Skip to main content
Top
Published in: International Orthopaedics 9/2012

01-09-2012 | Original Paper

Patients with no functional improvement after total knee arthroplasty show different kinematics

Authors: Jörg Lützner, Stephan Kirschner, Klaus-Peter Günther, Melinda K. Harman

Published in: International Orthopaedics | Issue 9/2012

Login to get access

Abstract

Purpose

As many as 20 % of all patients following total knee arthroplasty are not satisfied with the result. Rotational alignment is one factor thought to affect clinical outcome. The purpose of this study was to assess relationships between prosthesis rotational alignment, function score and knee kinematics after TKA.

Methods

In 80 patients a cemented, unconstrained, cruciate-retaining TKA with a rotating platform was implanted. Rotational alignment was measured using CT-scans. Kinematics was assessed using fluoroscopy images.

Results

Seventy-three patients were available for follow-up after two years. Nine patients had more than 10° rotational mismatch between the femoral and tibial component in the postoperative CT scans. These patients showed significantly worse results in the function score. While the normal patients with less than 10° rotational mismatch improved from a mean pre-operative 55 points to a mean 71 points at follow-up, the group with more than 10° mismatch deteriorated from a mean 60 points pre-operatively to a mean 57 points at follow-up. The pattern of motion during passive flexion from approximately 0° to 120° was quite different. While external rotation steadily increased with knee flexion in the normal group, there was internal rotation between 30° and 80° of flexion in the group with more than 10° rotational mismatch.

Conclusion

Rotational mismatch between femoral and tibial components exceeding 10° resulted in different kinematics after TKA. It might contribute to worse clinical results observed in those patients and should therefore be avoided.
Literature
1.
2.
go back to reference Nilsdotter AK, Toksvig-Larsen S, Roos EM (2009) Knee arthroplasty: are patients' expectations fulfilled? A prospective study of pain and function in 102 patients with 5-year follow-up. Acta Orthop 80:55–61PubMedCrossRef Nilsdotter AK, Toksvig-Larsen S, Roos EM (2009) Knee arthroplasty: are patients' expectations fulfilled? A prospective study of pain and function in 102 patients with 5-year follow-up. Acta Orthop 80:55–61PubMedCrossRef
3.
go back to reference Nunez M, Lozano L, Nunez E, Segur JM, Sastre S, Macule F, Ortega R, Suso S (2009) Total knee replacement and health-related quality of life: factors influencing long-term outcomes. Arthritis Rheum 61:1062–1069PubMedCrossRef Nunez M, Lozano L, Nunez E, Segur JM, Sastre S, Macule F, Ortega R, Suso S (2009) Total knee replacement and health-related quality of life: factors influencing long-term outcomes. Arthritis Rheum 61:1062–1069PubMedCrossRef
4.
go back to reference Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee-replacement design on walking and stair-climbing. J Bone Joint Surg Am 64:1328–1335PubMed Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee-replacement design on walking and stair-climbing. J Bone Joint Surg Am 64:1328–1335PubMed
5.
go back to reference Kim YH, Yoon SH, Kim JS (2009) Early outcome of TKA with a medial pivot fixed-bearing prosthesis is worse than with a PFC mobile-bearing prosthesis. Clin Orthop Relat Res 467:493–503PubMedCrossRef Kim YH, Yoon SH, Kim JS (2009) Early outcome of TKA with a medial pivot fixed-bearing prosthesis is worse than with a PFC mobile-bearing prosthesis. Clin Orthop Relat Res 467:493–503PubMedCrossRef
6.
7.
go back to reference Andersson GB, Andriacchi TP, Galante JO (1981) Correlations between changes in gait and in clinical status after knee arthroplasty. Acta Orthop Scand 52:569–573PubMedCrossRef Andersson GB, Andriacchi TP, Galante JO (1981) Correlations between changes in gait and in clinical status after knee arthroplasty. Acta Orthop Scand 52:569–573PubMedCrossRef
8.
go back to reference Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty 12:297–304PubMedCrossRef Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty 12:297–304PubMedCrossRef
9.
go back to reference Hatfield GL, Hubley-Kozey CL, Astephen Wilson JL, Dunbar MJ (2011) The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J Arthroplasty 26:309–318PubMedCrossRef Hatfield GL, Hubley-Kozey CL, Astephen Wilson JL, Dunbar MJ (2011) The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J Arthroplasty 26:309–318PubMedCrossRef
10.
go back to reference Kitagawa A, Tsumura N, Chin T, Gamada K, Banks SA, Kurosaka M (2010) In vivo comparison of knee kinematics before and after high-flexion posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 25:964–969PubMedCrossRef Kitagawa A, Tsumura N, Chin T, Gamada K, Banks SA, Kurosaka M (2010) In vivo comparison of knee kinematics before and after high-flexion posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 25:964–969PubMedCrossRef
11.
go back to reference Markovich GD, Banks SA, Hodge WA (1998) Comparison of active and passive knee replacement kinematics. OrthopTrans 21:810–811 Markovich GD, Banks SA, Hodge WA (1998) Comparison of active and passive knee replacement kinematics. OrthopTrans 21:810–811
12.
go back to reference Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55 Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55
13.
go back to reference Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153 Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153
14.
go back to reference DesJardins JD, Banks SA, Benson LC, Pace T, LaBerge M (2007) A direct comparison of patient and force-controlled simulator total knee replacement kinematics. J Biomech 40:3458–3466PubMedCrossRef DesJardins JD, Banks SA, Benson LC, Pace T, LaBerge M (2007) A direct comparison of patient and force-controlled simulator total knee replacement kinematics. J Biomech 40:3458–3466PubMedCrossRef
15.
go back to reference Rhoads DD, Noble PC, Reuben JD, Tullos HS (1993) The effect of femoral component position on the kinematics of total knee arthroplasty. Clin Orthop Relat Res 286:122–129 Rhoads DD, Noble PC, Reuben JD, Tullos HS (1993) The effect of femoral component position on the kinematics of total knee arthroplasty. Clin Orthop Relat Res 286:122–129
16.
go back to reference Lützner J, Krummenauer F, Wolf C, Günther KP, Kirschner S (2008) Computer-assisted and conventional total knee replacement: a comparative, prospective, randomised study with radiological and CT evaluation. J Bone Joint Surg Br 90:1039–1044PubMedCrossRef Lützner J, Krummenauer F, Wolf C, Günther KP, Kirschner S (2008) Computer-assisted and conventional total knee replacement: a comparative, prospective, randomised study with radiological and CT evaluation. J Bone Joint Surg Br 90:1039–1044PubMedCrossRef
17.
go back to reference Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43:638–649PubMedCrossRef Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43:638–649PubMedCrossRef
18.
go back to reference Banks SA, Hodge WA (2004) 2003 Hap Paul Award Paper of the International Society for Technology in Arthroplasty. Design and activity dependence of kinematics in fixed and mobile-bearing knee arthroplasties. J Arthroplasty 19:809–816PubMedCrossRef Banks SA, Hodge WA (2004) 2003 Hap Paul Award Paper of the International Society for Technology in Arthroplasty. Design and activity dependence of kinematics in fixed and mobile-bearing knee arthroplasties. J Arthroplasty 19:809–816PubMedCrossRef
19.
go back to reference Banks SA, Hodge WA (2004) Implant design affects knee arthroplasty kinematics during stair-stepping. Clin Orthop Relat Res 426:187–193 Banks SA, Hodge WA (2004) Implant design affects knee arthroplasty kinematics during stair-stepping. Clin Orthop Relat Res 426:187–193
20.
go back to reference Fantozzi S, Leardini A, Banks SA, Marcacci M, Giannini S, Catani F (2004) Dynamic in-vivo tibio-femoral and bearing motions in mobile bearing knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 12:144–151PubMedCrossRef Fantozzi S, Leardini A, Banks SA, Marcacci M, Giannini S, Catani F (2004) Dynamic in-vivo tibio-femoral and bearing motions in mobile bearing knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 12:144–151PubMedCrossRef
21.
go back to reference Incavo SJ, Mullins ER, Coughlin KM, Banks S, Banks A, Beynnon BD (2004) Tibiofemoral kinematic analysis of kneeling after total knee arthroplasty. J Arthroplasty 19:906–910PubMedCrossRef Incavo SJ, Mullins ER, Coughlin KM, Banks S, Banks A, Beynnon BD (2004) Tibiofemoral kinematic analysis of kneeling after total knee arthroplasty. J Arthroplasty 19:906–910PubMedCrossRef
22.
go back to reference Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–14PubMed Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–14PubMed
24.
go back to reference Seon JK, Park JK, Jeong MS, Jung WB, Park KS, Yoon TR, Song EK (2011) Correlation between preoperative and postoperative knee kinematics in total knee arthroplasty using cruciate retaining designs. Int Orthop 35:515–520PubMedCrossRef Seon JK, Park JK, Jeong MS, Jung WB, Park KS, Yoon TR, Song EK (2011) Correlation between preoperative and postoperative knee kinematics in total knee arthroplasty using cruciate retaining designs. Int Orthop 35:515–520PubMedCrossRef
25.
go back to reference Kainz H, Reng W, Augat P, Wurm S (2012) Influence of total knee arthroplasty on patellar kinematics and contact characteristics. Int Orthop 36:73–78PubMedCrossRef Kainz H, Reng W, Augat P, Wurm S (2012) Influence of total knee arthroplasty on patellar kinematics and contact characteristics. Int Orthop 36:73–78PubMedCrossRef
26.
go back to reference Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R, Faris GW, Davis KE (2004) Tibial component failure mechanisms in total knee arthroplasty. Clin Orthop Relat Res 428:26–34 Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R, Faris GW, Davis KE (2004) Tibial component failure mechanisms in total knee arthroplasty. Clin Orthop Relat Res 428:26–34
27.
go back to reference Hofmann S, Romero J, Roth-Schiffl E, Albrecht T (2003) Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty. Orthopade 32:469–476PubMed Hofmann S, Romero J, Roth-Schiffl E, Albrecht T (2003) Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty. Orthopade 32:469–476PubMed
28.
go back to reference Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73:709–714PubMed Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73:709–714PubMed
29.
go back to reference Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg Am 59:77–79PubMed Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg Am 59:77–79PubMed
30.
go back to reference Ritter MA, Faris PM, Keating EM, Meding JB (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 299:153–156 Ritter MA, Faris PM, Keating EM, Meding JB (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 299:153–156
31.
go back to reference Romero J, Stahelin T, Binkert C, Pfirrmann C, Hodler J, Kessler O (2007) The clinical consequences of flexion gap asymmetry in total knee arthroplasty. J Arthroplasty 22:235–240PubMedCrossRef Romero J, Stahelin T, Binkert C, Pfirrmann C, Hodler J, Kessler O (2007) The clinical consequences of flexion gap asymmetry in total knee arthroplasty. J Arthroplasty 22:235–240PubMedCrossRef
32.
go back to reference Bedard M, Vince KG, Redfern J, Collen SR (2011) Internal rotation of the tibial component is frequent in stiff total knee arthroplasty. Clin Orthop Relat Res 469:2346–2355PubMedCrossRef Bedard M, Vince KG, Redfern J, Collen SR (2011) Internal rotation of the tibial component is frequent in stiff total knee arthroplasty. Clin Orthop Relat Res 469:2346–2355PubMedCrossRef
33.
go back to reference Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br 92:1238–1244PubMedCrossRef Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br 92:1238–1244PubMedCrossRef
34.
go back to reference Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res 436:172–176 Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res 436:172–176
35.
go back to reference Eckhoff DG, Metzger RG, Vandewalle MV (1995) Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop Relat Res 321:28–31 Eckhoff DG, Metzger RG, Vandewalle MV (1995) Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop Relat Res 321:28–31
36.
go back to reference Huddleston JI, Scott RD, Wimberley DW (2005) Determination of neutral tibial rotational alignment in rotating platform TKA. Clin Orthop Relat Res 440:101–106PubMedCrossRef Huddleston JI, Scott RD, Wimberley DW (2005) Determination of neutral tibial rotational alignment in rotating platform TKA. Clin Orthop Relat Res 440:101–106PubMedCrossRef
37.
go back to reference Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y (2002) Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop 402:196–201 Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y (2002) Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop 402:196–201
38.
go back to reference Wasielewski RC, Komistek RD, Zingde SM, Sheridan KC, Mahfouz MR (2008) Lack of axial rotation in mobile-bearing knee designs. Clin Orthop Relat Res 466:2662–2668PubMedCrossRef Wasielewski RC, Komistek RD, Zingde SM, Sheridan KC, Mahfouz MR (2008) Lack of axial rotation in mobile-bearing knee designs. Clin Orthop Relat Res 466:2662–2668PubMedCrossRef
39.
go back to reference Lützner J, Krummenauer F, Günther KP, Kirschner S (2010) Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57PubMedCrossRef Lützner J, Krummenauer F, Günther KP, Kirschner S (2010) Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57PubMedCrossRef
Metadata
Title
Patients with no functional improvement after total knee arthroplasty show different kinematics
Authors
Jörg Lützner
Stephan Kirschner
Klaus-Peter Günther
Melinda K. Harman
Publication date
01-09-2012
Publisher
Springer-Verlag
Published in
International Orthopaedics / Issue 9/2012
Print ISSN: 0341-2695
Electronic ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-012-1584-8

Other articles of this Issue 9/2012

International Orthopaedics 9/2012 Go to the issue