Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2010

01-12-2010 | NON-THEMATIC REVIEW

Metastasis-related miRNAs, active players in breast cancer invasion, and metastasis

Authors: Ming Shi, Dan Liu, Huijun Duan, Beifen Shen, Ning Guo

Published in: Cancer and Metastasis Reviews | Issue 4/2010

Login to get access

Abstract

Breast cancer is the most common malignancy with the highest incidence among women in the world. Metastasis is the major reason for breast cancer-related deaths. The precise molecular circuitry that governs the metastasis process has not been completely understood. Discoveries of microRNAs (miRNAs) open a new avenue for cancer metastasis research. It has become clear that alterations of miRNA expression contribute to cancer pathogenesis. miRNAs control a wide array of physiological and pathological processes, including development, differentiation, cellular proliferation, programmed cell death, oncogenesis, and metastasis by modulating the expression of their cognate target genes through cleaving mRNA molecules or inhibiting their translation. Some miRNAs are associated with the invasive and metastatic phenotype of breast cancer cell lines or identified in metastatic tumor tissues and lymph nodes. Some miRNAs serve as metastasis suppressors and their expression is frequently downregulated or lost in both breast cancer cell lines and metastatic foci. Some miRNAs are considered to play key roles in the phenotype formation of breast cancer stem cells. This review will focus on recent discoveries related to the miRNAs involved in the metastasis of breast cancer and discuss the implications for the diagnosis, prognosis, and therapeutic strategies of breast cancer.
Literature
1.
go back to reference Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA: A Cancer Journal for Clinicians, 60(5), 277–300. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA: A Cancer Journal for Clinicians, 60(5), 277–300.
2.
go back to reference Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews. Genetics, 9(2), 102–114.PubMed Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews. Genetics, 9(2), 102–114.PubMed
3.
go back to reference Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.PubMed Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.PubMed
4.
go back to reference Israel, A., Sharan, R., Ruppin, E., & Galun, E. (2009). Increased microRNA activity in human cancers. PLoS ONE, 4(6), e6045.PubMed Israel, A., Sharan, R., Ruppin, E., & Galun, E. (2009). Increased microRNA activity in human cancers. PLoS ONE, 4(6), e6045.PubMed
5.
go back to reference Dumont, N., & Tlsty, T. D. (2009). Reflections on miR-ing effects in metastasis. Cancer Cell, 16(1), 3–4.PubMed Dumont, N., & Tlsty, T. D. (2009). Reflections on miR-ing effects in metastasis. Cancer Cell, 16(1), 3–4.PubMed
6.
go back to reference Hurst, D. R., Edmonds, M. D., & Welch, D. R. (2009). Metastamir: The field of metastasis-regulatory microRNA is spreading. Cancer Research, 69(19), 7495–7498.PubMed Hurst, D. R., Edmonds, M. D., & Welch, D. R. (2009). Metastamir: The field of metastasis-regulatory microRNA is spreading. Cancer Research, 69(19), 7495–7498.PubMed
7.
go back to reference Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2999–3004.PubMed Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2999–3004.PubMed
8.
go back to reference Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M. S., Giannakakis, A., et al. (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9136–9141.PubMed Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M. S., Giannakakis, A., et al. (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9136–9141.PubMed
9.
go back to reference Sempere, L. F., Christensen, M., Silahtaroglu, A., Bak, M., Heath, C. V., Schwartz, G., et al. (2007). Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Research, 67(24), 11612–11620.PubMed Sempere, L. F., Christensen, M., Silahtaroglu, A., Bak, M., Heath, C. V., Schwartz, G., et al. (2007). Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Research, 67(24), 11612–11620.PubMed
10.
go back to reference Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070.PubMed Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070.PubMed
11.
go back to reference Yan, L. X., Huang, X. F., Shao, Q., Huang, M. Y., Deng, L., Wu, Q. L., et al. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 14(11), 2348–2360.PubMed Yan, L. X., Huang, X. F., Shao, Q., Huang, M. Y., Deng, L., Wu, Q. L., et al. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 14(11), 2348–2360.PubMed
12.
go back to reference Fassan, M., Baffa, R., Palazzo, J. P., Lloyd, J., Crosariol, M., Liu, C. G., et al. (2009). MicroRNA expression profiling of male breast cancer. Breast Cancer Research, 11(4), R58.PubMed Fassan, M., Baffa, R., Palazzo, J. P., Lloyd, J., Crosariol, M., Liu, C. G., et al. (2009). MicroRNA expression profiling of male breast cancer. Breast Cancer Research, 11(4), R58.PubMed
13.
go back to reference Lehmann, U., Streichert, T., Otto, B., Albat, C., Hasemeier, B., Christgen, H., et al. (2010). Identification of differentially expressed microRNAs in human male breast cancer. BMC Cancer, 10, 109.PubMed Lehmann, U., Streichert, T., Otto, B., Albat, C., Hasemeier, B., Christgen, H., et al. (2010). Identification of differentially expressed microRNAs in human male breast cancer. BMC Cancer, 10, 109.PubMed
14.
go back to reference Blenkiron, C., Goldstein, L. D., Thorne, N. P., Spiteri, I., Chin, S. F., Dunning, M. J., et al. (2007). MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biology, 8(10), R214.PubMed Blenkiron, C., Goldstein, L. D., Thorne, N. P., Spiteri, I., Chin, S. F., Dunning, M. J., et al. (2007). MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biology, 8(10), R214.PubMed
15.
go back to reference Van ’T Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536.PubMed Van ’T Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536.PubMed
16.
go back to reference Sotiriou, C., Wirapati, P., Loi, S., Harris, A., Fox, S., Smeds, J., et al. (2006). Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis. Journal of the National Cancer Institute, 98(4), 262–272.PubMed Sotiriou, C., Wirapati, P., Loi, S., Harris, A., Fox, S., Smeds, J., et al. (2006). Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis. Journal of the National Cancer Institute, 98(4), 262–272.PubMed
17.
go back to reference Yu, K., Lee, C. H., Tan, P. H., Hong, G. S., Wee, S. B., Wong, C. Y., et al. (2004). A molecular signature of the Nottingham prognostic index in breast cancer. Cancer Research, 64(9), 2962–2968.PubMed Yu, K., Lee, C. H., Tan, P. H., Hong, G. S., Wee, S. B., Wong, C. Y., et al. (2004). A molecular signature of the Nottingham prognostic index in breast cancer. Cancer Research, 64(9), 2962–2968.PubMed
18.
go back to reference Yu, J. X., Sieuwerts, A. M., Zhang, Y., Martens, J. W., Smid, M., Klijn, J. G., et al. (2007). Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer, 7, 182.PubMed Yu, J. X., Sieuwerts, A. M., Zhang, Y., Martens, J. W., Smid, M., Klijn, J. G., et al. (2007). Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer, 7, 182.PubMed
19.
go back to reference Baffa, R., Fassan, M., Volinia, S., O’hara, B., Liu, C. G., Palazzo, J. P., et al. (2009). MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. The Journal of Pathology, 219(2), 214–221.PubMed Baffa, R., Fassan, M., Volinia, S., O’hara, B., Liu, C. G., Palazzo, J. P., et al. (2009). MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. The Journal of Pathology, 219(2), 214–221.PubMed
20.
go back to reference Anand, S., Majeti, B. K., Acevedo, L. M., Murphy, E. A., Mukthavaram, R., Scheppke, L., et al. (2010). MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nature Medicine, 16(8), 909–914.PubMed Anand, S., Majeti, B. K., Acevedo, L. M., Murphy, E. A., Mukthavaram, R., Scheppke, L., et al. (2010). MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nature Medicine, 16(8), 909–914.PubMed
21.
go back to reference Qian, B., Katsaros, D., Lu, L., Preti, M., Durando, A., Arisio, R., et al. (2009). High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Research and Treatment, 117(1), 131–140.PubMed Qian, B., Katsaros, D., Lu, L., Preti, M., Durando, A., Arisio, R., et al. (2009). High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Research and Treatment, 117(1), 131–140.PubMed
22.
go back to reference Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.PubMed Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.PubMed
23.
go back to reference Song, B., Wang, C., Liu, J., Wang, X., Lv, L., Wei, L., et al. (2010). MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. Journal of Experimental & Clinical Cancer Research, 29, 29. Song, B., Wang, C., Liu, J., Wang, X., Lv, L., Wei, L., et al. (2010). MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. Journal of Experimental & Clinical Cancer Research, 29, 29.
24.
go back to reference Huang, T. H., Wu, F., Loeb, G. B., Hsu, R., Heidersbach, A., Brincat, A., et al. (2009). Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. The Journal of Biological Chemistry, 284(27), 18515–18524.PubMed Huang, T. H., Wu, F., Loeb, G. B., Hsu, R., Heidersbach, A., Brincat, A., et al. (2009). Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. The Journal of Biological Chemistry, 284(27), 18515–18524.PubMed
25.
go back to reference Huang, G. L., Zhang, X. H., Guo, G. L., Huang, K. T., Yang, K. Y., Shen, X., et al. (2009). Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncology Reports, 21(3), 673–679.PubMed Huang, G. L., Zhang, X. H., Guo, G. L., Huang, K. T., Yang, K. Y., Shen, X., et al. (2009). Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncology Reports, 21(3), 673–679.PubMed
26.
go back to reference Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.PubMed Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.PubMed
27.
go back to reference Carrio, M., Arderiu, G., Myers, C., & Boudreau, N. J. (2005). Homeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Research, 65(16), 7177–7185.PubMed Carrio, M., Arderiu, G., Myers, C., & Boudreau, N. J. (2005). Homeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Research, 65(16), 7177–7185.PubMed
28.
go back to reference Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., et al. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28(4), 341–347.PubMed Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., et al. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28(4), 341–347.PubMed
29.
go back to reference Moriarty, C. H., Pursell, B., & Mercurio, A. M. (2010). miR-10b targets Tiam1: Implications for Rac activation and carcinoma migration. The Journal of Biological Chemistry, 285(27), 20541–20546.PubMed Moriarty, C. H., Pursell, B., & Mercurio, A. M. (2010). miR-10b targets Tiam1: Implications for Rac activation and carcinoma migration. The Journal of Biological Chemistry, 285(27), 20541–20546.PubMed
30.
go back to reference Gee, H. E., Camps, C., Buffa, F. M., Colella, S., Sheldon, H., & Gleadle, J. M. (2008). MicroRNA-10b and breast cancer metastasis. Nature, 455(7216), E8–E9. author reply E9.PubMed Gee, H. E., Camps, C., Buffa, F. M., Colella, S., Sheldon, H., & Gleadle, J. M. (2008). MicroRNA-10b and breast cancer metastasis. Nature, 455(7216), E8–E9. author reply E9.PubMed
31.
go back to reference Voorhoeve, P. M., Le Sage, C., Schrier, M., Gillis, A. J., Stoop, H., Nagel, R., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 124(6), 1169–1181.PubMed Voorhoeve, P. M., Le Sage, C., Schrier, M., Gillis, A. J., Stoop, H., Nagel, R., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 124(6), 1169–1181.PubMed
32.
go back to reference Huang, Q., Gumireddy, K., Schrier, M., Le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210.PubMed Huang, Q., Gumireddy, K., Schrier, M., Le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210.PubMed
33.
go back to reference Crosby, M. E., Devlin, C. M., Glazer, P. M., Calin, G. A., & Ivan, M. (2009). Emerging roles of microRNAs in the molecular responses to hypoxia. Current Pharmaceutical Design, 15(33), 3861–3866.PubMed Crosby, M. E., Devlin, C. M., Glazer, P. M., Calin, G. A., & Ivan, M. (2009). Emerging roles of microRNAs in the molecular responses to hypoxia. Current Pharmaceutical Design, 15(33), 3861–3866.PubMed
34.
go back to reference Crosby, M. E., Kulshreshtha, R., Ivan, M., & Glazer, P. M. (2009). MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Research, 69(3), 1221–1229.PubMed Crosby, M. E., Kulshreshtha, R., Ivan, M., & Glazer, P. M. (2009). MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Research, 69(3), 1221–1229.PubMed
35.
go back to reference Batty, D., Rapic’-Otrin, V., Levine, A. S., & Wood, R. D. (2000). Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. Journal of Molecular Biology, 300(2), 275–290.PubMed Batty, D., Rapic’-Otrin, V., Levine, A. S., & Wood, R. D. (2000). Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. Journal of Molecular Biology, 300(2), 275–290.PubMed
36.
go back to reference Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMed Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMed
37.
go back to reference Voulgari, A., & Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et Biophysica Acta, 1796(2), 75–90.PubMed Voulgari, A., & Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et Biophysica Acta, 1796(2), 75–90.PubMed
38.
go back to reference Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMed Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMed
39.
go back to reference Sun, Y., Wu, J., Wu, S. H., Thakur, A., Bollig, A., Huang, Y., et al. (2009). Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Research and Treatment, 118(1), 185–196.PubMed Sun, Y., Wu, J., Wu, S. H., Thakur, A., Bollig, A., Huang, Y., et al. (2009). Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Research and Treatment, 118(1), 185–196.PubMed
40.
go back to reference Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell, 141(7), 1195–1207.PubMed Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell, 141(7), 1195–1207.PubMed
41.
go back to reference Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.PubMed Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.PubMed
42.
go back to reference Grelier, G., Voirin, N., Ay, A. S., Cox, D. G., Chabaud, S., Treilleux, I., et al. (2009). Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. British Journal of Cancer, 101(4), 673–683.PubMed Grelier, G., Voirin, N., Ay, A. S., Cox, D. G., Chabaud, S., Treilleux, I., et al. (2009). Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. British Journal of Cancer, 101(4), 673–683.PubMed
43.
go back to reference Merritt, W. M., Lin, Y. G., Han, L. Y., Kamat, A. A., Spannuth, W. A., Schmandt, R., et al. (2008). Dicer, Drosha, and outcomes in patients with ovarian cancer. The New England Journal of Medicine, 359(25), 2641–2650.PubMed Merritt, W. M., Lin, Y. G., Han, L. Y., Kamat, A. A., Spannuth, W. A., Schmandt, R., et al. (2008). Dicer, Drosha, and outcomes in patients with ovarian cancer. The New England Journal of Medicine, 359(25), 2641–2650.PubMed
44.
go back to reference Kumar, M. S., Pester, R. E., Chen, C. Y., Lane, K., Chin, C., Lu, J., et al. (2009). Dicer1 functions as a haploinsufficient tumor suppressor. Genes & Development, 23(23), 2700–2704. Kumar, M. S., Pester, R. E., Chen, C. Y., Lane, K., Chin, C., Lu, J., et al. (2009). Dicer1 functions as a haploinsufficient tumor suppressor. Genes & Development, 23(23), 2700–2704.
45.
go back to reference Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.PubMed Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.PubMed
46.
go back to reference Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R., & Jacks, T. (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genetics, 39(5), 673–677.PubMed Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R., & Jacks, T. (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genetics, 39(5), 673–677.PubMed
47.
go back to reference Inui, M., Martello, G., & Piccolo, S. (2010). MicroRNA control of signal transduction. Nature Reviews. Molecular Cell Biology, 11(4), 252–263.PubMed Inui, M., Martello, G., & Piccolo, S. (2010). MicroRNA control of signal transduction. Nature Reviews. Molecular Cell Biology, 11(4), 252–263.PubMed
48.
go back to reference Hoser, M., Baader, S. L., Bosl, M. R., Ihmer, A., Wegner, M., & Sock, E. (2007). Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. The Journal of Neuroscience, 27(20), 5495–5505.PubMed Hoser, M., Baader, S. L., Bosl, M. R., Ihmer, A., Wegner, M., & Sock, E. (2007). Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. The Journal of Neuroscience, 27(20), 5495–5505.PubMed
49.
go back to reference Scharer, C. D., Mccabe, C. D., Ali-Seyed, M., Berger, M. F., Bulyk, M. L., & Moreno, C. S. (2009). Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Research, 69(2), 709–717.PubMed Scharer, C. D., Mccabe, C. D., Ali-Seyed, M., Berger, M. F., Bulyk, M. L., & Moreno, C. S. (2009). Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Research, 69(2), 709–717.PubMed
50.
go back to reference Orend, G., & Chiquet-Ehrismann, R. (2006). Tenascin-C induced signaling in cancer. Cancer Letters, 244(2), 143–163.PubMed Orend, G., & Chiquet-Ehrismann, R. (2006). Tenascin-C induced signaling in cancer. Cancer Letters, 244(2), 143–163.PubMed
51.
go back to reference Liu, B., Peng, X. C., Zheng, X. L., Wang, J., & Qin, Y. W. (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 66(2), 169–175.PubMed Liu, B., Peng, X. C., Zheng, X. L., Wang, J., & Qin, Y. W. (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 66(2), 169–175.PubMed
52.
go back to reference Crawford, M., Brawner, E., Batte, K., Yu, L., Hunter, M. G., Otterson, G. A., et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochemical and Biophysical Research Communications, 373(4), 607–612.PubMed Crawford, M., Brawner, E., Batte, K., Yu, L., Hunter, M. G., Otterson, G. A., et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochemical and Biophysical Research Communications, 373(4), 607–612.PubMed
53.
go back to reference Feng, R., Chen, X., Yu, Y., Su, L., Yu, B., Li, J., et al. (2010). miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Letters, 298(1), 50–63.PubMed Feng, R., Chen, X., Yu, Y., Su, L., Yu, B., Li, J., et al. (2010). miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Letters, 298(1), 50–63.PubMed
54.
go back to reference Li, X., Shen, Y., Ichikawa, H., Antes, T., & Goldberg, G. S. (2009). Regulation of miRNA expression by Src and contact normalization: Effects on nonanchored cell growth and migration. Oncogene, 28(48), 4272–4283.PubMed Li, X., Shen, Y., Ichikawa, H., Antes, T., & Goldberg, G. S. (2009). Regulation of miRNA expression by Src and contact normalization: Effects on nonanchored cell growth and migration. Oncogene, 28(48), 4272–4283.PubMed
55.
go back to reference Feller, S. M. (2001). Crk family adaptors-signalling complex formation and biological roles. Oncogene, 20(44), 6348–6371.PubMed Feller, S. M. (2001). Crk family adaptors-signalling complex formation and biological roles. Oncogene, 20(44), 6348–6371.PubMed
56.
go back to reference Calvo, A., Catena, R., Noble, M. S., Carbott, D., Gil-Bazo, I., Gonzalez-Moreno, O., et al. (2008). Identification of VEGF-regulated genes associated with increased lung metastatic potential: Functional involvement of tenascin-C in tumor growth and lung metastasis. Oncogene, 27(40), 5373–5384.PubMed Calvo, A., Catena, R., Noble, M. S., Carbott, D., Gil-Bazo, I., Gonzalez-Moreno, O., et al. (2008). Identification of VEGF-regulated genes associated with increased lung metastatic potential: Functional involvement of tenascin-C in tumor growth and lung metastasis. Oncogene, 27(40), 5373–5384.PubMed
57.
go back to reference Cueni, L. N., Hegyi, I., Shin, J. W., Albinger-Hegyi, A., Gruber, S., Kunstfeld, R., et al. (2010). Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. The American Journal of Pathology, 177(2), 1004–1016.PubMed Cueni, L. N., Hegyi, I., Shin, J. W., Albinger-Hegyi, A., Gruber, S., Kunstfeld, R., et al. (2010). Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. The American Journal of Pathology, 177(2), 1004–1016.PubMed
58.
go back to reference Naugler, W. E., & Karin, M. (2008). NF-kappaB and cancer-identifying targets and mechanisms. Current Opinion in Genetics & Development, 18(1), 19–26. Naugler, W. E., & Karin, M. (2008). NF-kappaB and cancer-identifying targets and mechanisms. Current Opinion in Genetics & Development, 18(1), 19–26.
59.
go back to reference Coppe, J. P., Kauser, K., Campisi, J., & Beausejour, C. M. (2006). Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. The Journal of Biological Chemistry, 281(40), 29568–29574.PubMed Coppe, J. P., Kauser, K., Campisi, J., & Beausejour, C. M. (2006). Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. The Journal of Biological Chemistry, 281(40), 29568–29574.PubMed
60.
go back to reference Bhaumik, D., Scott, G. K., Schokrpur, S., Patil, C. K., Campisi, J., & Benz, C. C. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 27(42), 5643–5647.PubMed Bhaumik, D., Scott, G. K., Schokrpur, S., Patil, C. K., Campisi, J., & Benz, C. C. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 27(42), 5643–5647.PubMed
61.
go back to reference Hurst, D. R., Edmonds, M. D., Scott, G. K., Benz, C. C., Vaidya, K. S., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Research, 69(4), 1279–1283.PubMed Hurst, D. R., Edmonds, M. D., Scott, G. K., Benz, C. C., Vaidya, K. S., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Research, 69(4), 1279–1283.PubMed
62.
go back to reference Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell, 137(6), 1032–1046.PubMed Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell, 137(6), 1032–1046.PubMed
63.
go back to reference Lee, E. J., Baek, M., Gusev, Y., Brackett, D. J., Nuovo, G. J., & Schmittgen, T. D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA, 14(1), 35–42.PubMed Lee, E. J., Baek, M., Gusev, Y., Brackett, D. J., Nuovo, G. J., & Schmittgen, T. D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA, 14(1), 35–42.PubMed
64.
go back to reference Bhowmick, N. A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C. A., Engel, M. E., et al. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Molecular Biology of the Cell, 12(1), 27–36.PubMed Bhowmick, N. A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C. A., Engel, M. E., et al. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Molecular Biology of the Cell, 12(1), 27–36.PubMed
65.
go back to reference Shi, B., Sepp-Lorenzino, L., Prisco, M., Linsley, P., Deangelis, T., & Baserga, R. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. The Journal of Biological Chemistry, 282(45), 32582–32590.PubMed Shi, B., Sepp-Lorenzino, L., Prisco, M., Linsley, P., Deangelis, T., & Baserga, R. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. The Journal of Biological Chemistry, 282(45), 32582–32590.PubMed
66.
go back to reference Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3207–3212.PubMed Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3207–3212.PubMed
67.
go back to reference Schepeler, T., Reinert, J. T., Ostenfeld, M. S., Christensen, L. L., Silahtaroglu, A. N., Dyrskjot, L., et al. (2008). Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Research, 68(15), 6416–6424.PubMed Schepeler, T., Reinert, J. T., Ostenfeld, M. S., Christensen, L. L., Silahtaroglu, A. N., Dyrskjot, L., et al. (2008). Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Research, 68(15), 6416–6424.PubMed
68.
go back to reference Kufe, D. W. (2009). Mucins in cancer: Function, prognosis and therapy. Nature Reviews. Cancer, 9(12), 874–885.PubMed Kufe, D. W. (2009). Mucins in cancer: Function, prognosis and therapy. Nature Reviews. Cancer, 9(12), 874–885.PubMed
69.
go back to reference Sachdeva, M., & Mo, Y. Y. (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Research, 70(1), 378–387.PubMed Sachdeva, M., & Mo, Y. Y. (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Research, 70(1), 378–387.PubMed
70.
go back to reference Shan, S. W., Lee, D. Y., Deng, Z., Shatseva, T., Jeyapalan, Z., Du, W. W., et al. (2009). MicroRNA MiR-17 retards tissue growth and represses fibronectin expression. Nature Cell Biology, 11(8), 1031–1038.PubMed Shan, S. W., Lee, D. Y., Deng, Z., Shatseva, T., Jeyapalan, Z., Du, W. W., et al. (2009). MicroRNA MiR-17 retards tissue growth and represses fibronectin expression. Nature Cell Biology, 11(8), 1031–1038.PubMed
71.
go back to reference Yu, Z., Willmarth, N. E., Zhou, J., Katiyar, S., Wang, M., Liu, Y., et al. (2010). microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8231–8236.PubMed Yu, Z., Willmarth, N. E., Zhou, J., Katiyar, S., Wang, M., Liu, Y., et al. (2010). microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8231–8236.PubMed
72.
go back to reference Yu, Z., Wang, C., Wang, M., Li, Z., Casimiro, M. C., Liu, M., et al. (2008). A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. The Journal of Cell Biology, 182(3), 509–517.PubMed Yu, Z., Wang, C., Wang, M., Li, Z., Casimiro, M. C., Liu, M., et al. (2008). A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. The Journal of Cell Biology, 182(3), 509–517.PubMed
73.
go back to reference O’donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435(7043), 839–843.PubMed O’donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435(7043), 839–843.PubMed
74.
go back to reference Li, X., & Carthew, R. W. (2005). A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell, 123(7), 1267–1277.PubMed Li, X., & Carthew, R. W. (2005). A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell, 123(7), 1267–1277.PubMed
75.
go back to reference Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68(10), 3566–3572.PubMed Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68(10), 3566–3572.PubMed
76.
go back to reference Webster, R. J., Giles, K. M., Price, K. J., Zhang, P. M., Mattick, J. S., & Leedman, P. J. (2009). Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. The Journal of Biological Chemistry, 284(9), 5731–5741.PubMed Webster, R. J., Giles, K. M., Price, K. J., Zhang, P. M., Mattick, J. S., & Leedman, P. J. (2009). Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. The Journal of Biological Chemistry, 284(9), 5731–5741.PubMed
77.
go back to reference Reddy, S. D., Ohshiro, K., Rayala, S. K., & Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68(20), 8195–8200.PubMed Reddy, S. D., Ohshiro, K., Rayala, S. K., & Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68(20), 8195–8200.PubMed
78.
go back to reference Reddy, S. D., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Research, 69(14), 5639–5642.PubMed Reddy, S. D., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Research, 69(14), 5639–5642.PubMed
79.
go back to reference Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. The Journal of Biological Chemistry, 282(3), 1529–1533.PubMed Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. The Journal of Biological Chemistry, 282(3), 1529–1533.PubMed
80.
go back to reference Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., & Bartel, D. P. (2003). Vertebrate microRNA genes. Science, 299(5612), 1540.PubMed Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., & Bartel, D. P. (2003). Vertebrate microRNA genes. Science, 299(5612), 1540.PubMed
81.
go back to reference Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., De Bruijn, E., et al. (2005). MicroRNA expression in zebrafish embryonic development. Science, 309(5732), 310–311.PubMed Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., De Bruijn, E., et al. (2005). MicroRNA expression in zebrafish embryonic development. Science, 309(5732), 310–311.PubMed
82.
go back to reference Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129(7), 1401–1414.PubMed Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129(7), 1401–1414.PubMed
83.
go back to reference Wu, H., & Mo, Y. Y. (2009). Targeting miR-205 in breast cancer. Expert Opinion on Therapeutic Targets, 13(12), 1439–1448.PubMed Wu, H., & Mo, Y. Y. (2009). Targeting miR-205 in breast cancer. Expert Opinion on Therapeutic Targets, 13(12), 1439–1448.PubMed
84.
go back to reference Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMed Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMed
85.
go back to reference Wu, H., Zhu, S., & Mo, Y. Y. (2009). Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Research, 19(4), 439–448.PubMed Wu, H., Zhu, S., & Mo, Y. Y. (2009). Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Research, 19(4), 439–448.PubMed
86.
go back to reference Baselga, J., & Swain, S. M. (2009). Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nature Reviews. Cancer, 9(7), 463–475.PubMed Baselga, J., & Swain, S. M. (2009). Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nature Reviews. Cancer, 9(7), 463–475.PubMed
87.
go back to reference Xue, C., Liang, F., Mahmood, R., Vuolo, M., Wyckoff, J., Qian, H., et al. (2006). ErbB3-dependent motility and intravasation in breast cancer metastasis. Cancer Research, 66(3), 1418–1426.PubMed Xue, C., Liang, F., Mahmood, R., Vuolo, M., Wyckoff, J., Qian, H., et al. (2006). ErbB3-dependent motility and intravasation in breast cancer metastasis. Cancer Research, 66(3), 1418–1426.PubMed
88.
go back to reference Iorio, M. V., Casalini, P., Piovan, C., Di Leva, G., Merlo, A., Triulzi, T., et al. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Research, 69(6), 2195–2200.PubMed Iorio, M. V., Casalini, P., Piovan, C., Di Leva, G., Merlo, A., Triulzi, T., et al. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Research, 69(6), 2195–2200.PubMed
89.
go back to reference Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.PubMed Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.PubMed
90.
go back to reference Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. The Journal of Biological Chemistry, 283(22), 14910–14914.PubMed Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. The Journal of Biological Chemistry, 283(22), 14910–14914.PubMed
91.
go back to reference Olson, P., Lu, J., Zhang, H., Shai, A., Chun, M. G., Wang, Y., et al. (2009). MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes & Development, 23(18), 2152–2165. Olson, P., Lu, J., Zhang, H., Shai, A., Chun, M. G., Wang, Y., et al. (2009). MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes & Development, 23(18), 2152–2165.
92.
go back to reference Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development, 22(7), 894–907. Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development, 22(7), 894–907.
93.
go back to reference Gibbons, D. L., Lin, W., Creighton, C. J., Rizvi, Z. H., Gregory, P. A., Goodall, G. J., et al. (2009). Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes & Development, 23(18), 2140–2151. Gibbons, D. L., Lin, W., Creighton, C. J., Rizvi, Z. H., Gregory, P. A., Goodall, G. J., et al. (2009). Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes & Development, 23(18), 2140–2151.
94.
go back to reference Hurteau, G. J., Carlson, J. A., Spivack, S. D., & Brock, G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67(17), 7972–7976.PubMed Hurteau, G. J., Carlson, J. A., Spivack, S. D., & Brock, G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67(17), 7972–7976.PubMed
95.
go back to reference Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMed Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMed
96.
go back to reference Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.PubMed Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.PubMed
97.
go back to reference Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell, 140(1), 62–73.PubMed Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell, 140(1), 62–73.PubMed
98.
go back to reference Cicalese, A., Bonizzi, G., Pasi, C. E., Faretta, M., Ronzoni, S., Giulini, B., et al. (2009). The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell, 138(6), 1083–1095.PubMed Cicalese, A., Bonizzi, G., Pasi, C. E., Faretta, M., Ronzoni, S., Giulini, B., et al. (2009). The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell, 138(6), 1083–1095.PubMed
99.
go back to reference Diallo, R., Schaefer, K. L., Poremba, C., Shivazi, N., Willmann, V., Buerger, H., et al. (2001). Monoclonality in normal epithelium and in hyperplastic and neoplastic lesions of the breast. The Journal of Pathology, 193(1), 27–32.PubMed Diallo, R., Schaefer, K. L., Poremba, C., Shivazi, N., Willmann, V., Buerger, H., et al. (2001). Monoclonality in normal epithelium and in hyperplastic and neoplastic lesions of the breast. The Journal of Pathology, 193(1), 27–32.PubMed
100.
go back to reference Dontu, G., Abdallah, W. M., Foley, J. M., Jackson, K. W., Clarke, M. F., Kawamura, M. J., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17(10), 1253–1270. Dontu, G., Abdallah, W. M., Foley, J. M., Jackson, K. W., Clarke, M. F., Kawamura, M. J., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17(10), 1253–1270.
101.
go back to reference Al-Hajj, M. (2007). Cancer stem cells and oncology therapeutics. Current Opinion in Oncology, 19(1), 61–64.PubMed Al-Hajj, M. (2007). Cancer stem cells and oncology therapeutics. Current Opinion in Oncology, 19(1), 61–64.PubMed
102.
go back to reference Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.PubMed Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.PubMed
103.
go back to reference Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487–1495.PubMed Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487–1495.PubMed
104.
go back to reference Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138(3), 592–603.PubMed Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138(3), 592–603.PubMed
105.
go back to reference Yu, F., Deng, H., Yao, H., Liu, Q., Su, F., & Song, E. (2010). Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene, 29(29), 4194–4204.PubMed Yu, F., Deng, H., Yao, H., Liu, Q., Su, F., & Song, E. (2010). Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene, 29(29), 4194–4204.PubMed
106.
go back to reference Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423(6937), 302–305.PubMed Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423(6937), 302–305.PubMed
107.
go back to reference Lessard, J., & Sauvageau, G. (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423(6937), 255–260.PubMed Lessard, J., & Sauvageau, G. (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423(6937), 255–260.PubMed
108.
go back to reference Akala, O. O., Park, I. K., Qian, D., Pihalja, M., Becker, M. W., & Clarke, M. F. (2008). Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature, 453(7192), 228–232.PubMed Akala, O. O., Park, I. K., Qian, D., Pihalja, M., Becker, M. W., & Clarke, M. F. (2008). Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature, 453(7192), 228–232.PubMed
109.
go back to reference Bracken, A. P., & Helin, K. (2009). Polycomb group proteins: Navigators of lineage pathways led astray in cancer. Nature Reviews. Cancer, 9(11), 773–784.PubMed Bracken, A. P., & Helin, K. (2009). Polycomb group proteins: Navigators of lineage pathways led astray in cancer. Nature Reviews. Cancer, 9(11), 773–784.PubMed
110.
go back to reference Roush, S., & Slack, F. J. (2008). The let-7 family of microRNAs. Trends in Cell Biology, 18(10), 505–516.PubMed Roush, S., & Slack, F. J. (2008). The let-7 family of microRNAs. Trends in Cell Biology, 18(10), 505–516.PubMed
111.
go back to reference Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.PubMed Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.PubMed
112.
go back to reference Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T. L., Toffanin, S., et al. (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics, 41(7), 843–848.PubMed Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T. L., Toffanin, S., et al. (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics, 41(7), 843–848.PubMed
113.
go back to reference Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews. Cancer, 6(4), 259–269.PubMed Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews. Cancer, 6(4), 259–269.PubMed
114.
go back to reference Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 28(4), 347–358.PubMed Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 28(4), 347–358.PubMed
115.
go back to reference Mayr, C., Hemann, M. T., & Bartel, D. P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315(5818), 1576–1579.PubMed Mayr, C., Hemann, M. T., & Bartel, D. P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315(5818), 1576–1579.PubMed
116.
go back to reference Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.PubMed Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.PubMed
117.
go back to reference Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2009). An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 139(4), 693–706.PubMed Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2009). An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 139(4), 693–706.PubMed
118.
go back to reference Cabodi, S., & Taverna, D. (2010). Interfering with inflammation: A new strategy to block breast cancer self-renewal and progression? Breast Cancer Research, 12(2), 305.PubMed Cabodi, S., & Taverna, D. (2010). Interfering with inflammation: A new strategy to block breast cancer self-renewal and progression? Breast Cancer Research, 12(2), 305.PubMed
119.
go back to reference Heo, I., Joo, C., Cho, J., Ha, M., Han, J., & Kim, V. N. (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Molecular Cell, 32(2), 276–284.PubMed Heo, I., Joo, C., Cho, J., Ha, M., Han, J., & Kim, V. N. (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Molecular Cell, 32(2), 276–284.PubMed
120.
go back to reference Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E. E., Nitsch, R., et al. (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biology, 10(8), 987–993.PubMed Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E. E., Nitsch, R., et al. (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biology, 10(8), 987–993.PubMed
121.
go back to reference Viswanathan, S. R., Daley, G. Q., & Gregory, R. I. (2008). Selective blockade of microRNA processing by Lin28. Science, 320(5872), 97–100.PubMed Viswanathan, S. R., Daley, G. Q., & Gregory, R. I. (2008). Selective blockade of microRNA processing by Lin28. Science, 320(5872), 97–100.PubMed
122.
go back to reference Heo, I., Joo, C., Kim, Y. K., Ha, M., Yoon, M. J., Cho, J., et al. (2009). TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell, 138(4), 696–708.PubMed Heo, I., Joo, C., Kim, Y. K., Ha, M., Yoon, M. J., Cho, J., et al. (2009). TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell, 138(4), 696–708.PubMed
123.
go back to reference Hagan, J. P., Piskounova, E., & Gregory, R. I. (2009). Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nature Structural & Molecular Biology, 16(10), 1021–1025. Hagan, J. P., Piskounova, E., & Gregory, R. I. (2009). Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nature Structural & Molecular Biology, 16(10), 1021–1025.
124.
go back to reference Dalerba, P., & Clarke, M. F. (2007). Cancer stem cells and tumor metastasis: First steps into uncharted territory. Cell Stem Cell, 1(3), 241–242.PubMed Dalerba, P., & Clarke, M. F. (2007). Cancer stem cells and tumor metastasis: First steps into uncharted territory. Cell Stem Cell, 1(3), 241–242.PubMed
125.
go back to reference Wu, F., Zhu, S., Ding, Y., Beck, W. T., & Mo, Y. Y. (2009). MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clinical Cancer Research, 15(5), 1550–1557.PubMed Wu, F., Zhu, S., Ding, Y., Beck, W. T., & Mo, Y. Y. (2009). MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clinical Cancer Research, 15(5), 1550–1557.PubMed
126.
go back to reference Muller, D. W., & Bosserhoff, A. K. (2008). Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene, 27(52), 6698–6706.PubMed Muller, D. W., & Bosserhoff, A. K. (2008). Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene, 27(52), 6698–6706.PubMed
127.
go back to reference Yu, Z., Baserga, R., Chen, L., Wang, C., Lisanti, M. P., & Pestell, R. G. (2010). microRNA, cell cycle, and human breast cancer. The American Journal of Pathology, 176(3), 1058–1064.PubMed Yu, Z., Baserga, R., Chen, L., Wang, C., Lisanti, M. P., & Pestell, R. G. (2010). microRNA, cell cycle, and human breast cancer. The American Journal of Pathology, 176(3), 1058–1064.PubMed
128.
go back to reference Brennecke, J., Stark, A., Russell, R. B., & Cohen, S. M. (2005). Principles of microRNA-target recognition. PLoS Biology, 3(3), e85.PubMed Brennecke, J., Stark, A., Russell, R. B., & Cohen, S. M. (2005). Principles of microRNA-target recognition. PLoS Biology, 3(3), e85.PubMed
129.
go back to reference Mattie, M. D., Benz, C. C., Bowers, J., Sensinger, K., Wong, L., Scott, G. K., et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer, 5, 24.PubMed Mattie, M. D., Benz, C. C., Bowers, J., Sensinger, K., Wong, L., Scott, G. K., et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer, 5, 24.PubMed
130.
go back to reference Lowery, A. J., Miller, N., Devaney, A., Mcneill, R. E., Davoren, P. A., Lemetre, C., et al. (2009). MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Research, 11(3), R27.PubMed Lowery, A. J., Miller, N., Devaney, A., Mcneill, R. E., Davoren, P. A., Lemetre, C., et al. (2009). MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Research, 11(3), R27.PubMed
131.
go back to reference Zhou, M., Liu, Z., Zhao, Y., Ding, Y., Liu, H., Xi, Y., et al. (2010). MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. The Journal of Biological Chemistry, 285(28), 21496–21507.PubMed Zhou, M., Liu, Z., Zhao, Y., Ding, Y., Liu, H., Xi, Y., et al. (2010). MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. The Journal of Biological Chemistry, 285(28), 21496–21507.PubMed
132.
go back to reference Heneghan, H. M., Miller, N., Lowery, A. J., Sweeney, K. J., Newell, J., & Kerin, M. J. (2010). Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Annals of Surgery, 251(3), 499–505.PubMed Heneghan, H. M., Miller, N., Lowery, A. J., Sweeney, K. J., Newell, J., & Kerin, M. J. (2010). Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Annals of Surgery, 251(3), 499–505.PubMed
Metadata
Title
Metastasis-related miRNAs, active players in breast cancer invasion, and metastasis
Authors
Ming Shi
Dan Liu
Huijun Duan
Beifen Shen
Ning Guo
Publication date
01-12-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9265-9

Other articles of this Issue 4/2010

Cancer and Metastasis Reviews 4/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine