Skip to main content
Top
Published in: Medical Microbiology and Immunology 2/2008

01-06-2008 | Original Investigation

Epitope-specific in vivo protection against cytomegalovirus disease by CD8 T cells in the murine model of preemptive immunotherapy

Authors: Verena Böhm, Jürgen Podlech, Doris Thomas, Petra Deegen, Marcus-Folker Pahl-Seibert, Niels A. W. Lemmermann, Natascha K. A. Grzimek, Silke A. Oehrlein-Karpi, Matthias J. Reddehase, Rafaela Holtappels

Published in: Medical Microbiology and Immunology | Issue 2/2008

Login to get access

Abstract

Preclinical research in murine models as well as subsequent clinical trials have concordantly revealed a high protective potential of antiviral CD8 T cells, of donor-derived ex vivo memory CD8 T cells in particular, in the immunotherapy of cytomegalovirus (CMV) infection in immunocompromised recipients. Although it is generally held view that the observed beneficial effect of the transferred cells is viral epitope-specific, involving the recognition of MHC class-I presented peptides by cognate T cell receptors, this assumption awaits formal proof, at least with regard to the in vivo function of the CD8 T cells. This question is particularly evident for CMV, since the function of viral immune evasion proteins interferes with the MHC class-I pathway of peptide presentation. Alternatively, therefore, one has to consider the possibility that the requirement for epitope recognition may be bypassed by other ligand–receptor interactions between CD8 T cells and infected cells, which may trigger the signaling for effector functions. Clearly, such a mechanism might explain why CD8 T cells are so efficient in controlling CMV infection despite the expression of viral immune evasion proteins. Here we provide direct evidence for epitope-specificity of antiviral protection by employing a recombinant murine CMV (mCMV), namely the mutant virus mCMV-IE1-L176A, in which an immunodominant viral epitope of the regulatory immediate-early protein IE1 is functionally deleted by a point mutation replacing leucine with alanine at the C-terminal MHC anchor position of the antigenic peptide.
Literature
1.
go back to reference Pahl-Seibert MF, Jülch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R (2005) Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79:5400–5413CrossRefPubMedPubMedCentral Pahl-Seibert MF, Jülch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R (2005) Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79:5400–5413CrossRefPubMedPubMedCentral
2.
go back to reference Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804CrossRefPubMedPubMedCentral Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804CrossRefPubMedPubMedCentral
3.
go back to reference Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241CrossRefPubMed Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241CrossRefPubMed
4.
go back to reference Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald C, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386CrossRefPubMedPubMedCentral Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald C, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386CrossRefPubMedPubMedCentral
5.
go back to reference Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844CrossRefPubMed Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844CrossRefPubMed
6.
go back to reference Pinto AK, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234CrossRefPubMed Pinto AK, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234CrossRefPubMed
7.
go back to reference Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624CrossRefPubMedPubMedCentral Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624CrossRefPubMedPubMedCentral
8.
go back to reference Holtappels R, Grzimek NK, Simon CO, Thomas D, Dreis D, Reddehase MJ (2002) Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J Virol 76:6044–6053CrossRefPubMedPubMedCentral Holtappels R, Grzimek NK, Simon CO, Thomas D, Dreis D, Reddehase MJ (2002) Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J Virol 76:6044–6053CrossRefPubMedPubMedCentral
9.
go back to reference Gold MC, Munks MW, Wagner M, McMahon CW, Kelly A, Kavanagh DG, Slifka MK, Koszinowski UH, Raulet DH, Hill AB (2004) Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J Immunol 172:6944–6953CrossRefPubMed Gold MC, Munks MW, Wagner M, McMahon CW, Kelly A, Kavanagh DG, Slifka MK, Koszinowski UH, Raulet DH, Hill AB (2004) Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J Immunol 172:6944–6953CrossRefPubMed
10.
go back to reference Holtappels R, Munks WM, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus disease in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 383–418 Holtappels R, Munks WM, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus disease in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 383–418
11.
go back to reference Jonjic S, Bubic I, Krmpotic A (2006) Innate immunity to cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 285–320 Jonjic S, Bubic I, Krmpotic A (2006) Innate immunity to cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 285–320
12.
go back to reference Reddehase MJ, Keil GM, Koszinowski UH (1984) The cytolytic T lymphocyte response to the murine cytomegalovirus. II. Detection of virus replication stage-specific antigens by separate populations of in vivo active cytolytic T lymphocyte precursors. Eur J Immunol 14:56–61CrossRefPubMed Reddehase MJ, Keil GM, Koszinowski UH (1984) The cytolytic T lymphocyte response to the murine cytomegalovirus. II. Detection of virus replication stage-specific antigens by separate populations of in vivo active cytolytic T lymphocyte precursors. Eur J Immunol 14:56–61CrossRefPubMed
13.
go back to reference Streblow DN, Varnum SM, Smith RD, Nelson JA (2006) A proteomics analysis of human cytomegalovirus particles. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 91–110 Streblow DN, Varnum SM, Smith RD, Nelson JA (2006) A proteomics analysis of human cytomegalovirus particles. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 91–110
14.
go back to reference Shenk T (2006) Human cytomegalovirus genomics. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 49–62 Shenk T (2006) Human cytomegalovirus genomics. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 49–62
15.
go back to reference Boehme KW, Compton T (2006) Virus entry and activation of innate immunity. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 111–130 Boehme KW, Compton T (2006) Virus entry and activation of innate immunity. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 111–130
16.
go back to reference Hengel H, Brune W, Koszinowski UH (1998) Immune evasion by cytomegalovirus—survival strategies of a highly adapted opportunist. Trends Microbiol 6:190–197CrossRefPubMed Hengel H, Brune W, Koszinowski UH (1998) Immune evasion by cytomegalovirus—survival strategies of a highly adapted opportunist. Trends Microbiol 6:190–197CrossRefPubMed
17.
go back to reference Reddehase MJ, Simon CO, Podlech J, Holtappels R (2004) Stalemating a clever opportunist: lessons from murine cytomegalovirus. Hum Immunol 65:446–455CrossRefPubMed Reddehase MJ, Simon CO, Podlech J, Holtappels R (2004) Stalemating a clever opportunist: lessons from murine cytomegalovirus. Hum Immunol 65:446–455CrossRefPubMed
18.
go back to reference Lodoen M, Ogasawara K, Hamerman JA, Arase H, Houchins JP, Mocarski ES, Lanier LL (2003) NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med 197:1245–1253CrossRefPubMedPubMedCentral Lodoen M, Ogasawara K, Hamerman JA, Arase H, Houchins JP, Mocarski ES, Lanier LL (2003) NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med 197:1245–1253CrossRefPubMedPubMedCentral
19.
go back to reference Pinto AK, Jamieson AM, Raulet DH, Hill AB (2007) The role of NKG2D signaling in inhibition of cytotoxic T-lymphocyte lysis by the murine cytomegalovirus immunoevasin m152/gp40. J Virol 81:12564–12571CrossRefPubMedPubMedCentral Pinto AK, Jamieson AM, Raulet DH, Hill AB (2007) The role of NKG2D signaling in inhibition of cytotoxic T-lymphocyte lysis by the murine cytomegalovirus immunoevasin m152/gp40. J Virol 81:12564–12571CrossRefPubMedPubMedCentral
20.
go back to reference Vivier E, Tomasello E, Paul P (2002) Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr Opin Immunol 14:306–311CrossRefPubMed Vivier E, Tomasello E, Paul P (2002) Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr Opin Immunol 14:306–311CrossRefPubMed
21.
go back to reference Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456CrossRefPubMedPubMedCentral Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456CrossRefPubMedPubMedCentral
22.
go back to reference Simon CO, Seckert CK, Grzimek NK, Reddehase MJ (2006) Murine model of cytomegalovirus latency and reactivation: the silencing/desilencing and immune sensing hypothesis. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 483–500 Simon CO, Seckert CK, Grzimek NK, Reddehase MJ (2006) Murine model of cytomegalovirus latency and reactivation: the silencing/desilencing and immune sensing hypothesis. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 483–500
23.
go back to reference Hemmer B, Vergelli M, Pinilla C, Houghten R, Martin R (1998) Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Immunol Today 19:163–168CrossRefPubMed Hemmer B, Vergelli M, Pinilla C, Houghten R, Martin R (1998) Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Immunol Today 19:163–168CrossRefPubMed
24.
go back to reference Eisen HN (2001) Specificity and degeneracy in antigen recognition: yin and yang in the immune system. Annu Rev Immunol 19:1–21CrossRefPubMed Eisen HN (2001) Specificity and degeneracy in antigen recognition: yin and yang in the immune system. Annu Rev Immunol 19:1–21CrossRefPubMed
25.
26.
27.
go back to reference Reddehase MJ, Koszinowski UH (1991) Redistribution of critical major histocompatibility complex and T cell receptor-binding functions of residues in an antigenic sequence after biterminal substitution. Eur J Immunol 21:1697–1701CrossRefPubMed Reddehase MJ, Koszinowski UH (1991) Redistribution of critical major histocompatibility complex and T cell receptor-binding functions of residues in an antigenic sequence after biterminal substitution. Eur J Immunol 21:1697–1701CrossRefPubMed
28.
go back to reference Hokeness KL, Deweerd ES, Munks MW, Lewis CA, Gladue RP, Salazar-Mather TP (2007) CXCR3-dependent recruitment of antigen-specific T-lymphocytes to the liver during murine cytomegalovirus infection. J Virol 81:1241–1250CrossRefPubMed Hokeness KL, Deweerd ES, Munks MW, Lewis CA, Gladue RP, Salazar-Mather TP (2007) CXCR3-dependent recruitment of antigen-specific T-lymphocytes to the liver during murine cytomegalovirus infection. J Virol 81:1241–1250CrossRefPubMed
Metadata
Title
Epitope-specific in vivo protection against cytomegalovirus disease by CD8 T cells in the murine model of preemptive immunotherapy
Authors
Verena Böhm
Jürgen Podlech
Doris Thomas
Petra Deegen
Marcus-Folker Pahl-Seibert
Niels A. W. Lemmermann
Natascha K. A. Grzimek
Silke A. Oehrlein-Karpi
Matthias J. Reddehase
Rafaela Holtappels
Publication date
01-06-2008
Publisher
Springer Berlin Heidelberg
Published in
Medical Microbiology and Immunology / Issue 2/2008
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-008-0092-3

Other articles of this Issue 2/2008

Medical Microbiology and Immunology 2/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.