Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2024

Open Access 01-12-2024 | Interferon | Research

IRF4-mediated Treg phenotype switching can aggravate hyperoxia-induced alveolar epithelial cell injury

Authors: He Langyue, Zhu Ying, Jiang Jianfeng, Zhu Yue, Yao Huici, Lu Hongyan

Published in: BMC Pulmonary Medicine | Issue 1/2024

Login to get access

Abstract

Bronchopulmonary dysplasia (BPD) is characterized by alveolar dysplasia, and evidence indicates that interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various inflammatory lung diseases. Nonetheless, the significance and mechanism of IRF4 in BPD remain unelucidated. Consequently, we established a mouse model of BPD through hyperoxia exposure, and ELISA was employed to measure interleukin-17 A (IL-17 A) and interleukin-6 (IL-6) expression levels in lung tissues. Western blotting was adopted to determine the expression of IRF4, surfactant protein C (SP-C), and podoplanin (T1α) in lung tissues. Flow cytometry was utilized for analyzing the percentages of FOXP3+ regulatory T cells (Tregs) and FOXP3+RORγt+ Tregs in CD4+ T cells in lung tissues to clarify the underlying mechanism. Our findings revealed that BPD mice exhibited disordered lung tissue structure, elevated IRF4 expression, decreased SP-C and T1α expression, increased IL-17 A and IL-6 levels, reduced proportion of FOXP3+ Tregs, and increased proportion of FOXP3+RORγt+ Tregs. For the purpose of further elucidating the effect of IRF4 on Treg phenotype switching induced by hyperoxia in lung tissues, we exposed neonatal mice with IRF4 knockout to hyperoxia. These mice exhibited regular lung tissue structure, increased proportion of FOXP3+ Tregs, reduced proportion of FOXP3+RORγt+ Tregs, elevated SP-C and T1α expression, and decreased IL-17 A and IL-6 levels. In conclusion, our findings demonstrate that IRF4-mediated Treg phenotype switching in lung tissues exacerbates alveolar epithelial cell injury under hyperoxia exposure.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moschino L, Bonadies L, Baraldi E. Lung growth and pulmonary function after prematurity and bronchopulmonary dysplasia[J]. Pediatr Pulmonol. 2021;56(11):3499–508.PubMedPubMedCentralCrossRef Moschino L, Bonadies L, Baraldi E. Lung growth and pulmonary function after prematurity and bronchopulmonary dysplasia[J]. Pediatr Pulmonol. 2021;56(11):3499–508.PubMedPubMedCentralCrossRef
2.
go back to reference Liberti DC, Kremp MM, Liberti WA, et al. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury[J]. Cell Rep. 2021;35(6):109092.PubMedPubMedCentralCrossRef Liberti DC, Kremp MM, Liberti WA, et al. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury[J]. Cell Rep. 2021;35(6):109092.PubMedPubMedCentralCrossRef
3.
go back to reference Deng X, Bao Z, Yang X, et al. Molecular mechanisms of cell death in bronchopulmonary dysplasia[J]. Apoptosis: Int J Program Cell Death. 2023;28(1–2):39–54.CrossRef Deng X, Bao Z, Yang X, et al. Molecular mechanisms of cell death in bronchopulmonary dysplasia[J]. Apoptosis: Int J Program Cell Death. 2023;28(1–2):39–54.CrossRef
4.
go back to reference Tao Y, Han X, Guo W-L. Predictors of Bronchopulmonary Dysplasia in 625 neonates with respiratory distress Syndrome[J]. J Trop Pediatr. 2022;68(3):fmac037.PubMedPubMedCentralCrossRef Tao Y, Han X, Guo W-L. Predictors of Bronchopulmonary Dysplasia in 625 neonates with respiratory distress Syndrome[J]. J Trop Pediatr. 2022;68(3):fmac037.PubMedPubMedCentralCrossRef
5.
go back to reference Hirani D, Alvira CM, Danopoulos S, et al. Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia[J]. Eur Respir J. 2022;59(2):2002248.PubMedPubMedCentralCrossRef Hirani D, Alvira CM, Danopoulos S, et al. Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia[J]. Eur Respir J. 2022;59(2):2002248.PubMedPubMedCentralCrossRef
6.
go back to reference Witkowski SM, de Castro EM, Nagashima S, et al. Analysis of interleukins 6, 8, 10 and 17 in the lungs of premature neonates with bronchopulmonary dysplasia[J]. Cytokine. 2020;131:155118.PubMedCrossRef Witkowski SM, de Castro EM, Nagashima S, et al. Analysis of interleukins 6, 8, 10 and 17 in the lungs of premature neonates with bronchopulmonary dysplasia[J]. Cytokine. 2020;131:155118.PubMedCrossRef
7.
go back to reference Collaco JM, McGrath-Morrow SA, Griffiths M, et al. Perinatal inflammatory biomarkers and respiratory disease in Preterm Infants[J]. J Pediatr. 2022;246:34–39e3.PubMedPubMedCentralCrossRef Collaco JM, McGrath-Morrow SA, Griffiths M, et al. Perinatal inflammatory biomarkers and respiratory disease in Preterm Infants[J]. J Pediatr. 2022;246:34–39e3.PubMedPubMedCentralCrossRef
8.
go back to reference Ozato K, Tailor P, Kubota T. The interferon regulatory factor family in host defense: mechanism of action[J]. J Biol Chem. 2007;282(28):20065–9.PubMedCrossRef Ozato K, Tailor P, Kubota T. The interferon regulatory factor family in host defense: mechanism of action[J]. J Biol Chem. 2007;282(28):20065–9.PubMedCrossRef
9.
go back to reference Schoenemeyer A, Barnes BJ, Mancl ME, et al. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling[J]. J Biol Chem. 2005;280(17):17005–12.PubMedCrossRef Schoenemeyer A, Barnes BJ, Mancl ME, et al. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling[J]. J Biol Chem. 2005;280(17):17005–12.PubMedCrossRef
10.
go back to reference Schmidt C, Harberts A, Reimers D, et al. IRF4 is required for migration of CD4 + T cells to the intestine but not for Th2 and Th17 cell maintenance[J]. Front Immunol. 2023;14:1182502.PubMedPubMedCentralCrossRef Schmidt C, Harberts A, Reimers D, et al. IRF4 is required for migration of CD4 + T cells to the intestine but not for Th2 and Th17 cell maintenance[J]. Front Immunol. 2023;14:1182502.PubMedPubMedCentralCrossRef
12.
go back to reference Jingling JM, Yu C, Zufferey A, Brüstle S, Wirtz B, Weigmann A, Hoffman M, Schenk PR, Galle HA, Lehr C, Mueller M, Lohoff MF, Neurath. IRF4 regulates IL-17A promoter activity and controls RORγt-dependent Th17 colitis in vivo Inflammatory Bowel Diseases. 2011;17(6):1343–58. https://doi.org/10.1002/ibd.21476. Jingling JM, Yu C, Zufferey A, Brüstle S, Wirtz B, Weigmann A, Hoffman M, Schenk PR, Galle HA, Lehr C, Mueller M, Lohoff MF, Neurath. IRF4 regulates IL-17A promoter activity and controls RORγt-dependent Th17 colitis in vivo Inflammatory Bowel Diseases. 2011;17(6):1343–58. https://​doi.​org/​10.​1002/​ibd.​21476.
14.
go back to reference Ottens K, Satterthwaite AB. IRF4 has a Unique Role in Early B Cell Development and acts prior to CD21 expression to control marginal zone B cell Numbers[J]. Front Immunol. 2021;12:779085.PubMedPubMedCentralCrossRef Ottens K, Satterthwaite AB. IRF4 has a Unique Role in Early B Cell Development and acts prior to CD21 expression to control marginal zone B cell Numbers[J]. Front Immunol. 2021;12:779085.PubMedPubMedCentralCrossRef
15.
go back to reference Chen Q, Yang W, Gupta S, et al. IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor[J]. Immunity. 2008;29(6):899–911.PubMedPubMedCentralCrossRef Chen Q, Yang W, Gupta S, et al. IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor[J]. Immunity. 2008;29(6):899–911.PubMedPubMedCentralCrossRef
16.
go back to reference Ainsua-Enrich E, Hatipoglu I, Kadel S, et al. IRF4-dependent dendritic cells regulate CD8 + T cell differentiation and memory responses in influenza infection[J]. Mucosal Immunol. 2019;12(4):1025–37.PubMedPubMedCentralCrossRef Ainsua-Enrich E, Hatipoglu I, Kadel S, et al. IRF4-dependent dendritic cells regulate CD8 + T cell differentiation and memory responses in influenza infection[J]. Mucosal Immunol. 2019;12(4):1025–37.PubMedPubMedCentralCrossRef
17.
go back to reference Misiukiewicz-Stępien P, Mierzejewski M, Zajusz-Zubek E, et al. RNA-Seq analysis of UPM-Exposed epithelium co-cultivated with macrophages and dendritic cells in Obstructive Lung Diseases[J]. Int J Mol Sci. 2022;23(16):9125.PubMedPubMedCentralCrossRef Misiukiewicz-Stępien P, Mierzejewski M, Zajusz-Zubek E, et al. RNA-Seq analysis of UPM-Exposed epithelium co-cultivated with macrophages and dendritic cells in Obstructive Lung Diseases[J]. Int J Mol Sci. 2022;23(16):9125.PubMedPubMedCentralCrossRef
18.
go back to reference Ying ZHU, Langyue HE, Jianfeng JIANG, et al. lRF4 influences proliferation of pulmonary vascular endothelial cells in bronchopulmonary dysplasia model mice by regulating FOXP3[J]. Chin J Pathophysiology(in Chinese). 2023;39(8):1366–72. Ying ZHU, Langyue HE, Jianfeng JIANG, et al. lRF4 influences proliferation of pulmonary vascular endothelial cells in bronchopulmonary dysplasia model mice by regulating FOXP3[J]. Chin J Pathophysiology(in Chinese). 2023;39(8):1366–72.
19.
go back to reference Opstelten R, de Kivit S, Slot MC, et al. GPA33: a marker to identify stable human regulatory T cells [J]. J Immunol (Baltimore, Md: 1950). 2020;204(12):3139–48. Opstelten R, de Kivit S, Slot MC, et al. GPA33: a marker to identify stable human regulatory T cells [J]. J Immunol (Baltimore, Md: 1950). 2020;204(12):3139–48.
20.
go back to reference Mock JR, Dial CF, Tune MK, et al. Transcriptional analysis of Foxp3 + Tregs and functions of two identified molecules during resolution of ALI[J]. JCI Insight. 2019;4(6):e124958.PubMedPubMedCentralCrossRef Mock JR, Dial CF, Tune MK, et al. Transcriptional analysis of Foxp3 + Tregs and functions of two identified molecules during resolution of ALI[J]. JCI Insight. 2019;4(6):e124958.PubMedPubMedCentralCrossRef
21.
go back to reference Misra R, Shah S, Fowell D, et al. Preterm cord blood CD4+ T cells exhibit increased IL-6 production in chorioamnionitis and decreased CD4+ T cells in bronchopulmonary dysplasia[J]. Hum Immunol. 2015;76(5):329–38.PubMedPubMedCentralCrossRef Misra R, Shah S, Fowell D, et al. Preterm cord blood CD4+ T cells exhibit increased IL-6 production in chorioamnionitis and decreased CD4+ T cells in bronchopulmonary dysplasia[J]. Hum Immunol. 2015;76(5):329–38.PubMedPubMedCentralCrossRef
22.
go back to reference Tseng W-Y, Huang Y-S, Clanchy F, et al. TNF receptor 2 signaling prevents DNA methylation at the Foxp3 promoter and prevents pathogenic conversion of regulatory T cells[J]. Proc Natl Acad Sci USA. 2019;116(43):21666–72.ADSPubMedPubMedCentralCrossRef Tseng W-Y, Huang Y-S, Clanchy F, et al. TNF receptor 2 signaling prevents DNA methylation at the Foxp3 promoter and prevents pathogenic conversion of regulatory T cells[J]. Proc Natl Acad Sci USA. 2019;116(43):21666–72.ADSPubMedPubMedCentralCrossRef
23.
go back to reference Shen X, Zhang H, Xie H, et al. Reduced CCR6 + IL-17A + Treg cells in blood and CCR6-Dependent Accumulation of IL-17A + Treg cells in lungs of patients with allergic Asthma[J]. Front Immunol. 2021;12:710750.PubMedPubMedCentralCrossRef Shen X, Zhang H, Xie H, et al. Reduced CCR6 + IL-17A + Treg cells in blood and CCR6-Dependent Accumulation of IL-17A + Treg cells in lungs of patients with allergic Asthma[J]. Front Immunol. 2021;12:710750.PubMedPubMedCentralCrossRef
24.
go back to reference Massoud AH, Charbonnier L-M, Lopez D, et al. An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells[J]. Nat Med. 2016;22(9):1013–22.PubMedPubMedCentralCrossRef Massoud AH, Charbonnier L-M, Lopez D, et al. An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells[J]. Nat Med. 2016;22(9):1013–22.PubMedPubMedCentralCrossRef
25.
go back to reference Arnold PR, Wen M, Zhang L, et al. Suppression of FOXP3 expression by the AP-1 family transcription factor BATF3 requires partnering with IRF4[J]. Front Immunol. 2022;13:966364.PubMedPubMedCentralCrossRef Arnold PR, Wen M, Zhang L, et al. Suppression of FOXP3 expression by the AP-1 family transcription factor BATF3 requires partnering with IRF4[J]. Front Immunol. 2022;13:966364.PubMedPubMedCentralCrossRef
26.
go back to reference Cretney E, Xin A, Shi W, et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells[J]. Nat Immunol. 2011;12(4):304–11.PubMedCrossRef Cretney E, Xin A, Shi W, et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells[J]. Nat Immunol. 2011;12(4):304–11.PubMedCrossRef
27.
go back to reference Mudter J, Yu J, Zufferey C, et al. IRF4 regulates IL-17A promoter activity and controls RORγt-dependent Th17 colitis in vivo:[J]. Inflamm Bowel Dis. 2011;17(6):1343–58.PubMedCrossRef Mudter J, Yu J, Zufferey C, et al. IRF4 regulates IL-17A promoter activity and controls RORγt-dependent Th17 colitis in vivo:[J]. Inflamm Bowel Dis. 2011;17(6):1343–58.PubMedCrossRef
28.
go back to reference Zheng Y, Chaudhry A, Kas A, et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses[J]. Nature. 2009;458(7236):351–6.ADSPubMedPubMedCentralCrossRef Zheng Y, Chaudhry A, Kas A, et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses[J]. Nature. 2009;458(7236):351–6.ADSPubMedPubMedCentralCrossRef
29.
go back to reference Dapaah-Siakwan F, Zambrano R, Luo S, et al. Caspase-1 inhibition attenuates Hyperoxia-induced lung and Brain Injury in neonatal Mice[J]. Am J Respir Cell Mol Biol. 2019;61(3):341–54.PubMedCrossRef Dapaah-Siakwan F, Zambrano R, Luo S, et al. Caspase-1 inhibition attenuates Hyperoxia-induced lung and Brain Injury in neonatal Mice[J]. Am J Respir Cell Mol Biol. 2019;61(3):341–54.PubMedCrossRef
30.
go back to reference Warner BB, Stuart LA, Papes RA, et al. Functional and pathological effects of prolonged hyperoxia in neonatal mice[J]. Am J Physiol. 1998;275(1):L110–117.PubMed Warner BB, Stuart LA, Papes RA, et al. Functional and pathological effects of prolonged hyperoxia in neonatal mice[J]. Am J Physiol. 1998;275(1):L110–117.PubMed
31.
go back to reference Appuhn SV, Siebert S, Myti D, et al. Capillary changes precede disordered alveolarization in a mouse model of bronchopulmonary Dysplasia[J]. Am J Respir Cell Mol Biol. 2021;65(1):81–91.PubMedCrossRef Appuhn SV, Siebert S, Myti D, et al. Capillary changes precede disordered alveolarization in a mouse model of bronchopulmonary Dysplasia[J]. Am J Respir Cell Mol Biol. 2021;65(1):81–91.PubMedCrossRef
32.
go back to reference Liang Z, Yue H, Xu C, et al. Protectin DX relieve Hyperoxia-induced Lung Injury by protecting pulmonary endothelial Glycocalyx[J]. J Inflamm Res. 2023;16:421–31.PubMedPubMedCentralCrossRef Liang Z, Yue H, Xu C, et al. Protectin DX relieve Hyperoxia-induced Lung Injury by protecting pulmonary endothelial Glycocalyx[J]. J Inflamm Res. 2023;16:421–31.PubMedPubMedCentralCrossRef
33.
go back to reference Yang H-J, Tsou W-H, Shen M-C, et al. The effects of hydrogen treatment in a cigarette smoke solution-induced chronic obstructive pulmonary disease-like changes in an animal model[J]. J Thorac Dis. 2022;14(11):4246–55.PubMedPubMedCentralCrossRef Yang H-J, Tsou W-H, Shen M-C, et al. The effects of hydrogen treatment in a cigarette smoke solution-induced chronic obstructive pulmonary disease-like changes in an animal model[J]. J Thorac Dis. 2022;14(11):4246–55.PubMedPubMedCentralCrossRef
34.
go back to reference Zhu Y, Ju H, Lu H, et al. The function role of ubiquitin proteasome pathway in the ER stress-induced AECII apoptosis during hyperoxia exposure[J]. BMC Pulm Med. 2021;21(1):379.PubMedPubMedCentralCrossRef Zhu Y, Ju H, Lu H, et al. The function role of ubiquitin proteasome pathway in the ER stress-induced AECII apoptosis during hyperoxia exposure[J]. BMC Pulm Med. 2021;21(1):379.PubMedPubMedCentralCrossRef
35.
go back to reference Yao H-C, Zhu Y, Lu H-Y, et al. Type 2 innate lymphoid cell-derived amphiregulin regulates type II alveolar epithelial cell transdifferentiation in a mouse model of bronchopulmonary dysplasia[J]. Int Immunopharmacol. 2023;122:110672.PubMedCrossRef Yao H-C, Zhu Y, Lu H-Y, et al. Type 2 innate lymphoid cell-derived amphiregulin regulates type II alveolar epithelial cell transdifferentiation in a mouse model of bronchopulmonary dysplasia[J]. Int Immunopharmacol. 2023;122:110672.PubMedCrossRef
36.
go back to reference Ma B, Ma Y, Deng B, et al. Tumor microenvironment-responsive spherical nucleic acid nanoparticles for enhanced chemo-immunotherapy[J]. J Nanobiotechnol. 2023;21(1):171.CrossRef Ma B, Ma Y, Deng B, et al. Tumor microenvironment-responsive spherical nucleic acid nanoparticles for enhanced chemo-immunotherapy[J]. J Nanobiotechnol. 2023;21(1):171.CrossRef
37.
go back to reference Wang X, Lang M, Zhao T, et al. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3 + Treg cells in pancreatic ductal adenocarcinoma[J]. Oncogene. 2017;36(21):3048–58.PubMedCrossRef Wang X, Lang M, Zhao T, et al. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3 + Treg cells in pancreatic ductal adenocarcinoma[J]. Oncogene. 2017;36(21):3048–58.PubMedCrossRef
38.
go back to reference Yan Y, Ramanan D, Rozenberg M, et al. Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gut[J]. Immunity. 2021;54(3):499–513e5.PubMedPubMedCentralCrossRef Yan Y, Ramanan D, Rozenberg M, et al. Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gut[J]. Immunity. 2021;54(3):499–513e5.PubMedPubMedCentralCrossRef
39.
go back to reference Yang YH, Istomine R, Alvarez F, et al. Salt sensing by Serum/Glucocorticoid-Regulated kinase 1 promotes Th17-like inflammatory adaptation of Foxp3 + Regulatory T Cells[J]. Cell Rep. 2020;30(5):1515–1529e4.PubMedCrossRef Yang YH, Istomine R, Alvarez F, et al. Salt sensing by Serum/Glucocorticoid-Regulated kinase 1 promotes Th17-like inflammatory adaptation of Foxp3 + Regulatory T Cells[J]. Cell Rep. 2020;30(5):1515–1529e4.PubMedCrossRef
40.
go back to reference Giusto K, Wanczyk H, Jensen T, et al. Hyperoxia-induced bronchopulmonary dysplasia better models for better therapies [J]. Dis Models Mech. 2021;14:dmm047753.CrossRef Giusto K, Wanczyk H, Jensen T, et al. Hyperoxia-induced bronchopulmonary dysplasia better models for better therapies [J]. Dis Models Mech. 2021;14:dmm047753.CrossRef
41.
go back to reference Bik-Multanowski C, Revhaug C, Grabowska A, et al. Hyperoxia induces epigenetic changes in newborn mice lungs[J]. Free Rad Biol Med Free Radic Biol Med. 2018;121:151. Bik-Multanowski C, Revhaug C, Grabowska A, et al. Hyperoxia induces epigenetic changes in newborn mice lungs[J]. Free Rad Biol Med Free Radic Biol Med. 2018;121:151.
42.
go back to reference Zhu Y, He L, Zhu Y, et al. IRF4 affects the protective effect of regulatory T cells on the pulmonary vasculature of a bronchopulmonary dysplasia mouse model by regulating FOXP3[J]. Mol Med (Cambridge, Mass). 2024;30:6.CrossRef Zhu Y, He L, Zhu Y, et al. IRF4 affects the protective effect of regulatory T cells on the pulmonary vasculature of a bronchopulmonary dysplasia mouse model by regulating FOXP3[J]. Mol Med (Cambridge, Mass). 2024;30:6.CrossRef
43.
go back to reference Lu H, Chen X, Lu Y, et al. Effects of C/EBPα overexpression on alveolar epithelial type II cell proliferation, apoptosis and surfactant protein-C expression after exposure to hyperoxia[J]. BMC Pulm Med. 2019;19(1):142.MathSciNetPubMedPubMedCentralCrossRef Lu H, Chen X, Lu Y, et al. Effects of C/EBPα overexpression on alveolar epithelial type II cell proliferation, apoptosis and surfactant protein-C expression after exposure to hyperoxia[J]. BMC Pulm Med. 2019;19(1):142.MathSciNetPubMedPubMedCentralCrossRef
44.
go back to reference Hayek H, Kosmider B, Bahmed K. The role of miRNAs in alveolar epithelial cells in emphysema [J]. Biomed Pharmacother Biomed Pharmacother. 2021;143:112216.PubMedCrossRef Hayek H, Kosmider B, Bahmed K. The role of miRNAs in alveolar epithelial cells in emphysema [J]. Biomed Pharmacother Biomed Pharmacother. 2021;143:112216.PubMedCrossRef
45.
go back to reference Kosmider B, Lin C-R, Karim L, et al. Mitochondrial dysfunction in human primary alveolar type II cells in emphysema[J]. EBioMedicine. 2019;46:305–16.PubMedPubMedCentralCrossRef Kosmider B, Lin C-R, Karim L, et al. Mitochondrial dysfunction in human primary alveolar type II cells in emphysema[J]. EBioMedicine. 2019;46:305–16.PubMedPubMedCentralCrossRef
46.
go back to reference Guo B, Zuo Z, Di X, et al. Salidroside attenuates HALI via IL-17A-mediated ferroptosis of alveolar epithelial cells by regulating Act1-TRAF6-p38 MAPK pathway[J]. Cell Commun Signal: CCS. 2022;20(1):183.PubMedPubMedCentralCrossRef Guo B, Zuo Z, Di X, et al. Salidroside attenuates HALI via IL-17A-mediated ferroptosis of alveolar epithelial cells by regulating Act1-TRAF6-p38 MAPK pathway[J]. Cell Commun Signal: CCS. 2022;20(1):183.PubMedPubMedCentralCrossRef
47.
go back to reference Wu Y-Y, Hwang Y-T, Perng W-C, et al. CPEB4 and IRF4 expression in peripheral mononuclear cells are potential prognostic factors for advanced lung cancer[J]. J Formos Med Association = Taiwan Yi Zhi. 2017;116(2):114–22.PubMedCrossRef Wu Y-Y, Hwang Y-T, Perng W-C, et al. CPEB4 and IRF4 expression in peripheral mononuclear cells are potential prognostic factors for advanced lung cancer[J]. J Formos Med Association = Taiwan Yi Zhi. 2017;116(2):114–22.PubMedCrossRef
48.
go back to reference Bosteels C, Neyt K, Vanheerswynghels M, et al. Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus Infection[J]. Immunity. 2020;52(6):1039–1056e9.PubMedPubMedCentralCrossRef Bosteels C, Neyt K, Vanheerswynghels M, et al. Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus Infection[J]. Immunity. 2020;52(6):1039–1056e9.PubMedPubMedCentralCrossRef
49.
go back to reference Tamura T, Yanai H, Savitsky D, et al. The IRF family transcription factors in immunity and oncogenesis[J]. Annu Rev Immunol. 2008;26:535–84.PubMedCrossRef Tamura T, Yanai H, Savitsky D, et al. The IRF family transcription factors in immunity and oncogenesis[J]. Annu Rev Immunol. 2008;26:535–84.PubMedCrossRef
50.
go back to reference Ming-Chin Lee K, Achuthan AA, De Souza DP, et al. Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization[J]. Cell Rep. 2022;39(3):110719.PubMedCrossRef Ming-Chin Lee K, Achuthan AA, De Souza DP, et al. Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization[J]. Cell Rep. 2022;39(3):110719.PubMedCrossRef
51.
go back to reference Park SJ, Lee K, Kang MA, et al. Tilianin attenuates HDM-induced allergic asthma by suppressing Th2-immune responses via downregulation of IRF4 in dendritic cells[J]. Phytomed Int J Phytother Phytopharmacol. 2021;80:153392. Park SJ, Lee K, Kang MA, et al. Tilianin attenuates HDM-induced allergic asthma by suppressing Th2-immune responses via downregulation of IRF4 in dendritic cells[J]. Phytomed Int J Phytother Phytopharmacol. 2021;80:153392.
52.
go back to reference Zhang X, Luo M, Zhang J, et al. Carbon nanotubes promote alveolar macrophages toward M2 polarization mediated epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation[J]. Nanotoxicology. 2021;15(5):588–604.PubMedCrossRef Zhang X, Luo M, Zhang J, et al. Carbon nanotubes promote alveolar macrophages toward M2 polarization mediated epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation[J]. Nanotoxicology. 2021;15(5):588–604.PubMedCrossRef
53.
go back to reference Schumann K, Raju SS, Lauber M, et al. Functional CRISPR dissection of gene networks controlling human regulatory T cell identity[J]. Nat Immunol. 2020;21(11):1456–66.PubMedPubMedCentralCrossRef Schumann K, Raju SS, Lauber M, et al. Functional CRISPR dissection of gene networks controlling human regulatory T cell identity[J]. Nat Immunol. 2020;21(11):1456–66.PubMedPubMedCentralCrossRef
54.
go back to reference Yu W, Ji N, Gu C, et al. IRF4 is correlated with the conversion to a Th17-like phenotype in regulatory T cells from the malignant pleural Effusion[J]. Int J Gen Med. 2021;14:6009–19.PubMedPubMedCentralCrossRef Yu W, Ji N, Gu C, et al. IRF4 is correlated with the conversion to a Th17-like phenotype in regulatory T cells from the malignant pleural Effusion[J]. Int J Gen Med. 2021;14:6009–19.PubMedPubMedCentralCrossRef
55.
go back to reference Huber M, Brüstle A, Reinhard K, et al. IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype[J]. Proc Natl Acad Sci. 2008;105(52):20846–51.ADSPubMedPubMedCentralCrossRef Huber M, Brüstle A, Reinhard K, et al. IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype[J]. Proc Natl Acad Sci. 2008;105(52):20846–51.ADSPubMedPubMedCentralCrossRef
56.
go back to reference Yang B-H, Hagemann S, Mamareli P, et al. Foxp3 + T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation[J]. Mucosal Immunol. 2016;9(2):444–57.PubMedCrossRef Yang B-H, Hagemann S, Mamareli P, et al. Foxp3 + T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation[J]. Mucosal Immunol. 2016;9(2):444–57.PubMedCrossRef
57.
go back to reference Blatner NR, Mulcahy MF, Dennis KL, et al. Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer[J]. Sci Transl Med. 2012;4(164):164ra159.PubMedPubMedCentralCrossRef Blatner NR, Mulcahy MF, Dennis KL, et al. Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer[J]. Sci Transl Med. 2012;4(164):164ra159.PubMedPubMedCentralCrossRef
58.
go back to reference Wang H, Tao F, Li C-Y, et al. Short-term administration of Qipian®, a mixed bacterial lysate, inhibits airway inflammation in ovalbumin-induced mouse asthma by modulating cellular, humoral and neurogenic immune responses[J]. Life Sci. 2024;336:122310.PubMedCrossRef Wang H, Tao F, Li C-Y, et al. Short-term administration of Qipian®, a mixed bacterial lysate, inhibits airway inflammation in ovalbumin-induced mouse asthma by modulating cellular, humoral and neurogenic immune responses[J]. Life Sci. 2024;336:122310.PubMedCrossRef
Metadata
Title
IRF4-mediated Treg phenotype switching can aggravate hyperoxia-induced alveolar epithelial cell injury
Authors
He Langyue
Zhu Ying
Jiang Jianfeng
Zhu Yue
Yao Huici
Lu Hongyan
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Interferon
Published in
BMC Pulmonary Medicine / Issue 1/2024
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-024-02940-y

Other articles of this Issue 1/2024

BMC Pulmonary Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.