Skip to main content
Top
Published in: Osteoporosis International 1/2017

01-01-2017 | Original Article

Operator variability in scan positioning is a major component of HR-pQCT precision error and is reduced by standardized training

Authors: S. Bonaretti, N. Vilayphiou, C. M. Chan, A. Yu, K. Nishiyama, D. Liu, S. Boutroy, A. Ghasem-Zadeh, S. K. Boyd, R. Chapurlat, H. McKay, E. Shane, M. L. Bouxsein, D. M. Black, S. Majumdar, E. S. Orwoll, T. F. Lang, S. Khosla, A. J. Burghardt

Published in: Osteoporosis International | Issue 1/2017

Login to get access

Abstract

Summary

In this study, we determined that operator positioning precision contributes significant measurement error in high-resolution peripheral quantitative computed tomography (HR-pQCT). Moreover, we developed software to quantify intra- and inter-operator variability and demonstrated that standard positioning training (now available as a web-based application) can significantly reduce inter-operator variability.

Introduction

HR-pQCT is increasingly used to assess bone quality, fracture risk, and anti-fracture interventions. The contribution of the operator has not been adequately accounted in measurement precision. Operators acquire a 2D projection (“scout view image”) and define the region to be scanned by positioning a “reference line” on a standard anatomical landmark. In this study, we (i) evaluated the contribution of positioning variability to in vivo measurement precision, (ii) measured intra- and inter-operator positioning variability, and (iii) tested if custom training software led to superior reproducibility in new operators compared to experienced operators.

Methods

To evaluate the operator in vivo measurement precision, we compared precision errors calculated in 64 co-registered and non-co-registered scan-rescan images. To quantify operator variability, we developed software that simulates the positioning process of the scanner’s software. Eight experienced operators positioned reference lines on scout view images designed to test intra- and inter-operator reproducibility. Finally, we developed modules for training and evaluation of reference line positioning. We enrolled six new operators to participate in a common training, followed by the same reproducibility experiments performed by the experienced group.

Results

In vivo precision errors were up to threefold greater (Tt.BMD and Ct.Th) when variability in scan positioning was included. The inter-operator precision errors were significantly greater than the short-term intra-operator precision (p < 0.001). New trained operators achieved comparable intra-operator reproducibility to experienced operators and lower inter-operator reproducibility (p < 0.001). Precision errors were significantly greater for the radius than for the tibia.

Conclusion

Operator reference line positioning contributes significantly to in vivo measurement precision and is significantly greater for multi-operator datasets. Inter-operator variability can be significantly reduced using a systematic training platform, now available online (http://​webapps.​radiology.​ucsf.​edu/​refline/​).
Appendix
Available only for authorised users
Literature
1.
go back to reference Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R et al (2013) High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep 11:136–146CrossRefPubMedPubMedCentral Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R et al (2013) High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep 11:136–146CrossRefPubMedPubMedCentral
2.
go back to reference Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515CrossRefPubMed Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515CrossRefPubMed
3.
go back to reference Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47:519–528CrossRefPubMedPubMedCentral Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47:519–528CrossRefPubMedPubMedCentral
4.
go back to reference Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M et al (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131CrossRefPubMed Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M et al (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131CrossRefPubMed
5.
go back to reference Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK (2011) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 26:50–62CrossRefPubMed Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK (2011) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 26:50–62CrossRefPubMed
6.
go back to reference Kazakia GJ, Tjong W, Nirody JA, Burghardt AJ, Carballido-Gamio J, Patsch JM et al (2014) The influence of disuse on bone microstructure and mechanics assessed by HR-pQCT. Bone 63:132–140CrossRefPubMedPubMedCentral Kazakia GJ, Tjong W, Nirody JA, Burghardt AJ, Carballido-Gamio J, Patsch JM et al (2014) The influence of disuse on bone microstructure and mechanics assessed by HR-pQCT. Bone 63:132–140CrossRefPubMedPubMedCentral
7.
go back to reference Zhu TY, Griffith JF, Qin L, Hung VW, Fong T-N, Au S-K et al (2014) Alterations of bone density, microstructure and strength of the distal radius in male patients with rheumatoid arthritis: a case-control study with HR-pQCT. J Bone Miner Res:1–42 Zhu TY, Griffith JF, Qin L, Hung VW, Fong T-N, Au S-K et al (2014) Alterations of bone density, microstructure and strength of the distal radius in male patients with rheumatoid arthritis: a case-control study with HR-pQCT. J Bone Miner Res:1–42
8.
go back to reference Rizzoli R, Laroche M, Krieg M-A, Frieling I, Thomas T, Delmas P et al (2010) Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int 30:1341–1348CrossRefPubMedPubMedCentral Rizzoli R, Laroche M, Krieg M-A, Frieling I, Thomas T, Delmas P et al (2010) Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int 30:1341–1348CrossRefPubMedPubMedCentral
9.
go back to reference Seeman E, Delmas PD, Hanley DA, Sellmeyer D, Cheung AM, Shane E et al (2010) Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res 25:1886–1894CrossRefPubMedPubMedCentral Seeman E, Delmas PD, Hanley DA, Sellmeyer D, Cheung AM, Shane E et al (2010) Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res 25:1886–1894CrossRefPubMedPubMedCentral
10.
go back to reference Melton LJ, Christen D, Riggs BL, Achenbach SJ, Müller R, van Lenthe GH et al (2010) Assessing forearm fracture risk in postmenopausal women. Osteoporos Int 21:1161–1169CrossRefPubMed Melton LJ, Christen D, Riggs BL, Achenbach SJ, Müller R, van Lenthe GH et al (2010) Assessing forearm fracture risk in postmenopausal women. Osteoporos Int 21:1161–1169CrossRefPubMed
11.
go back to reference Christen D, Melton LJ, Zwahlen A, Amin S, Khosla S, Müller R (2013) Improved fracture risk assessment based on nonlinear micro-finite element simulations from HRpQCT images at the distal radius. J Bone Miner Res 28:2601–2608CrossRefPubMed Christen D, Melton LJ, Zwahlen A, Amin S, Khosla S, Müller R (2013) Improved fracture risk assessment based on nonlinear micro-finite element simulations from HRpQCT images at the distal radius. J Bone Miner Res 28:2601–2608CrossRefPubMed
12.
go back to reference Glüer C, Blake G, Lu Y, Blunt B (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270CrossRefPubMed Glüer C, Blake G, Lu Y, Blunt B (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270CrossRefPubMed
13.
go back to reference MacNeil JA, Boyd SK (2008) Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 30:792–799CrossRefPubMed MacNeil JA, Boyd SK (2008) Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 30:792–799CrossRefPubMed
14.
go back to reference Burghardt AJ, Pialat J-B, Kazakia GJ, Boutroy S, Engelke K, Patsch JM et al (2013) Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography. J Bone Miner Res 28:524–536CrossRefPubMedPubMedCentral Burghardt AJ, Pialat J-B, Kazakia GJ, Boutroy S, Engelke K, Patsch JM et al (2013) Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography. J Bone Miner Res 28:524–536CrossRefPubMedPubMedCentral
15.
go back to reference Engelke K, Stampa B, Timm W, Dardzinski B, de Papp AE, Genant HK et al (2012) Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia. Osteoporos Int 23:2151–2158CrossRefPubMed Engelke K, Stampa B, Timm W, Dardzinski B, de Papp AE, Genant HK et al (2012) Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia. Osteoporos Int 23:2151–2158CrossRefPubMed
16.
go back to reference Ellouz R, Chapurlat R, van Rietbergen B, Christen P, Pialat J-B, Boutroy S (2014) Challenges in longitudinal measurements with HR-pQCT: evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility. Bone 63:147–157CrossRefPubMed Ellouz R, Chapurlat R, van Rietbergen B, Christen P, Pialat J-B, Boutroy S (2014) Challenges in longitudinal measurements with HR-pQCT: evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility. Bone 63:147–157CrossRefPubMed
17.
go back to reference Boyd SK (2008) Site-specific variation of bone micro-architecture in the distal radius and tibia. J Clin Densitom 11:424–430CrossRefPubMed Boyd SK (2008) Site-specific variation of bone micro-architecture in the distal radius and tibia. J Clin Densitom 11:424–430CrossRefPubMed
18.
go back to reference Mueller TL, van Lenthe GH, Stauber M, Gratzke C, Eckstein F, Müller R (2009) Regional, age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population. Bone 45:882–891CrossRefPubMed Mueller TL, van Lenthe GH, Stauber M, Gratzke C, Eckstein F, Müller R (2009) Regional, age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population. Bone 45:882–891CrossRefPubMed
19.
go back to reference Pialat JB, Burghardt AJ, Sode M, Link TM, Majumdar S (2012) Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50:111–118CrossRefPubMed Pialat JB, Burghardt AJ, Sode M, Link TM, Majumdar S (2012) Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50:111–118CrossRefPubMed
20.
go back to reference Laib A, Häuselmann HJ, Rüegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337PubMed Laib A, Häuselmann HJ, Rüegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337PubMed
21.
go back to reference Davis KA, Burghardt AJ, Link TM, Majumdar S (2007) The effects of geometric and threshold definitions on cortical bone metrics assessed by in vivo high-resolution peripheral quantitative computed tomography. Calcif Tissue Int 81:364–371CrossRefPubMed Davis KA, Burghardt AJ, Link TM, Majumdar S (2007) The effects of geometric and threshold definitions on cortical bone metrics assessed by in vivo high-resolution peripheral quantitative computed tomography. Calcif Tissue Int 81:364–371CrossRefPubMed
22.
go back to reference Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993CrossRefPubMed Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993CrossRefPubMed
23.
go back to reference Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515CrossRefPubMed Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515CrossRefPubMed
24.
go back to reference Hildebrand T, Ru P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75CrossRef Hildebrand T, Ru P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75CrossRef
25.
go back to reference Müller R, Rüegsegger P (1995) Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys 17:126–133CrossRefPubMed Müller R, Rüegsegger P (1995) Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys 17:126–133CrossRefPubMed
26.
go back to reference MacNeil J, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42:1203–1213CrossRefPubMed MacNeil J, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42:1203–1213CrossRefPubMed
27.
go back to reference Van Rietbergen B, Odgaard A, Kabel J, Huiskes R (1996) Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech 29:1653–1657CrossRefPubMed Van Rietbergen B, Odgaard A, Kabel J, Huiskes R (1996) Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech 29:1653–1657CrossRefPubMed
28.
go back to reference Mueller TL, Christen D, Sandercott S, Boyd SK, van Rietbergen B, Eckstein F et al (2011) Computational finite element bone mechanics accurately predicts mechanical competence in the human radius of an elderly population. Bone 48:1232–1238CrossRefPubMed Mueller TL, Christen D, Sandercott S, Boyd SK, van Rietbergen B, Eckstein F et al (2011) Computational finite element bone mechanics accurately predicts mechanical competence in the human radius of an elderly population. Bone 48:1232–1238CrossRefPubMed
29.
go back to reference Laib A, Hildebrand T, Häuselmann H, Rüegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21:541–546CrossRefPubMed Laib A, Hildebrand T, Häuselmann H, Rüegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21:541–546CrossRefPubMed
30.
go back to reference Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK et al (2009) Bone structure at the distal radius during adolescent growth. J Bone Miner Res 24:1033–1042CrossRefPubMed Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK et al (2009) Bone structure at the distal radius during adolescent growth. J Bone Miner Res 24:1033–1042CrossRefPubMed
31.
go back to reference Burrows M, Liu D, McKay H (2010) High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int 21:515–20CrossRefPubMed Burrows M, Liu D, McKay H (2010) High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int 21:515–20CrossRefPubMed
32.
go back to reference Barnabe C, Feehan L (2012) High-resolution peripheral quantitative computed tomography imaging protocol for metacarpophalangeal joints in inflammatory arthritis: the SPECTRA collaboration. J Rheumatol 39:7–9 Barnabe C, Feehan L (2012) High-resolution peripheral quantitative computed tomography imaging protocol for metacarpophalangeal joints in inflammatory arthritis: the SPECTRA collaboration. J Rheumatol 39:7–9
33.
go back to reference Carballido-Gamio J, Bonaretti S, Holets M, Saeed I, McCready L, Majumdar S et al (2013) Automated scan prescription for HR-pQCT: a multi-atlas prospective registration approach. ASBMR Carballido-Gamio J, Bonaretti S, Holets M, Saeed I, McCready L, Majumdar S et al (2013) Automated scan prescription for HR-pQCT: a multi-atlas prospective registration approach. ASBMR
Metadata
Title
Operator variability in scan positioning is a major component of HR-pQCT precision error and is reduced by standardized training
Authors
S. Bonaretti
N. Vilayphiou
C. M. Chan
A. Yu
K. Nishiyama
D. Liu
S. Boutroy
A. Ghasem-Zadeh
S. K. Boyd
R. Chapurlat
H. McKay
E. Shane
M. L. Bouxsein
D. M. Black
S. Majumdar
E. S. Orwoll
T. F. Lang
S. Khosla
A. J. Burghardt
Publication date
01-01-2017
Publisher
Springer London
Published in
Osteoporosis International / Issue 1/2017
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-016-3705-5

Other articles of this Issue 1/2017

Osteoporosis International 1/2017 Go to the issue