependent and -independent events in a new model of c-Fos-mediated epithelial-mesenchymal transition. Experimental Cell Research, 313(2), 380–393.PubMed
39.
go back to reference Kudo, Y., Kitajima, S., Ogawa, I., Hiraoka, M., Sargolzaei, S., Keikhaee, M. R., et al. (2004). Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clinical Cancer Research, 10(16), 5455–5463.PubMed Kudo, Y., Kitajima, S., Ogawa, I., Hiraoka, M., Sargolzaei, S., Keikhaee, M. R., et al. (2004). Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clinical Cancer Research, 10(16), 5455–5463.PubMed
40.
go back to reference Chang, H. W., Chow, V., Lam, K. Y., Wei, W. I., & Yuen, A. (2002). Loss of E-cadherin expression resulting from promoter hypermethylation in oral tongue carcinoma and its prognostic significance. Cancer, 94(2), 386–392.PubMed Chang, H. W., Chow, V., Lam, K. Y., Wei, W. I., & Yuen, A. (2002). Loss of E-cadherin expression resulting from promoter hypermethylation in oral tongue carcinoma and its prognostic significance. Cancer, 94(2), 386–392.PubMed
41.
go back to reference Nakayama, S., Sasaki, A., Mese, H., Alcalde, R. E., Tsuji, T., & Matsumura, T. (2001). The E-cadherin gene is silenced by CpG methylation in human oral squamous cell carcinomas. International Journal of Cancer, 93(5), 667–673. Nakayama, S., Sasaki, A., Mese, H., Alcalde, R. E., Tsuji, T., & Matsumura, T. (2001). The E-cadherin gene is silenced by CpG methylation in human oral squamous cell carcinomas. International Journal of Cancer, 93(5), 667–673.
42.
go back to reference Yeh, K. T., Shih, M. C., Lin, T. H., Chen, J. C., Chang, J. Y., Kao, C. F., et al. (2002). The correlation between CpG methylation on promoter and protein expression of E-cadherin in oral squamous cell carcinoma. Anticancer Research, 22(6C), 3971–3975.PubMed Yeh, K. T., Shih, M. C., Lin, T. H., Chen, J. C., Chang, J. Y., Kao, C. F., et al. (2002). The correlation between CpG methylation on promoter and protein expression of E-cadherin in oral squamous cell carcinoma. Anticancer Research, 22(6C), 3971–3975.PubMed
43.
go back to reference Hasegawa, M., Nelson, H. H., Peters, E., Ringstrom, E., Posner, M., & Kelsey, K. T. (2002). Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene, 21(27), 4231–4236.PubMed Hasegawa, M., Nelson, H. H., Peters, E., Ringstrom, E., Posner, M., & Kelsey, K. T. (2002). Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene, 21(27), 4231–4236.PubMed
44.
go back to reference Eggert, A., Ikegaki, N., Kwiatkowski, J., Zhao, H., Brodeur, G. M., & Himelstein, B. P. (2000). High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clinical Cancer Research, 6(5), 1900–1908.PubMed Eggert, A., Ikegaki, N., Kwiatkowski, J., Zhao, H., Brodeur, G. M., & Himelstein, B. P. (2000). High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clinical Cancer Research, 6(5), 1900–1908.PubMed
45.
go back to reference Hatzi, E., Murphy, C., Zoephel, A., Rasmussen, H., Morbidelli, L., Ahorn, H., et al. (2002). N-myc oncogene overexpression down-regulates IL-6; evidence that IL-6 inhibits angiogenesis and suppresses neuroblastoma tumor growth. Oncogene, 21(22), 3552–3561.PubMed Hatzi, E., Murphy, C., Zoephel, A., Rasmussen, H., Morbidelli, L., Ahorn, H., et al. (2002). N-myc oncogene overexpression down-regulates IL-6; evidence that IL-6 inhibits angiogenesis and suppresses neuroblastoma tumor growth. Oncogene, 21(22), 3552–3561.PubMed
46.
go back to reference Adams, J. C. (2001). Thrombospondins: Multifunctional regulators of cell interactions. Annual Review of Cell and Developmental Biology, 17, 25–51.PubMed Adams, J. C. (2001). Thrombospondins: Multifunctional regulators of cell interactions. Annual Review of Cell and Developmental Biology, 17, 25–51.PubMed
47.
go back to reference Bornstein, P. (1992). Thrombospondins: Structure and regulation of expression. The FASEB Journal, 6(14), 3290–3299.PubMed Bornstein, P. (1992). Thrombospondins: Structure and regulation of expression. The FASEB Journal, 6(14), 3290–3299.PubMed
48.
go back to reference Jimenez, B., Volpert, O. V., Crawford, S. E., Febbraio, M., Silverstein, R. L., & Bouck, N. (2000). Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Medicine, 6(1), 41–48.PubMed Jimenez, B., Volpert, O. V., Crawford, S. E., Febbraio, M., Silverstein, R. L., & Bouck, N. (2000). Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Medicine, 6(1), 41–48.PubMed
49.
go back to reference Tolsma, S. S., Volpert, O. V., Good, D. J., Frazier, W. A., Polverini, P. J., & Bouck, N. (1993). Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. The Journal of Cell Biology, 122(2), 497–511.PubMed Tolsma, S. S., Volpert, O. V., Good, D. J., Frazier, W. A., Polverini, P. J., & Bouck, N. (1993). Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. The Journal of Cell Biology, 122(2), 497–511.PubMed
50.
go back to reference Suzuma, K., Takagi, H., Otani, A., Oh, H., & Honda, Y. (1999). Expression of thrombospondin-1 in ischemia-induced retinal neovascularization. The American Journal of Pathology, 154(2), 343–354.PubMed Suzuma, K., Takagi, H., Otani, A., Oh, H., & Honda, Y. (1999). Expression of thrombospondin-1 in ischemia-induced retinal neovascularization. The American Journal of Pathology, 154(2), 343–354.PubMed
51.
go back to reference Sheibani, N., & Frazier, W. A. (1995). Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 92(15), 6788–6792.PubMed Sheibani, N., & Frazier, W. A. (1995). Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 92(15), 6788–6792.PubMed
52.
go back to reference Weinstat-Saslow, D. L., Zabrenetzky, V. S., VanHoutte, K., Frazier, W. A., Roberts, D. D., & Steeg, P. S. (1994). Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Research, 54(24), 6504–6511.PubMed Weinstat-Saslow, D. L., Zabrenetzky, V. S., VanHoutte, K., Frazier, W. A., Roberts, D. D., & Steeg, P. S. (1994). Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Research, 54(24), 6504–6511.PubMed
53.
go back to reference Zabrenetzky, V., Harris, C. C., Steeg, P. S., & Roberts, D. D. (1994). Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. International Journal of Cancer, 59(2), 191–195. Zabrenetzky, V., Harris, C. C., Steeg, P. S., & Roberts, D. D. (1994). Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. International Journal of Cancer, 59(2), 191–195.
54.
go back to reference Lawler, J. (2002). Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. Journal of Cellular and Molecular Medicine, 6(1), 1–12.PubMed Lawler, J. (2002). Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. Journal of Cellular and Molecular Medicine, 6(1), 1–12.PubMed
55.
go back to reference Gilmore, A. P., & Romer, L. H. (1996). Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Molecular Biology of the Cell, 7(8), 1209–1224.PubMed Gilmore, A. P., & Romer, L. H. (1996). Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Molecular Biology of the Cell, 7(8), 1209–1224.PubMed
56.
go back to reference Dameron, K. M., Volpert, O. V., Tainsky, M. A., & Bouck, N. (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science, 265(5178), 1582–1584.PubMed Dameron, K. M., Volpert, O. V., Tainsky, M. A., & Bouck, N. (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science, 265(5178), 1582–1584.PubMed
57.
go back to reference Yang, Q. W., Liu, S., Tian, Y., Salwen, H. R., Chlenski, A., Weinstein, J., et al. (2003). Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Research, 63(19), 6299–6310.PubMed Yang, Q. W., Liu, S., Tian, Y., Salwen, H. R., Chlenski, A., Weinstein, J., et al. (2003). Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Research, 63(19), 6299–6310.PubMed
58.
go back to reference Miyamoto, N., Yamamoto, H., Taniguchi, H., Miyamoto, C., Oki, M., Adachi, Y., et al. (2007). Differential expression of angiogenesis-related genes in human gastric cancers with and those without high-frequency microsatellite instability. Cancer Letters, 254(1), 42–53.PubMed Miyamoto, N., Yamamoto, H., Taniguchi, H., Miyamoto, C., Oki, M., Adachi, Y., et al. (2007). Differential expression of angiogenesis-related genes in human gastric cancers with and those without high-frequency microsatellite instability. Cancer Letters, 254(1), 42–53.PubMed
59.
go back to reference Kanai, Y., Ushijima, S., Kondo, Y., Nakanishi, Y., & Hirohashi, S. (2001). DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. International Journal of Cancer, 91(2), 205–212. Kanai, Y., Ushijima, S., Kondo, Y., Nakanishi, Y., & Hirohashi, S. (2001). DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. International Journal of Cancer, 91(2), 205–212.
60.
go back to reference Ueki, T., Toyota, M., Sohn, T., Yeo, C. J., Issa, J. P., Hruban, R. H., et al. (2000). Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Research, 60(7), 1835–1839.PubMed Ueki, T., Toyota, M., Sohn, T., Yeo, C. J., Issa, J. P., Hruban, R. H., et al. (2000). Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Research, 60(7), 1835–1839.PubMed
61.
go back to reference Hu, C. J., Chen, S. D., Yang, D. I., Lin, T. N., Chen, C. M., Huang, T. H., et al. (2006). Promoter region methylation and reduced expression of thrombospondin-1 after oxygen-glucose deprivation in murine cerebral endothelial cells. Journal of Cerebral Blood Flow and Metabolism, 26(12), 1519–1526.PubMed Hu, C. J., Chen, S. D., Yang, D. I., Lin, T. N., Chen, C. M., Huang, T. H., et al. (2006). Promoter region methylation and reduced expression of thrombospondin-1 after oxygen-glucose deprivation in murine cerebral endothelial cells. Journal of Cerebral Blood Flow and Metabolism, 26(12), 1519–1526.PubMed
62.
go back to reference Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21(1), 103–107.PubMed Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21(1), 103–107.PubMed
63.
go back to reference Anand-Apte, B., Bao, L., Smith, R., Iwata, K., Olsen, B. R., Zetter, B., et al. (1996). A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochemistry and Cell Biology, 74(6), 853–862.PubMed Anand-Apte, B., Bao, L., Smith, R., Iwata, K., Olsen, B. R., Zetter, B., et al. (1996). A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochemistry and Cell Biology, 74(6), 853–862.PubMed
64.
go back to reference Ahonen, M., Baker, A. H., & Kahari, V. M. (1998). Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Research, 58(11), 2310–2315.PubMed Ahonen, M., Baker, A. H., & Kahari, V. M. (1998). Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Research, 58(11), 2310–2315.PubMed
65.
go back to reference Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., et al. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): İnhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9(4), 407–415.PubMed Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., et al. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): İnhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9(4), 407–415.PubMed
66.
go back to reference Fendrich, V., Slater, E. P., Heinmoller, E., Ramaswamy, A., Celik, I., Nowak, O., et al. (2005). Alterations of the tissue inhibitor of metalloproteinase-3 (TIMP3) gene in pancreatic adenocarcinomas. Pancreas, 30(2), e40–e45.PubMed Fendrich, V., Slater, E. P., Heinmoller, E., Ramaswamy, A., Celik, I., Nowak, O., et al. (2005). Alterations of the tissue inhibitor of metalloproteinase-3 (TIMP3) gene in pancreatic adenocarcinomas. Pancreas, 30(2), e40–e45.PubMed
67.
go back to reference Bachman, K. E., Herman, J. G., Corn, P. G., Merlo, A., Costello, J. F., Cavenee, W. K., et al. (1999). Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Research, 59(4), 798–802.PubMed Bachman, K. E., Herman, J. G., Corn, P. G., Merlo, A., Costello, J. F., Cavenee, W. K., et al. (1999). Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Research, 59(4), 798–802.PubMed
68.
go back to reference Wild, A., Ramaswamy, A., Langer, P., Celik, I., Fendrich, V., Chaloupka, B., et al. (2003). Frequent methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene in pancreatic endocrine tumors. The Journal of Clinical Endocrinology and Metabolism, 88(3), 1367–1373.PubMed Wild, A., Ramaswamy, A., Langer, P., Celik, I., Fendrich, V., Chaloupka, B., et al. (2003). Frequent methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene in pancreatic endocrine tumors. The Journal of Clinical Endocrinology and Metabolism, 88(3), 1367–1373.PubMed
69.
go back to reference Lee, S., Kim, W. H., Jung, H. Y., Yang, M. H., & Kang, G. H. (2002). Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. The American Journal of Pathology, 161(3), 1015–1022.PubMed Lee, S., Kim, W. H., Jung, H. Y., Yang, M. H., & Kang, G. H. (2002). Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. The American Journal of Pathology, 161(3), 1015–1022.PubMed
70.
go back to reference Lui, E. L., Loo, W. T., Zhu, L., Cheung, M. N., & Chow, L. W. (2005). DNA hypermethylation of TIMP3 gene in invasive breast ductal carcinoma. Biomedicine & Pharmacotherapy, 59(Suppl 2), S363–S365. Lui, E. L., Loo, W. T., Zhu, L., Cheung, M. N., & Chow, L. W. (2005). DNA hypermethylation of TIMP3 gene in invasive breast ductal carcinoma. Biomedicine & Pharmacotherapy, 59(Suppl 2), S363–S365.
71.
go back to reference van der Velden, P. A., Zuidervaart, W., Hurks, M. H., Pavey, S., Ksander, B. R., Krijgsman, E., et al. (2003). Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. International Journal of Cancer, 106(4), 472–479. van der Velden, P. A., Zuidervaart, W., Hurks, M. H., Pavey, S., Ksander, B. R., Krijgsman, E., et al. (2003). Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. International Journal of Cancer, 106(4), 472–479.
72.
go back to reference Mooy, C. M., & De Jong, P. T. (1996). Prognostic parameters in uveal melanoma: A review. Survey of Ophthalmology, 41(3), 215–228.PubMed Mooy, C. M., & De Jong, P. T. (1996). Prognostic parameters in uveal melanoma: A review. Survey of Ophthalmology, 41(3), 215–228.PubMed
73.
go back to reference Kim, Y. H., Petko, Z., Dzieciatkowski, S., Lin, L., Ghiassi, M., Stain, S., et al. (2006). CpG island methylation of genes accumulates during the adenoma progression step of the multistep pathogenesis of colorectal cancer. Genes, Chromosomes & Cancer, 45(8), 781–789. Kim, Y. H., Petko, Z., Dzieciatkowski, S., Lin, L., Ghiassi, M., Stain, S., et al. (2006). CpG island methylation of genes accumulates during the adenoma progression step of the multistep pathogenesis of colorectal cancer. Genes, Chromosomes & Cancer, 45(8), 781–789.
74.
go back to reference Ebert, M. P., Mooney, S. H., Tonnes-Priddy, L., Lograsso, J., Hoffmann, J., Chen, J., et al. (2005). Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia, 7(8), 771–778.PubMed Ebert, M. P., Mooney, S. H., Tonnes-Priddy, L., Lograsso, J., Hoffmann, J., Chen, J., et al. (2005). Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia, 7(8), 771–778.PubMed
75.
go back to reference Harris, A. L. (2002). Hypoxia—A key regulatory factor in tumour growth. Nature Reviews, 2(1), 38–47.PubMed Harris, A. L. (2002). Hypoxia—A key regulatory factor in tumour growth. Nature Reviews, 2(1), 38–47.PubMed
76.
go back to reference Ohh, M. (2006). Ubiquitin pathway in VHL cancer syndrome. Neoplasia, 8(8), 623–629.PubMed Ohh, M. (2006). Ubiquitin pathway in VHL cancer syndrome. Neoplasia, 8(8), 623–629.PubMed
77.
go back to reference Pugh, C. W., & Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: Role of the HIF system. Nature Medicine, 9(6), 677–684.PubMed Pugh, C. W., & Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: Role of the HIF system. Nature Medicine, 9(6), 677–684.PubMed
78.
go back to reference Kim, W. Y., & Kaelin, W. G. (2004). Role of VHL gene mutation in human cancer. Journal of Clinical Oncology, 22(24), 4991–5004.PubMed Kim, W. Y., & Kaelin, W. G. (2004). Role of VHL gene mutation in human cancer. Journal of Clinical Oncology, 22(24), 4991–5004.PubMed
79.
go back to reference Russell, R. C., & Ohh, M. (2007). The role of VHL in the regulation of E-cadherin: A new connection in an old pathway. Cell Cycle, 6(1), 56–59.PubMed Russell, R. C., & Ohh, M. (2007). The role of VHL in the regulation of E-cadherin: A new connection in an old pathway. Cell Cycle, 6(1), 56–59.PubMed
80.
81.
go back to reference Thelen, P., Hemmerlein, B., Kugler, A., Seiler, T., Ozisik, R., Kallerhoff, M., et al. (1999). Quantification by competitive quantitative RT-PCR of VEGF121 and VEGF165 in renal cell carcinoma. Anticancer Research, 19(2C), 1563–1565.PubMed Thelen, P., Hemmerlein, B., Kugler, A., Seiler, T., Ozisik, R., Kallerhoff, M., et al. (1999). Quantification by competitive quantitative RT-PCR of VEGF121 and VEGF165 in renal cell carcinoma. Anticancer Research, 19(2C), 1563–1565.PubMed
82.
go back to reference Banks, R. E., Tirukonda, P., Taylor, C., Hornigold, N., Astuti, D., Cohen, D., et al. (2006). Genetic and epigenetic analysis of von Hippel–Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Research, 66(4), 2000–2011.PubMed Banks, R. E., Tirukonda, P., Taylor, C., Hornigold, N., Astuti, D., Cohen, D., et al. (2006). Genetic and epigenetic analysis of von Hippel–Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Research, 66(4), 2000–2011.PubMed
83.
go back to reference Kim, J. H., Jung, C. W., Cho, Y. H., Lee, J., Lee, S. H., Kim, H. Y., et al. (2005). Somatic VHL alteration and its impact on prognosis in patients with clear cell renal cell carcinoma. Oncology Reports, 13(5), 859–864.PubMed Kim, J. H., Jung, C. W., Cho, Y. H., Lee, J., Lee, S. H., Kim, H. Y., et al. (2005). Somatic VHL alteration and its impact on prognosis in patients with clear cell renal cell carcinoma. Oncology Reports, 13(5), 859–864.PubMed
84.
go back to reference Rini, B. I., Jaeger, E., Weinberg, V., Sein, N., Chew, K., Fong, K., et al. (2006). Clinical response to therapy targeted at vascular endothelial growth factor in metastatic renal cell carcinoma: İmpact of patient characteristics and Von Hippel–Lindau gene status. BJU International, 98(4), 756–762.PubMed Rini, B. I., Jaeger, E., Weinberg, V., Sein, N., Chew, K., Fong, K., et al. (2006). Clinical response to therapy targeted at vascular endothelial growth factor in metastatic renal cell carcinoma: İmpact of patient characteristics and Von Hippel–Lindau gene status. BJU International, 98(4), 756–762.PubMed
85.
go back to reference Lassaletta, L., Bello, M. J., Del Rio, L., Alfonso, C., Roda, J. M., Rey, J. A., et al. (2006). DNA methylation of multiple genes in vestibular schwannoma: Relationship with clinical and radiological findings. Otology & Neurotology, 27(8), 1180–1185. Lassaletta, L., Bello, M. J., Del Rio, L., Alfonso, C., Roda, J. M., Rey, J. A., et al. (2006). DNA methylation of multiple genes in vestibular schwannoma: Relationship with clinical and radiological findings. Otology & Neurotology, 27(8), 1180–1185.
86.
go back to reference Cao, Z., Song, J. H., Kim, C. J., Cho, Y. G., Kim, S. Y., Nam, S. W., et al. (2008). Genetic and epigenetic analysis of the VHL gene in gastric cancers. Acta Oncológica, 47(8), 1551–1556.PubMed Cao, Z., Song, J. H., Kim, C. J., Cho, Y. G., Kim, S. Y., Nam, S. W., et al. (2008). Genetic and epigenetic analysis of the VHL gene in gastric cancers. Acta Oncológica, 47(8), 1551–1556.PubMed
87.
go back to reference Xu, X. L., Yu, J., Zhang, H. Y., Sun, M. H., Gu, J., Du, X., et al. (2004). Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World Journal of Gastroenterology, 10(23), 3441–3454.PubMed Xu, X. L., Yu, J., Zhang, H. Y., Sun, M. H., Gu, J., Du, X., et al. (2004). Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World Journal of Gastroenterology, 10(23), 3441–3454.PubMed
88.
go back to reference Van Lint, J., Rykx, A., Maeda, Y., Vantus, T., Sturany, S., Malhotra, V., et al. (2002). Protein kinase D: An intracellular traffic regulator on the move. Trends in Cell Biology, 12(4), 193–200.PubMed Van Lint, J., Rykx, A., Maeda, Y., Vantus, T., Sturany, S., Malhotra, V., et al. (2002). Protein kinase D: An intracellular traffic regulator on the move. Trends in Cell Biology, 12(4), 193–200.PubMed
89.
go back to reference Rozengurt, E., Rey, O., & Waldron, R. T. (2005). Protein kinase D signaling. The Journal of Biological Chemistry, 280(14), 13205–13208.PubMed Rozengurt, E., Rey, O., & Waldron, R. T. (2005). Protein kinase D signaling. The Journal of Biological Chemistry, 280(14), 13205–13208.PubMed
90.
go back to reference Kim, M., Jang, H. R., Kim, J. H., Noh, S. M., Song, K. S., Cho, J. S., et al. (2008). Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis, 29(3), 629–637.PubMed Kim, M., Jang, H. R., Kim, J. H., Noh, S. M., Song, K. S., Cho, J. S., et al. (2008). Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis, 29(3), 629–637.PubMed
91.
go back to reference Jaggi, M., Rao, P. S., Smith, D. J., Wheelock, M. J., Johnson, K. R., Hemstreet, G. P., et al. (2005). E-cadherin phosphorylation by protein kinase D1/protein kinase C{mu} is associated with altered cellular aggregation and motility in prostate cancer. Cancer Research, 65(2), 483–492.PubMed Jaggi, M., Rao, P. S., Smith, D. J., Wheelock, M. J., Johnson, K. R., Hemstreet, G. P., et al. (2005). E-cadherin phosphorylation by protein kinase D1/protein kinase C{mu} is associated with altered cellular aggregation and motility in prostate cancer. Cancer Research, 65(2), 483–492.PubMed
92.
go back to reference Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314, 268–274.PubMed Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314, 268–274.PubMed
93.
go back to reference Jaggi, M., Rao, P. S., Smith, D. J., Hemstreet, G. P., & Balaji, K. C. (2003). Protein kinase C mu is down-regulated in androgen-independent prostate cancer. Biochemical and Biophysical Research Communications, 307(2), 254–260.PubMed Jaggi, M., Rao, P. S., Smith, D. J., Hemstreet, G. P., & Balaji, K. C. (2003). Protein kinase C mu is down-regulated in androgen-independent prostate cancer. Biochemical and Biophysical Research Communications, 307(2), 254–260.PubMed
94.
go back to reference Zou, Z., Anisowicz, A., Hendrix, M. J., Thor, A., Neveu, M., Sheng, S., et al. (1994). Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science, 263(5146), 526–529.PubMed Zou, Z., Anisowicz, A., Hendrix, M. J., Thor, A., Neveu, M., Sheng, S., et al. (1994). Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science, 263(5146), 526–529.PubMed
95.
go back to reference Futscher, B. W., Oshiro, M. M., Wozniak, R. J., Holtan, N., Hanigan, C. L., Duan, H., et al. (2002). Role for DNA methylation in the control of cell type specific maspin expression. Nature Genetics, 31(2), 175–179.PubMed Futscher, B. W., Oshiro, M. M., Wozniak, R. J., Holtan, N., Hanigan, C. L., Duan, H., et al. (2002). Role for DNA methylation in the control of cell type specific maspin expression. Nature Genetics, 31(2), 175–179.PubMed
96.
go back to reference Sheng, S., Carey, J., Seftor, E. A., Dias, L., Hendrix, M. J., & Sager, R. (1996). Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 93(21), 11669–11674.PubMed Sheng, S., Carey, J., Seftor, E. A., Dias, L., Hendrix, M. J., & Sager, R. (1996). Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 93(21), 11669–11674.PubMed
97.
go back to reference Xia, W., Lau, Y. K., Hu, M. C., Li, L., Johnston, D. A., Sheng, S., et al. (2000). High tumoral maspin expression is associated with improved survival of patients with oral squamous cell carcinoma. Oncogene, 19(20), 2398–2403.PubMed Xia, W., Lau, Y. K., Hu, M. C., Li, L., Johnston, D. A., Sheng, S., et al. (2000). High tumoral maspin expression is associated with improved survival of patients with oral squamous cell carcinoma. Oncogene, 19(20), 2398–2403.PubMed
98.
go back to reference Maass, N., Hojo, T., Rosel, F., Ikeda, T., Jonat, W., & Nagasaki, K. (2001). Down regulation of the tumor suppressor gene maspin in breast carcinoma is associated with a higher risk of distant metastasis. Clinical Biochemistry, 34(4), 303–307.PubMed Maass, N., Hojo, T., Rosel, F., Ikeda, T., Jonat, W., & Nagasaki, K. (2001). Down regulation of the tumor suppressor gene maspin in breast carcinoma is associated with a higher risk of distant metastasis. Clinical Biochemistry, 34(4), 303–307.PubMed
99.
go back to reference Maass, N., Teffner, M., Rosel, F., Pawaresch, R., Jonat, W., Nagasaki, K., et al. (2001). Decline in the expression of the serine proteinase inhibitor maspin is associated with tumour progression in ductal carcinomas of the breast. The Journal of Pathology, 195(3), 321–326.PubMed Maass, N., Teffner, M., Rosel, F., Pawaresch, R., Jonat, W., Nagasaki, K., et al. (2001). Decline in the expression of the serine proteinase inhibitor maspin is associated with tumour progression in ductal carcinomas of the breast. The Journal of Pathology, 195(3), 321–326.PubMed
100.
go back to reference Shi, H. Y., Zhang, W., Liang, R., Abraham, S., Kittrell, F. S., Medina, D., et al. (2001). Blocking tumor growth, invasion, and metastasis by maspin in a syngeneic breast cancer model. Cancer Research, 61(18), 6945–6951.PubMed Shi, H. Y., Zhang, W., Liang, R., Abraham, S., Kittrell, F. S., Medina, D., et al. (2001). Blocking tumor growth, invasion, and metastasis by maspin in a syngeneic breast cancer model. Cancer Research, 61(18), 6945–6951.PubMed
101.
go back to reference Seftor, R. E., Seftor, E. A., Sheng, S., Pemberton, P. A., Sager, R., & Hendrix, M. J. (1998). Maspin suppresses the invasive phenotype of human breast carcinoma. Cancer Research, 58(24), 5681–5685.PubMed Seftor, R. E., Seftor, E. A., Sheng, S., Pemberton, P. A., Sager, R., & Hendrix, M. J. (1998). Maspin suppresses the invasive phenotype of human breast carcinoma. Cancer Research, 58(24), 5681–5685.PubMed
102.
go back to reference Maass, N., Hojo, T., Ueding, M., Luttges, J., Kloppel, G., Jonat, W., et al. (2001). Expression of the tumor suppressor gene Maspin in human pancreatic cancers. Clinical Cancer Research, 7(4), 812–817.PubMed Maass, N., Hojo, T., Ueding, M., Luttges, J., Kloppel, G., Jonat, W., et al. (2001). Expression of the tumor suppressor gene Maspin in human pancreatic cancers. Clinical Cancer Research, 7(4), 812–817.PubMed
103.
go back to reference Sood, A. K., Fletcher, M. S., Gruman, L. M., Coffin, J. E., Jabbari, S., Khalkhali-Ellis, Z., et al. (2002). The paradoxical expression of maspin in ovarian carcinoma. Clinical Cancer Research, 8(9), 2924–2932.PubMed Sood, A. K., Fletcher, M. S., Gruman, L. M., Coffin, J. E., Jabbari, S., Khalkhali-Ellis, Z., et al. (2002). The paradoxical expression of maspin in ovarian carcinoma. Clinical Cancer Research, 8(9), 2924–2932.PubMed
104.
go back to reference Ogasawara, S., Maesawa, C., Yamamoto, M., Akiyama, Y., Wada, K., Fujisawa, K., et al. (2004). Disruption of cell-type-specific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers. Oncogene, 23(5), 1117–1124.PubMed Ogasawara, S., Maesawa, C., Yamamoto, M., Akiyama, Y., Wada, K., Fujisawa, K., et al. (2004). Disruption of cell-type-specific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers. Oncogene, 23(5), 1117–1124.PubMed
105.
go back to reference Zhang, M., Volpert, O., Shi, Y. H., & Bouck, N. (2000). Maspin is an angiogenesis inhibitor. Nature Medicine, 6(2), 196–199.PubMed Zhang, M., Volpert, O., Shi, Y. H., & Bouck, N. (2000). Maspin is an angiogenesis inhibitor. Nature Medicine, 6(2), 196–199.PubMed
106.
go back to reference Zhang, M., Maass, N., Magit, D., & Sager, R. (1997). Transactivation through Ets and Ap1 transcription sites determines the expression of the tumor-suppressing gene maspin. Cell Growth & Differentiation, 8(2), 179–186. Zhang, M., Maass, N., Magit, D., & Sager, R. (1997). Transactivation through Ets and Ap1 transcription sites determines the expression of the tumor-suppressing gene maspin. Cell Growth & Differentiation, 8(2), 179–186.
107.
go back to reference Domann, F. E., Rice, J. C., Hendrix, M. J., & Futscher, B. W. (2000). Epigenetic silencing of maspin gene expression in human breast cancers. International Journal of Cancer, 85(6), 805–810. Domann, F. E., Rice, J. C., Hendrix, M. J., & Futscher, B. W. (2000). Epigenetic silencing of maspin gene expression in human breast cancers. International Journal of Cancer, 85(6), 805–810.
108.
go back to reference Murakami, J., Asaumi, J., Maki, Y., Tsujigiwa, H., Kuroda, M., Nagai, N., et al. (2004). Effects of demethylating agent 5-aza-2(')-deoxycytidine and histone deacetylase inhibitor FR901228 on maspin gene expression in oral cancer cell lines. Oral Oncology, 40(6), 597–603.PubMed Murakami, J., Asaumi, J., Maki, Y., Tsujigiwa, H., Kuroda, M., Nagai, N., et al. (2004). Effects of demethylating agent 5-aza-2(')-deoxycytidine and histone deacetylase inhibitor FR901228 on maspin gene expression in oral cancer cell lines. Oral Oncology, 40(6), 597–603.PubMed
109.
go back to reference Akiyama, Y., Maesawa, C., Ogasawara, S., Terashima, M., & Masuda, T. (2003). Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. The American Journal of Pathology, 163(5), 1911–1919.PubMed Akiyama, Y., Maesawa, C., Ogasawara, S., Terashima, M., & Masuda, T. (2003). Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. The American Journal of Pathology, 163(5), 1911–1919.PubMed
110.
go back to reference Terashima, M., Maesawa, C., Oyama, K., Ohtani, S., Akiyama, Y., Ogasawara, S., et al. (2005). Gene expression profiles in human gastric cancer: Expression of maspin correlates with lymph node metastasis. British Journal of Cancer, 92(6), 1130–1136.PubMed Terashima, M., Maesawa, C., Oyama, K., Ohtani, S., Akiyama, Y., Ogasawara, S., et al. (2005). Gene expression profiles in human gastric cancer: Expression of maspin correlates with lymph node metastasis. British Journal of Cancer, 92(6), 1130–1136.PubMed
111.
go back to reference Wada, K., Maesawa, C., Akasaka, T., & Masuda, T. (2004). Aberrant expression of the maspin gene associated with epigenetic modification in melanoma cells. The Journal of Investigative Dermatology, 122(3), 805–811.PubMed Wada, K., Maesawa, C., Akasaka, T., & Masuda, T. (2004). Aberrant expression of the maspin gene associated with epigenetic modification in melanoma cells. The Journal of Investigative Dermatology, 122(3), 805–811.PubMed
112.
go back to reference Noda, M., Kitayama, H., Matsuzaki, T., Sugimoto, Y., Okayama, H., Bassin, R. H., et al. (1989). Detection of genes with a potential for suppressing the transformed phenotype associated with activated ras genes. Proceedings of the National Academy of Sciences of the United States of America, 86(1), 162–166.PubMed Noda, M., Kitayama, H., Matsuzaki, T., Sugimoto, Y., Okayama, H., Bassin, R. H., et al. (1989). Detection of genes with a potential for suppressing the transformed phenotype associated with activated ras genes. Proceedings of the National Academy of Sciences of the United States of America, 86(1), 162–166.PubMed
113.
go back to reference Takahashi, C., Sheng, Z., Horan, T. P., Kitayama, H., Maki, M., Hitomi, K., et al. (1998). Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 13221–13226.PubMed Takahashi, C., Sheng, Z., Horan, T. P., Kitayama, H., Maki, M., Hitomi, K., et al. (1998). Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 13221–13226.PubMed
114.
go back to reference Oh, J., Takahashi, R., Kondo, S., Mizoguchi, A., Adachi, E., Sasahara, R. M., et al. (2001). The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell, 107(6), 789–800.PubMed Oh, J., Takahashi, R., Kondo, S., Mizoguchi, A., Adachi, E., Sasahara, R. M., et al. (2001). The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell, 107(6), 789–800.PubMed
115.
go back to reference Masui, T., Doi, R., Koshiba, T., Fujimoto, K., Tsuji, S., Nakajima, S., et al. (2003). RECK expression in pancreatic cancer: İts correlation with lower invasiveness and better prognosis. Clinical Cancer Research, 9(5), 1779–1784.PubMed Masui, T., Doi, R., Koshiba, T., Fujimoto, K., Tsuji, S., Nakajima, S., et al. (2003). RECK expression in pancreatic cancer: İts correlation with lower invasiveness and better prognosis. Clinical Cancer Research, 9(5), 1779–1784.PubMed
116.
go back to reference Span, P. N., Sweep, C. G., Manders, P., Beex, L. V., Leppert, D., & Lindberg, R. L. (2003). Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs: A prognostic marker for good clinical outcome in human breast carcinoma. Cancer, 97(11), 2710–2715.PubMed Span, P. N., Sweep, C. G., Manders, P., Beex, L. V., Leppert, D., & Lindberg, R. L. (2003). Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs: A prognostic marker for good clinical outcome in human breast carcinoma. Cancer, 97(11), 2710–2715.PubMed
117.
go back to reference Takenaka, K., Ishikawa, S., Kawano, Y., Yanagihara, K., Miyahara, R., Otake, Y., et al. (2004). Expression of a novel matrix metalloproteinase regulator, RECK, and its clinical significance in resected non-small cell lung cancer. European Journal of Cancer, 40(10), 1617–1623.PubMed Takenaka, K., Ishikawa, S., Kawano, Y., Yanagihara, K., Miyahara, R., Otake, Y., et al. (2004). Expression of a novel matrix metalloproteinase regulator, RECK, and its clinical significance in resected non-small cell lung cancer. European Journal of Cancer, 40(10), 1617–1623.PubMed
118.
go back to reference Takeuchi, T., Hisanaga, M., Nagao, M., Ikeda, N., Fujii, H., Koyama, F., et al. (2004). The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer. Clinical Cancer Research, 10(16), 5572–5579.PubMed Takeuchi, T., Hisanaga, M., Nagao, M., Ikeda, N., Fujii, H., Koyama, F., et al. (2004). The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer. Clinical Cancer Research, 10(16), 5572–5579.PubMed
119.
go back to reference Takenaka, K., Ishikawa, S., Yanagihara, K., Miyahara, R., Hasegawa, S., Otake, Y., et al. (2005). Prognostic significance of reversion-inducing cysteine-rich protein with Kazal motifs expression in resected pathologic stage IIIA N2 non-small-cell lung cancer. Annals of Surgical Oncology, 12(10), 817–824.PubMed Takenaka, K., Ishikawa, S., Yanagihara, K., Miyahara, R., Hasegawa, S., Otake, Y., et al. (2005). Prognostic significance of reversion-inducing cysteine-rich protein with Kazal motifs expression in resected pathologic stage IIIA N2 non-small-cell lung cancer. Annals of Surgical Oncology, 12(10), 817–824.PubMed
120.
go back to reference van der Jagt, M. F., Sweep, F. C., Waas, E. T., Hendriks, T., Ruers, T. J., Merry, A. H., et al. (2006). Correlation of reversion-inducing cysteine-rich protein with kazal motifs (RECK) and extracellular matrix metalloproteinase inducer (EMMPRIN), with MMP-2, MMP-9, and survival in colorectal cancer. Cancer Letters, 237(2), 289–297.PubMed van der Jagt, M. F., Sweep, F. C., Waas, E. T., Hendriks, T., Ruers, T. J., Merry, A. H., et al. (2006). Correlation of reversion-inducing cysteine-rich protein with kazal motifs (RECK) and extracellular matrix metalloproteinase inducer (EMMPRIN), with MMP-2, MMP-9, and survival in colorectal cancer. Cancer Letters, 237(2), 289–297.PubMed
121.
go back to reference Cho, C. Y., Wang, J. H., Chang, H. C., Chang, C. K., & Hung, W. C. (2007). Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. Journal of Cellular Physiology, 213(1), 65–69.PubMed Cho, C. Y., Wang, J. H., Chang, H. C., Chang, C. K., & Hung, W. C. (2007). Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. Journal of Cellular Physiology, 213(1), 65–69.PubMed
122.
go back to reference Chang, H. C., Cho, C. Y., & Hung, W. C. (2007). Downregulation of RECK by promoter methylation correlates with lymph node metastasis in non-small cell lung cancer. Cancer Science, 98(2), 169–173.PubMed Chang, H. C., Cho, C. Y., & Hung, W. C. (2007). Downregulation of RECK by promoter methylation correlates with lymph node metastasis in non-small cell lung cancer. Cancer Science, 98(2), 169–173.PubMed
123.
go back to reference Ichikawa, T., Kyprianou, N., & Isaacs, J. T. (1990). Genetic instability and the acquisition of metastatic ability by rat mammary cancer cells following v-H-ras oncogene transfection. Cancer Research, 50(19), 6349–6357.PubMed Ichikawa, T., Kyprianou, N., & Isaacs, J. T. (1990). Genetic instability and the acquisition of metastatic ability by rat mammary cancer cells following v-H-ras oncogene transfection. Cancer Research, 50(19), 6349–6357.PubMed
124.
go back to reference Chang, H. C., Liu, L. T., & Hung, W. C. (2004). Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cellular Signalling, 16(6), 675–679.PubMed Chang, H. C., Liu, L. T., & Hung, W. C. (2004). Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cellular Signalling, 16(6), 675–679.PubMed
125.
go back to reference Chang, H. C., Cho, C. Y., & Hung, W. C. (2006). Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Research, 66(17), 8413–8420.PubMed Chang, H. C., Cho, C. Y., & Hung, W. C. (2006). Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Research, 66(17), 8413–8420.PubMed
126.
go back to reference Van Veldhuizen, P. J., Sadasivan, R., Cherian, R., & Wyatt, A. (1996). Urokinase-type plasminogen activator expression in human prostate carcinomas. The American Journal of the Medical Sciences, 312(1), 8–11.PubMed Van Veldhuizen, P. J., Sadasivan, R., Cherian, R., & Wyatt, A. (1996). Urokinase-type plasminogen activator expression in human prostate carcinomas. The American Journal of the Medical Sciences, 312(1), 8–11.PubMed
127.
go back to reference Lakka, S. S., Bhattacharya, A., Mohanam, S., Boyd, D., & Rao, J. S. (2001). Regulation of the uPA gene in various grades of human glioma cells. International Journal of Oncology, 18(1), 71–79.PubMed Lakka, S. S., Bhattacharya, A., Mohanam, S., Boyd, D., & Rao, J. S. (2001). Regulation of the uPA gene in various grades of human glioma cells. International Journal of Oncology, 18(1), 71–79.PubMed
128.
go back to reference Look, M. P., & Foekens, J. A. (1999). Clinical relevance of the urokinase plasminogen activator system in breast cancer. APMIS, 107(1), 150–159.PubMed Look, M. P., & Foekens, J. A. (1999). Clinical relevance of the urokinase plasminogen activator system in breast cancer. APMIS, 107(1), 150–159.PubMed
129.
go back to reference Pyke, C., Kristensen, P., Ralfkiaer, E., Grondahl-Hansen, J., Eriksen, J., Blasi, F., et al. (1991). Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. The American Journal of Pathology, 138(5), 1059–1067.PubMed Pyke, C., Kristensen, P., Ralfkiaer, E., Grondahl-Hansen, J., Eriksen, J., Blasi, F., et al. (1991). Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. The American Journal of Pathology, 138(5), 1059–1067.PubMed
130.
go back to reference Skriver, L., Larsson, L. I., Kielberg, V., Nielsen, L. S., Andresen, P. B., Kristensen, P., et al. (1984). Immunocytochemical localization of urokinase-type plasminogen activator in Lewis lung carcinoma. The Journal of Cell Biology, 99(2), 753–757.PubMed Skriver, L., Larsson, L. I., Kielberg, V., Nielsen, L. S., Andresen, P. B., Kristensen, P., et al. (1984). Immunocytochemical localization of urokinase-type plasminogen activator in Lewis lung carcinoma. The Journal of Cell Biology, 99(2), 753–757.PubMed
131.
go back to reference Rabbani, S. A., & Mazar, A. P. (2001). The role of the plasminogen activation system in angiogenesis and metastasis. Surgical Oncology Clinics of North America, 10(2), 393–415. x.PubMed Rabbani, S. A., & Mazar, A. P. (2001). The role of the plasminogen activation system in angiogenesis and metastasis. Surgical Oncology Clinics of North America, 10(2), 393–415. x.PubMed
132.
go back to reference Stewart, D. A., Cooper, C. R., & Sikes, R. A. (2004). Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reproductive Biology and Endocrinology, 2, 2.PubMed Stewart, D. A., Cooper, C. R., & Sikes, R. A. (2004). Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reproductive Biology and Endocrinology, 2, 2.PubMed
133.
go back to reference Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Research, 63(7), 1684–1695.PubMed Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Research, 63(7), 1684–1695.PubMed
134.
go back to reference Hsu, D. W., Efird, J. T., & Hedley-Whyte, E. T. (1995). Prognostic role of urokinase-type plasminogen activator in human gliomas. The American Journal of Pathology, 147(1), 114–123.PubMed Hsu, D. W., Efird, J. T., & Hedley-Whyte, E. T. (1995). Prognostic role of urokinase-type plasminogen activator in human gliomas. The American Journal of Pathology, 147(1), 114–123.PubMed
135.
go back to reference Miyake, H., Hara, I., Yamanaka, K., Arakawa, S., & Kamidono, S. (1999). Elevation of urokinase-type plasminogen activator and its receptor densities as new predictors of disease progression and prognosis in men with prostate cancer. International Journal of Oncology, 14(3), 535–541.PubMed Miyake, H., Hara, I., Yamanaka, K., Arakawa, S., & Kamidono, S. (1999). Elevation of urokinase-type plasminogen activator and its receptor densities as new predictors of disease progression and prognosis in men with prostate cancer. International Journal of Oncology, 14(3), 535–541.PubMed
136.
go back to reference Schweinitz, A., Steinmetzer, T., Banke, I. J., Arlt, M. J., Sturzebecher, A., Schuster, O., et al. (2004). Design of novel and selective inhibitors of urokinase-type plasminogen activator with improved pharmacokinetic properties for use as antimetastatic agents. The Journal of Biological Chemistry, 279(32), 33613–33622.PubMed Schweinitz, A., Steinmetzer, T., Banke, I. J., Arlt, M. J., Sturzebecher, A., Schuster, O., et al. (2004). Design of novel and selective inhibitors of urokinase-type plasminogen activator with improved pharmacokinetic properties for use as antimetastatic agents. The Journal of Biological Chemistry, 279(32), 33613–33622.PubMed
137.
go back to reference Pulukuri, S. M., Gondi, C. S., Lakka, S. S., Jutla, A., Estes, N., Gujrati, M., et al. (2005). RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. The Journal of Biological Chemistry, 280(43), 36529–36540.PubMed Pulukuri, S. M., Gondi, C. S., Lakka, S. S., Jutla, A., Estes, N., Gujrati, M., et al. (2005). RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. The Journal of Biological Chemistry, 280(43), 36529–36540.PubMed
138.
go back to reference Gondi, C. S., Lakka, S. S., Yanamandra, N., Siddique, K., Dinh, D. H., Olivero, W. C., et al. (2003). Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene, 22(38), 5967–5975.PubMed Gondi, C. S., Lakka, S. S., Yanamandra, N., Siddique, K., Dinh, D. H., Olivero, W. C., et al. (2003). Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene, 22(38), 5967–5975.PubMed
139.
go back to reference Pakneshan, P., Tetu, B., & Rabbani, S. A. (2004). Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clinical Cancer Research, 10(9), 3035–3041.PubMed Pakneshan, P., Tetu, B., & Rabbani, S. A. (2004). Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clinical Cancer Research, 10(9), 3035–3041.PubMed
140.
go back to reference Guo, Y., Pakneshan, P., Gladu, J., Slack, A., Szyf, M., & Rabbani, S. A. (2002). Regulation of DNA methylation in human breast cancer. Effect on the urokinase-type plasminogen activator gene production and tumor invasion. The Journal of Biological Chemistry, 277(44), 41571–41579.PubMed Guo, Y., Pakneshan, P., Gladu, J., Slack, A., Szyf, M., & Rabbani, S. A. (2002). Regulation of DNA methylation in human breast cancer. Effect on the urokinase-type plasminogen activator gene production and tumor invasion. The Journal of Biological Chemistry, 277(44), 41571–41579.PubMed
141.
go back to reference Pakneshan, P., Xing, R. H., & Rabbani, S. A. (2003). Methylation status of uPA promoter as a molecular mechanism regulating prostate cancer invasion and growth in vitro and in vivo. The FASEB Journal, 17(9), 1081–1088.PubMed Pakneshan, P., Xing, R. H., & Rabbani, S. A. (2003). Methylation status of uPA promoter as a molecular mechanism regulating prostate cancer invasion and growth in vitro and in vivo. The FASEB Journal, 17(9), 1081–1088.PubMed
142.
go back to reference Detich, N., Hamm, S., Just, G., Knox, J. D., & Szyf, M. (2003). The methyl donor S-adenosylmethionine inhibits active demethylation of DNA: A candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. The Journal of Biological Chemistry, 278(23), 20812–20820.PubMed Detich, N., Hamm, S., Just, G., Knox, J. D., & Szyf, M. (2003). The methyl donor S-adenosylmethionine inhibits active demethylation of DNA: A candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. The Journal of Biological Chemistry, 278(23), 20812–20820.PubMed
143.
go back to reference Pakneshan, P., Szyf, M., Farias-Eisner, R., & Rabbani, S. A. (2004). Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. The Journal of Biological Chemistry, 279(30), 31735–31744.PubMed Pakneshan, P., Szyf, M., Farias-Eisner, R., & Rabbani, S. A. (2004). Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. The Journal of Biological Chemistry, 279(30), 31735–31744.PubMed
144.
go back to reference Slack, A., Bovenzi, V., Bigey, P., Ivanov, M. A., Ramchandani, S., Bhattacharya, S., et al. (2002). Antisense MBD2 gene therapy inhibits tumorigenesis. The Journal of Gene Medicine, 4(4), 381–389.PubMed Slack, A., Bovenzi, V., Bigey, P., Ivanov, M. A., Ramchandani, S., Bhattacharya, S., et al. (2002). Antisense MBD2 gene therapy inhibits tumorigenesis. The Journal of Gene Medicine, 4(4), 381–389.PubMed
145.
go back to reference Sansom, O. J., Berger, J., Bishop, S. M., Hendrich, B., Bird, A., & Clarke, A. R. (2003). Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genetics, 34(2), 145–147.PubMed Sansom, O. J., Berger, J., Bishop, S. M., Hendrich, B., Bird, A., & Clarke, A. R. (2003). Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genetics, 34(2), 145–147.PubMed
146.
go back to reference Shukeir, N., Pakneshan, P., Chen, G., Szyf, M., & Rabbani, S. A. (2006). Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Research, 66(18), 9202–9210.PubMed Shukeir, N., Pakneshan, P., Chen, G., Szyf, M., & Rabbani, S. A. (2006). Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Research, 66(18), 9202–9210.PubMed
147.
go back to reference Brehmer, B., Biesterfeld, S., & Jakse, G. (2003). Expression of matrix metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and -2) in prostate cancer tissue. Prostate Cancer and Prostatic Diseases, 6(3), 217–222.PubMed Brehmer, B., Biesterfeld, S., & Jakse, G. (2003). Expression of matrix metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and -2) in prostate cancer tissue. Prostate Cancer and Prostatic Diseases, 6(3), 217–222.PubMed
148.
go back to reference Ogishima, T., Shiina, H., Breault, J. E., Tabatabai, L., Bassett, W. W., Enokida, H., et al. (2005). Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clinical Cancer Research, 11(3), 1028–1036.PubMed Ogishima, T., Shiina, H., Breault, J. E., Tabatabai, L., Bassett, W. W., Enokida, H., et al. (2005). Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clinical Cancer Research, 11(3), 1028–1036.PubMed
149.
go back to reference Tokizane, T., Shiina, H., Igawa, M., Enokida, H., Urakami, S., Kawakami, T., et al. (2005). Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clinical Cancer Research, 11(16), 5793–5801.PubMed Tokizane, T., Shiina, H., Igawa, M., Enokida, H., Urakami, S., Kawakami, T., et al. (2005). Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clinical Cancer Research, 11(16), 5793–5801.PubMed
150.
go back to reference Liu, H., Liu, W., Wu, Y., Zhou, Y., Xue, R., Luo, C., et al. (2005). Loss of epigenetic control of synuclein-gamma gene as a molecular indicator of metastasis in a wide range of human cancers. Cancer Research, 65(17), 7635–7643.PubMed Liu, H., Liu, W., Wu, Y., Zhou, Y., Xue, R., Luo, C., et al. (2005). Loss of epigenetic control of synuclein-gamma gene as a molecular indicator of metastasis in a wide range of human cancers. Cancer Research, 65(17), 7635–7643.PubMed
151.
go back to reference Paredes, J., Albergaria, A., Oliveira, J. T., Jeronimo, C., Milanezi, F., & Schmitt, F. C. (2005). P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clinical Cancer Research, 11(16), 5869–5877.PubMed Paredes, J., Albergaria, A., Oliveira, J. T., Jeronimo, C., Milanezi, F., & Schmitt, F. C. (2005). P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clinical Cancer Research, 11(16), 5869–5877.PubMed
152.
go back to reference Nishigaki, M., Aoyagi, K., Danjoh, I., Fukaya, M., Yanagihara, K., Sakamoto, H., et al. (2005). Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Research, 65(6), 2115–2124.PubMed Nishigaki, M., Aoyagi, K., Danjoh, I., Fukaya, M., Yanagihara, K., Sakamoto, H., et al. (2005). Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Research, 65(6), 2115–2124.PubMed
153.
go back to reference Szyf, M. (2005). DNA methylation and demethylation as targets for anticancer therapy. Biochemistry, 70(5), 533–549.PubMed Szyf, M. (2005). DNA methylation and demethylation as targets for anticancer therapy. Biochemistry, 70(5), 533–549.PubMed
154.
go back to reference Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438(7070), 932–936.PubMed Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438(7070), 932–936.PubMed
155.
go back to reference Deroanne, C. F., Bonjean, K., Servotte, S., Devy, L., Colige, A., Clausse, N., et al. (2002). Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene, 21(3), 427–436.PubMed Deroanne, C. F., Bonjean, K., Servotte, S., Devy, L., Colige, A., Clausse, N., et al. (2002). Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene, 21(3), 427–436.PubMed
156.
go back to reference Boehm, T., Folkman, J., Browder, T., & O’Reilly, M. S. (1997). Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature, 390(6658), 404–407.PubMed Boehm, T., Folkman, J., Browder, T., & O’Reilly, M. S. (1997). Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature, 390(6658), 404–407.PubMed
157.
go back to reference Sahin, M., Sahin, E., & Gumuslu, S. (2009). Cyclooxygenase-2 in cancer and angiogenesis. Angiology, 60(2), 242–253.PubMed Sahin, M., Sahin, E., & Gumuslu, S. (2009). Cyclooxygenase-2 in cancer and angiogenesis. Angiology, 60(2), 242–253.PubMed
158.
go back to reference Qian, D. Z., Wang, X., Kachhap, S. K., Kato, Y., Wei, Y., Zhang, L., et al. (2004). The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Research, 64(18), 6626–6634.PubMed Qian, D. Z., Wang, X., Kachhap, S. K., Kato, Y., Wei, Y., Zhang, L., et al. (2004). The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Research, 64(18), 6626–6634.PubMed
159.
go back to reference Miao, H. Q., Soker, S., Feiner, L., Alonso, J. L., Raper, J. A., & Klagsbrun, M. (1999). Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: Functional competition of collapsin-1 and vascular endothelial growth factor-165. The Journal of Cell Biology, 146(1), 233–242.PubMed Miao, H. Q., Soker, S., Feiner, L., Alonso, J. L., Raper, J. A., & Klagsbrun, M. (1999). Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: Functional competition of collapsin-1 and vascular endothelial growth factor-165. The Journal of Cell Biology, 146(1), 233–242.PubMed
160.
go back to reference Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84(24), 9265–9269.PubMed Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84(24), 9265–9269.PubMed
161.
go back to reference Murohara, T., Asahara, T., Silver, M., Bauters, C., Masuda, H., Kalka, C., et al. (1998). Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. The Journal of Clinical Investigation, 101(11), 2567–2578.PubMed Murohara, T., Asahara, T., Silver, M., Bauters, C., Masuda, H., Kalka, C., et al. (1998). Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. The Journal of Clinical Investigation, 101(11), 2567–2578.PubMed
162.
go back to reference Duplain, H., Burcelin, R., Sartori, C., Cook, S., Egli, M., Lepori, M., et al. (2001). Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation, 104(3), 342–345.PubMed Duplain, H., Burcelin, R., Sartori, C., Cook, S., Egli, M., Lepori, M., et al. (2001). Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation, 104(3), 342–345.PubMed
163.
go back to reference Rossig, L., Li, H., Fisslthaler, B., Urbich, C., Fleming, I., Forstermann, U., et al. (2002). Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circulation Research, 91(9), 837–844.PubMed Rossig, L., Li, H., Fisslthaler, B., Urbich, C., Fleming, I., Forstermann, U., et al. (2002). Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circulation Research, 91(9), 837–844.PubMed
164.
go back to reference Altieri, D. C. (2003). Validating survivin as a cancer therapeutic target. Nature Reviews, 3(1), 46–54.PubMed Altieri, D. C. (2003). Validating survivin as a cancer therapeutic target. Nature Reviews, 3(1), 46–54.PubMed
165.
go back to reference Holash, J., Wiegand, S. J., & Yancopoulos, G. D. (1999). New model of tumor angiogenesis: Dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene, 18(38), 5356–5362.PubMed Holash, J., Wiegand, S. J., & Yancopoulos, G. D. (1999). New model of tumor angiogenesis: Dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene, 18(38), 5356–5362.PubMed
166.
go back to reference Gartel, A. L., & Radhakrishnan, S. K. (2005). Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Research, 65(10), 3980–3985.PubMed Gartel, A. L., & Radhakrishnan, S. K. (2005). Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Research, 65(10), 3980–3985.PubMed
167.
go back to reference Garner, E., & Raj, K. (2008). Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death. Cell Cycle, 7(3), 277–282.PubMed Garner, E., & Raj, K. (2008). Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death. Cell Cycle, 7(3), 277–282.PubMed
168.
go back to reference Hellebrekers, D. M., Castermans, K., Vire, E., Dings, R. P., Hoebers, N. T., Mayo, K. H., et al. (2006). Epigenetic regulation of tumor endothelial cell anergy: Silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Research, 66(22), 10770–10777.PubMed Hellebrekers, D. M., Castermans, K., Vire, E., Dings, R. P., Hoebers, N. T., Mayo, K. H., et al. (2006). Epigenetic regulation of tumor endothelial cell anergy: Silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Research, 66(22), 10770–10777.PubMed
169.
go back to reference Friedrich, M. G., Chandrasoma, S., Siegmund, K. D., Weisenberger, D. J., Cheng, J. C., Toma, M. I., et al. (2005). Prognostic relevance of methylation markers in patients with non-muscle invasive bladder carcinoma. European Journal of Cancer, 41(17), 2769–2778.PubMed Friedrich, M. G., Chandrasoma, S., Siegmund, K. D., Weisenberger, D. J., Cheng, J. C., Toma, M. I., et al. (2005). Prognostic relevance of methylation markers in patients with non-muscle invasive bladder carcinoma. European Journal of Cancer, 41(17), 2769–2778.PubMed
170.
go back to reference Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genetics, 24(1), 88–91.PubMed Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genetics, 24(1), 88–91.PubMed
171.
go back to reference Robertson, K. D., Ait-Si-Ali, S., Yokochi, T., Wade, P. A., Jones, P. L., & Wolffe, A. P. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genetics, 25(3), 338–342.PubMed Robertson, K. D., Ait-Si-Ali, S., Yokochi, T., Wade, P. A., Jones, P. L., & Wolffe, A. P. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genetics, 25(3), 338–342.PubMed
172.
go back to reference Franklin, S. L., Ferry, R. J., Jr., & Cohen, P. (2003). Rapid insulin-like growth factor (IGF)-independent effects of IGF binding protein-3 on endothelial cell survival. The Journal of Clinical Endocrinology and Metabolism, 88(2), 900–907.PubMed Franklin, S. L., Ferry, R. J., Jr., & Cohen, P. (2003). Rapid insulin-like growth factor (IGF)-independent effects of IGF binding protein-3 on endothelial cell survival. The Journal of Clinical Endocrinology and Metabolism, 88(2), 900–907.PubMed
173.
go back to reference Iwatsuki, K., Tanaka, K., Kaneko, T., Kazama, R., Okamoto, S., Nakayama, Y., et al. (2005). Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3. Oncogene, 24(7), 1129–1137.PubMed Iwatsuki, K., Tanaka, K., Kaneko, T., Kazama, R., Okamoto, S., Nakayama, Y., et al. (2005). Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3. Oncogene, 24(7), 1129–1137.PubMed
174.
go back to reference Chang, Y. S., Wang, L., Liu, D., Mao, L., Hong, W. K., Khuri, F. R., et al. (2002). Correlation between insulin-like growth factor-binding protein-3 promoter methylation and prognosis of patients with stage I non-small cell lung cancer. Clinical Cancer Research, 8(12), 3669–3675.PubMed Chang, Y. S., Wang, L., Liu, D., Mao, L., Hong, W. K., Khuri, F. R., et al. (2002). Correlation between insulin-like growth factor-binding protein-3 promoter methylation and prognosis of patients with stage I non-small cell lung cancer. Clinical Cancer Research, 8(12), 3669–3675.PubMed
175.
go back to reference Bocci, G., Francia, G., Man, S., Lawler, J., & Kerbel, R. S. (2003). Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12917–12922.PubMed Bocci, G., Francia, G., Man, S., Lawler, J., & Kerbel, R. S. (2003). Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12917–12922.PubMed
176.
go back to reference Passegue, E., & Wagner, E. F. (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. The EMBO Journal, 19(12), 2969–2979.PubMed Passegue, E., & Wagner, E. F. (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. The EMBO Journal, 19(12), 2969–2979.PubMed
177.
go back to reference Li, Q., Ahuja, N., Burger, P. C., & Issa, J. P. (1999). Methylation and silencing of the thrombospondin-1 promoter in human cancer. Oncogene, 18(21), 3284–3289.PubMed Li, Q., Ahuja, N., Burger, P. C., & Issa, J. P. (1999). Methylation and silencing of the thrombospondin-1 promoter in human cancer. Oncogene, 18(21), 3284–3289.PubMed
178.
go back to reference Yang, M. Y., Liu, T. C., Chang, J. G., Lin, P. M., & Lin, S. F. (2003). JunB gene expression is inactivated by methylation in chronic myeloid leukemia. Blood, 101(8), 3205–3211.PubMed Yang, M. Y., Liu, T. C., Chang, J. G., Lin, P. M., & Lin, S. F. (2003). JunB gene expression is inactivated by methylation in chronic myeloid leukemia. Blood, 101(8), 3205–3211.PubMed
179.
go back to reference Chen, T., Turner, J., McCarthy, S., Scaltriti, M., Bettuzzi, S., & Yeatman, T. J. (2004). Clusterin-mediated apoptosis is regulated by adenomatous polyposis coli and is p21 dependent but p53 independent. Cancer Research, 64(20), 7412–7419.PubMed Chen, T., Turner, J., McCarthy, S., Scaltriti, M., Bettuzzi, S., & Yeatman, T. J. (2004). Clusterin-mediated apoptosis is regulated by adenomatous polyposis coli and is p21 dependent but p53 independent. Cancer Research, 64(20), 7412–7419.PubMed
180.
go back to reference Zhang, H., Kim, J. K., Edwards, C. A., Xu, Z., Taichman, R., & Wang, C. Y. (2005). Clusterin inhibits apoptosis by interacting with activated Bax. Nature Cell Biology, 7(9), 909–915.PubMed Zhang, H., Kim, J. K., Edwards, C. A., Xu, Z., Taichman, R., & Wang, C. Y. (2005). Clusterin inhibits apoptosis by interacting with activated Bax. Nature Cell Biology, 7(9), 909–915.PubMed
181.
go back to reference Jackson, J. K., Gleave, M. E., Gleave, J., & Burt, H. M. (2005). The inhibition of angiogenesis by antisense oligonucleotides to clusterin. Angiogenesis, 8(3), 229–238.PubMed Jackson, J. K., Gleave, M. E., Gleave, J., & Burt, H. M. (2005). The inhibition of angiogenesis by antisense oligonucleotides to clusterin. Angiogenesis, 8(3), 229–238.PubMed
182.
go back to reference Sivamurthy, N., Stone, D. H., LoGerfo, F. W., & Quist, W. C. (2001). Apolipoprotein J inhibits the migration and adhesion of endothelial cells. Surgery, 130(2), 204–209.PubMed Sivamurthy, N., Stone, D. H., LoGerfo, F. W., & Quist, W. C. (2001). Apolipoprotein J inhibits the migration and adhesion of endothelial cells. Surgery, 130(2), 204–209.PubMed
183.
go back to reference Leskov, K. S., Klokov, D. Y., Li, J., Kinsella, T. J., & Boothman, D. A. (2003). Synthesis and functional analyses of nuclear clusterin, a cell death protein. The Journal of Biological Chemistry, 278(13), 11590–11600.PubMed Leskov, K. S., Klokov, D. Y., Li, J., Kinsella, T. J., & Boothman, D. A. (2003). Synthesis and functional analyses of nuclear clusterin, a cell death protein. The Journal of Biological Chemistry, 278(13), 11590–11600.PubMed
184.
go back to reference Handford, P. A. (2000). Fibrillin-1, a calcium binding protein of extracellular matrix. Biochimica et Biophysica Acta, 1498(2–3), 84–90.PubMed Handford, P. A. (2000). Fibrillin-1, a calcium binding protein of extracellular matrix. Biochimica et Biophysica Acta, 1498(2–3), 84–90.PubMed
185.
go back to reference Carta, L., Pereira, L., Arteaga-Solis, E., Lee-Arteaga, S. Y., Lenart, B., Starcher, B., et al. (2006). Fibrillins 1 and 2 perform partially overlapping functions during aortic development. The Journal of Biological Chemistry, 281(12), 8016–8023.PubMed Carta, L., Pereira, L., Arteaga-Solis, E., Lee-Arteaga, S. Y., Lenart, B., Starcher, B., et al. (2006). Fibrillins 1 and 2 perform partially overlapping functions during aortic development. The Journal of Biological Chemistry, 281(12), 8016–8023.PubMed
186.
go back to reference Wilson, D. G., Bellamy, M. F., Ramsey, M. W., Goodfellow, J., Brownlee, M., Davies, S., et al. (1999). Endothelial function in Marfan syndrome: Selective impairment of flow-mediated vasodilation. Circulation, 99(7), 909–915.PubMed Wilson, D. G., Bellamy, M. F., Ramsey, M. W., Goodfellow, J., Brownlee, M., Davies, S., et al. (1999). Endothelial function in Marfan syndrome: Selective impairment of flow-mediated vasodilation. Circulation, 99(7), 909–915.PubMed
187.
go back to reference Coppock, D. L., Cina-Poppe, D., & Gilleran, S. (1998). The quiescin Q6 gene (QSCN6) is a fusion of two ancient gene families: Thioredoxin and ERV1. Genomics, 54(3), 460–468.PubMed Coppock, D. L., Cina-Poppe, D., & Gilleran, S. (1998). The quiescin Q6 gene (QSCN6) is a fusion of two ancient gene families: Thioredoxin and ERV1. Genomics, 54(3), 460–468.PubMed
188.
go back to reference Chiba, T., Yokosuka, O., Fukai, K., Kojima, H., Tada, M., Arai, M., et al. (2004). Cell growth inhibition and gene expression induced by the histone deacetylase inhibitor, trichostatin A, on human hepatoma cells. Oncology, 66(6), 481–491.PubMed Chiba, T., Yokosuka, O., Fukai, K., Kojima, H., Tada, M., Arai, M., et al. (2004). Cell growth inhibition and gene expression induced by the histone deacetylase inhibitor, trichostatin A, on human hepatoma cells. Oncology, 66(6), 481–491.PubMed
189.
go back to reference Lund, P., Weisshaupt, K., Mikeska, T., Jammas, D., Chen, X., Kuban, R. J., et al. (2006). Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene, 25(35), 4890–4903.PubMed Lund, P., Weisshaupt, K., Mikeska, T., Jammas, D., Chen, X., Kuban, R. J., et al. (2006). Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene, 25(35), 4890–4903.PubMed
190.
go back to reference Lehnertz, B., Ueda, Y., Derijck, A. A., Braunschweig, U., Perez-Burgos, L., Kubicek, S., et al. (2003). Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Current Biology, 13(14), 1192–1200.PubMed Lehnertz, B., Ueda, Y., Derijck, A. A., Braunschweig, U., Perez-Burgos, L., Kubicek, S., et al. (2003). Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Current Biology, 13(14), 1192–1200.PubMed
191.
go back to reference Rountree, M. R., Bachman, K. E., & Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genetics, 25(3), 269–277.PubMed Rountree, M. R., Bachman, K. E., & Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genetics, 25(3), 269–277.PubMed
192.
go back to reference Feinberg, A. P., & Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301(5895), 89–92.PubMed Feinberg, A. P., & Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301(5895), 89–92.PubMed
193.
go back to reference Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L., & Jaenisch, R. (1998). DNA hypomethylation leads to elevated mutation rates. Nature, 395(6697), 89–93.PubMed Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L., & Jaenisch, R. (1998). DNA hypomethylation leads to elevated mutation rates. Nature, 395(6697), 89–93.PubMed
194.
go back to reference Bachman, K. E., Park, B. H., Rhee, I., Rajagopalan, H., Herman, J. G., Baylin, S. B., et al. (2003). Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell, 3(1), 89–95.PubMed Bachman, K. E., Park, B. H., Rhee, I., Rajagopalan, H., Herman, J. G., Baylin, S. B., et al. (2003). Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell, 3(1), 89–95.PubMed
195.
go back to reference Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon-Cardo, C., et al. (2000). Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Research, 60(18), 5165–5170.PubMed Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon-Cardo, C., et al. (2000). Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Research, 60(18), 5165–5170.PubMed
196.
go back to reference Saaristo, A., Karpanen, T., & Alitalo, K. (2000). Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene, 19(53), 6122–6129.PubMed Saaristo, A., Karpanen, T., & Alitalo, K. (2000). Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene, 19(53), 6122–6129.PubMed
197.
go back to reference Grady, W. M. (2005). Epigenetic events in the colorectum and in colon cancer. Biochemical Society Transactions, 33(Pt 4), 684–688.PubMed Grady, W. M. (2005). Epigenetic events in the colorectum and in colon cancer. Biochemical Society Transactions, 33(Pt 4), 684–688.PubMed
198.
go back to reference Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., & Herman, J. G. (2001). Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Human Molecular Genetics, 10(7), 687–692.PubMed Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., & Herman, J. G. (2001). Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Human Molecular Genetics, 10(7), 687–692.PubMed
199.
go back to reference Baylin, S. B., & Ohm, J. E. (2006). Epigenetic gene silencing in cancer—A mechanism for early oncogenic pathway addiction? Nature Reviews, 6(2), 107–116.PubMed Baylin, S. B., & Ohm, J. E. (2006). Epigenetic gene silencing in cancer—A mechanism for early oncogenic pathway addiction? Nature Reviews, 6(2), 107–116.PubMed
200.
go back to reference Maier, S., Dahlstroem, C., Haefliger, C., Plum, A., & Piepenbrock, C. (2005). Identifying DNA methylation biomarkers of cancer drug response. American Journal of Pharmacogenomics, 5(4), 223–232.PubMed Maier, S., Dahlstroem, C., Haefliger, C., Plum, A., & Piepenbrock, C. (2005). Identifying DNA methylation biomarkers of cancer drug response. American Journal of Pharmacogenomics, 5(4), 223–232.PubMed
201.
go back to reference Weiser, T. S., Guo, Z. S., Ohnmacht, G. A., Parkhurst, M. L., Tong-On, P., Marincola, F. M., et al. (2001). Sequential 5-Aza-2 deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1. Journal of Immunotherapy, 24(2), 151–161.PubMed Weiser, T. S., Guo, Z. S., Ohnmacht, G. A., Parkhurst, M. L., Tong-On, P., Marincola, F. M., et al. (2001). Sequential 5-Aza-2 deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1. Journal of Immunotherapy, 24(2), 151–161.PubMed
202.
go back to reference Gagnon, J., Shaker, S., Primeau, M., Hurtubise, A., & Momparler, R. L. (2003). Interaction of 5-aza-2'-deoxycytidine and depsipeptide on antineoplastic activity and activation of 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells. Anti-Cancer Drugs, 14(3), 193–202.PubMed Gagnon, J., Shaker, S., Primeau, M., Hurtubise, A., & Momparler, R. L. (2003). Interaction of 5-aza-2'-deoxycytidine and depsipeptide on antineoplastic activity and activation of 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells. Anti-Cancer Drugs, 14(3), 193–202.PubMed
Metadata
Title
DNA methylation or histone modification status in metastasis and angiogenesis-related genes: a new hypothesis on usage of DNMT inhibitors and S-adenosylmethionine for genome stability
Authors
Mehmet Şahin
Emel Şahin
Saadet Gümüşlü
Abdullah Erdoğan
Meral Gültekin
Publication date
01-12-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9253-0

Other articles of this Issue 4/2010

Cancer and Metastasis Reviews 4/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine