Skip to main content
Top
Published in: Heart Failure Reviews 1/2019

01-01-2019

Intercalated discs: cellular adhesion and signaling in heart health and diseases

Authors: Guangze Zhao, Ye Qiu, Huifang M. Zhang, Decheng Yang

Published in: Heart Failure Reviews | Issue 1/2019

Login to get access

Abstract

Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/β-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.
Literature
1.
2.
go back to reference Vermij SH, Abriel H, van Veen TA (2017) Refining the molecular organization of the cardiac intercalated disc. Cardiovasc Res 113(3):259–275PubMed Vermij SH, Abriel H, van Veen TA (2017) Refining the molecular organization of the cardiac intercalated disc. Cardiovasc Res 113(3):259–275PubMed
3.
go back to reference van Hengel J, Calore M, Bauce B, Dazzo E, Mazzotti E, De Bortoli M, Lorenzon A, Li Mura IE, Beffagna G, Rigato I, Vleeschouwers M, Tyberghein K, Hulpiau P, van Hamme E, Zaglia T, Corrado D, Basso C, Thiene G, Daliento L, Nava A, van Roy F, Rampazzo A (2013) Mutations in the area composita protein alphaT-catenin are associated with arrhythmogenic right ventricular cardiomyopathy. Eur Heart J 34(3):201–210PubMed van Hengel J, Calore M, Bauce B, Dazzo E, Mazzotti E, De Bortoli M, Lorenzon A, Li Mura IE, Beffagna G, Rigato I, Vleeschouwers M, Tyberghein K, Hulpiau P, van Hamme E, Zaglia T, Corrado D, Basso C, Thiene G, Daliento L, Nava A, van Roy F, Rampazzo A (2013) Mutations in the area composita protein alphaT-catenin are associated with arrhythmogenic right ventricular cardiomyopathy. Eur Heart J 34(3):201–210PubMed
4.
go back to reference Swope D, Cheng L, Gao E, Li J, Radice GL (2012) Loss of cadherin-binding proteins beta-catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis. Mol Cell Biol 32(6):1056–1067PubMedPubMedCentral Swope D, Cheng L, Gao E, Li J, Radice GL (2012) Loss of cadherin-binding proteins beta-catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis. Mol Cell Biol 32(6):1056–1067PubMedPubMedCentral
5.
go back to reference Vite A, Li J, Radice GL (2015) New functions for alpha-catenins in health and disease: from cancer to heart regeneration. Cell Tissue Res 360(3):773–783PubMedPubMedCentral Vite A, Li J, Radice GL (2015) New functions for alpha-catenins in health and disease: from cancer to heart regeneration. Cell Tissue Res 360(3):773–783PubMedPubMedCentral
6.
go back to reference Hatzfeld M, Wolf A, Keil R (2014) Plakophilins in desmosomal adhesion and signaling. Cell Commun Adhes 21(1):25–42PubMed Hatzfeld M, Wolf A, Keil R (2014) Plakophilins in desmosomal adhesion and signaling. Cell Commun Adhes 21(1):25–42PubMed
7.
go back to reference Johnson JL, Najor NA, Green KJ (2014) Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med 4(11):a015297PubMedPubMedCentral Johnson JL, Najor NA, Green KJ (2014) Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med 4(11):a015297PubMedPubMedCentral
8.
go back to reference Rubsam M, Broussard JA, Wickstrom SA, Nekrasova O, Green KJ, Niessen CM (2017) Adherens junctions and desmosomes coordinate mechanics and signaling to orchestrate tissue morphogenesis and function: an evolutionary perspective. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a029207 Rubsam M, Broussard JA, Wickstrom SA, Nekrasova O, Green KJ, Niessen CM (2017) Adherens junctions and desmosomes coordinate mechanics and signaling to orchestrate tissue morphogenesis and function: an evolutionary perspective. Cold Spring Harb Perspect Biol. https://​doi.​org/​10.​1101/​cshperspect.​a029207
9.
go back to reference Manring HR, Dorn LE, Ex-Willey A, Accornero F, Ackermann MA (2018) At the heart of inter- and intracellular signaling: the intercalated disc. Biophys Rev 10(4):961–971PubMedPubMedCentral Manring HR, Dorn LE, Ex-Willey A, Accornero F, Ackermann MA (2018) At the heart of inter- and intracellular signaling: the intercalated disc. Biophys Rev 10(4):961–971PubMedPubMedCentral
10.
go back to reference Hutz K, Zeiler J, Sachs L, Ormanns S, Spindler V (2017) Loss of desmoglein 2 promotes tumorigenic behavior in pancreatic cancer cells. Mol Carcinog 56(8):1884–1895PubMed Hutz K, Zeiler J, Sachs L, Ormanns S, Spindler V (2017) Loss of desmoglein 2 promotes tumorigenic behavior in pancreatic cancer cells. Mol Carcinog 56(8):1884–1895PubMed
11.
go back to reference Garrod D, Chidgey M (2008) Desmosome structure, composition and function. Biochim Biophys Acta 1778(3):572–587PubMed Garrod D, Chidgey M (2008) Desmosome structure, composition and function. Biochim Biophys Acta 1778(3):572–587PubMed
12.
go back to reference Dusek RL, Godsel LM, Green KJ (2007) Discriminating roles of desmosomal cadherins: beyond desmosomal adhesion. J Dermatol Sci 45(1):7–21PubMed Dusek RL, Godsel LM, Green KJ (2007) Discriminating roles of desmosomal cadherins: beyond desmosomal adhesion. J Dermatol Sci 45(1):7–21PubMed
13.
go back to reference Garrod DR, Merritt AJ, Nie Z (2002) Desmosomal adhesion: structural basis, molecular mechanism and regulation (review). Mol Membr Biol 19(2):81–94PubMed Garrod DR, Merritt AJ, Nie Z (2002) Desmosomal adhesion: structural basis, molecular mechanism and regulation (review). Mol Membr Biol 19(2):81–94PubMed
14.
go back to reference Hatzfeld M (2005) The p120 family of cell adhesion molecules. Eur J Cell Biol 84(2–3):205–214PubMed Hatzfeld M (2005) The p120 family of cell adhesion molecules. Eur J Cell Biol 84(2–3):205–214PubMed
15.
go back to reference Hatzfeld M (2007) Plakophilins: multifunctional proteins or just regulators of desmosomal adhesion? Biochim Biophys Acta 1773(1):69–77PubMed Hatzfeld M (2007) Plakophilins: multifunctional proteins or just regulators of desmosomal adhesion? Biochim Biophys Acta 1773(1):69–77PubMed
16.
go back to reference Ackermann MA, Hu L-YR, Kontrogianni-Konstantopoulos A (2012) Intercellular connections in the heart: the intercalated disc. In: Veselka J (ed) Cardiomyopathies - From Basic Research to Clinical Management. InTech, pp 245–276 Ackermann MA, Hu L-YR, Kontrogianni-Konstantopoulos A (2012) Intercellular connections in the heart: the intercalated disc. In: Veselka J (ed) Cardiomyopathies - From Basic Research to Clinical Management. InTech, pp 245–276
17.
go back to reference Choi HJ, Gross JC, Pokutta S, Weis WI (2009) Interactions of plakoglobin and beta-catenin with desmosomal cadherins: basis of selective exclusion of alpha- and beta-catenin from desmosomes. J Biol Chem 284(46):31776–31788PubMedPubMedCentral Choi HJ, Gross JC, Pokutta S, Weis WI (2009) Interactions of plakoglobin and beta-catenin with desmosomal cadherins: basis of selective exclusion of alpha- and beta-catenin from desmosomes. J Biol Chem 284(46):31776–31788PubMedPubMedCentral
18.
go back to reference Hofmann I, Mertens C, Brettel M, Nimmrich V, Schnolzer M, Herrmann H (2000) Interaction of plakophilins with desmoplakin and intermediate filament proteins: an in vitro analysis. J Cell Sci 113(Pt 13):2471–2483PubMed Hofmann I, Mertens C, Brettel M, Nimmrich V, Schnolzer M, Herrmann H (2000) Interaction of plakophilins with desmoplakin and intermediate filament proteins: an in vitro analysis. J Cell Sci 113(Pt 13):2471–2483PubMed
19.
go back to reference Sato PY, Coombs W, Lin X, Nekrasova O, Green KJ, Isom LL, Taffet SM, Delmar M (2011) Interactions between ankyrin-G, plakophilin-2, and connexin43 at the cardiac intercalated disc. Circ Res 109(2):193–201PubMedPubMedCentral Sato PY, Coombs W, Lin X, Nekrasova O, Green KJ, Isom LL, Taffet SM, Delmar M (2011) Interactions between ankyrin-G, plakophilin-2, and connexin43 at the cardiac intercalated disc. Circ Res 109(2):193–201PubMedPubMedCentral
20.
go back to reference Holthofer B, Windoffer R, Troyanovsky S, Leube RE (2007) Structure and function of desmosomes. Int Rev Cytol 264:65–163PubMed Holthofer B, Windoffer R, Troyanovsky S, Leube RE (2007) Structure and function of desmosomes. Int Rev Cytol 264:65–163PubMed
21.
go back to reference Noorman M, van der Heyden MA, van Veen TA, Cox MG, Hauer RN, de Bakker JM, van Rijen HV (2009) Cardiac cell-cell junctions in health and disease: electrical versus mechanical coupling. J Mol Cell Cardiol 47(1):23–31PubMed Noorman M, van der Heyden MA, van Veen TA, Cox MG, Hauer RN, de Bakker JM, van Rijen HV (2009) Cardiac cell-cell junctions in health and disease: electrical versus mechanical coupling. J Mol Cell Cardiol 47(1):23–31PubMed
22.
go back to reference Delmar M, McKenna WJ (2010) The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ Res 107(6):700–714PubMed Delmar M, McKenna WJ (2010) The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ Res 107(6):700–714PubMed
23.
go back to reference Seeger TS, Frank D, Rohr C, Will R, Just S, Grund C, Lyon R, Luedde M, Koegl M, Sheikh F, Rottbauer W, Franke WW, Katus HA, Olson EN, Frey N (2010) Myozap, a novel intercalated disc protein, activates serum response factor-dependent signaling and is required to maintain cardiac function in vivo. Circ Res 106(5):880–890PubMedPubMedCentral Seeger TS, Frank D, Rohr C, Will R, Just S, Grund C, Lyon R, Luedde M, Koegl M, Sheikh F, Rottbauer W, Franke WW, Katus HA, Olson EN, Frey N (2010) Myozap, a novel intercalated disc protein, activates serum response factor-dependent signaling and is required to maintain cardiac function in vivo. Circ Res 106(5):880–890PubMedPubMedCentral
24.
go back to reference Frank D, Rangrez AY, Poyanmehr R, Seeger TS, Kuhn C, Eden M, Stiebeling K, Bernt A, Grund C, Franke WW, Frey N (2014) Mice with cardiac-restricted overexpression of myozap are sensitized to biomechanical stress and develop a protein-aggregate-associated cardiomyopathy. J Mol Cell Cardiol 72:196–207PubMed Frank D, Rangrez AY, Poyanmehr R, Seeger TS, Kuhn C, Eden M, Stiebeling K, Bernt A, Grund C, Franke WW, Frey N (2014) Mice with cardiac-restricted overexpression of myozap are sensitized to biomechanical stress and develop a protein-aggregate-associated cardiomyopathy. J Mol Cell Cardiol 72:196–207PubMed
25.
go back to reference Wang Q, Lin JL, Wu KH, Wang DZ, Reiter RS, Sinn HW, Lin CI, Lin CJ (2012) Xin proteins and intercalated disc maturation, signaling and diseases. Front Biosci (Landmark Ed) 17:2566–2593 Wang Q, Lin JL, Wu KH, Wang DZ, Reiter RS, Sinn HW, Lin CI, Lin CJ (2012) Xin proteins and intercalated disc maturation, signaling and diseases. Front Biosci (Landmark Ed) 17:2566–2593
26.
go back to reference Bays JL, Peng X, Tolbert CE, Guilluy C, Angell AE, Pan Y, Superfine R, Burridge K, DeMali KA (2014) Vinculin phosphorylation differentially regulates mechanotransduction at cell-cell and cell-matrix adhesions. J Cell Biol 205(2):251–263PubMedPubMedCentral Bays JL, Peng X, Tolbert CE, Guilluy C, Angell AE, Pan Y, Superfine R, Burridge K, DeMali KA (2014) Vinculin phosphorylation differentially regulates mechanotransduction at cell-cell and cell-matrix adhesions. J Cell Biol 205(2):251–263PubMedPubMedCentral
27.
go back to reference Vite A, Radice GL (2014) N-cadherin/catenin complex as a master regulator of intercalated disc function. Cell Commun Adhes 21(3):169–179PubMedPubMedCentral Vite A, Radice GL (2014) N-cadherin/catenin complex as a master regulator of intercalated disc function. Cell Commun Adhes 21(3):169–179PubMedPubMedCentral
28.
go back to reference Kaufmann U, Zuppinger C, Waibler Z, Rudiger M, Urbich C, Martin B, Jockusch BM, Eppenberger H, Starzinski-Powitz A (2000) The armadillo repeat region targets ARVCF to cadherin-based cellular junctions. J Cell Sci 113(Pt 22):4121–4135PubMed Kaufmann U, Zuppinger C, Waibler Z, Rudiger M, Urbich C, Martin B, Jockusch BM, Eppenberger H, Starzinski-Powitz A (2000) The armadillo repeat region targets ARVCF to cadherin-based cellular junctions. J Cell Sci 113(Pt 22):4121–4135PubMed
29.
go back to reference Ye X, Zhang HM, Qiu Y, Hanson PJ, Hemida MG, Wei W, Hoodless PA, Chu F, Yang D (2014) Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components. PLoS Pathog 10(4):e1004070PubMedPubMedCentral Ye X, Zhang HM, Qiu Y, Hanson PJ, Hemida MG, Wei W, Hoodless PA, Chu F, Yang D (2014) Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components. PLoS Pathog 10(4):e1004070PubMedPubMedCentral
30.
go back to reference Janssens B, Goossens S, Staes K, Gilbert B, van Hengel J, Colpaert C, Bruyneel E, Mareel M, van Roy F (2001) alphaT-catenin: a novel tissue-specific beta-catenin-binding protein mediating strong cell-cell adhesion. J Cell Sci 114(Pt 17):3177–3188PubMed Janssens B, Goossens S, Staes K, Gilbert B, van Hengel J, Colpaert C, Bruyneel E, Mareel M, van Roy F (2001) alphaT-catenin: a novel tissue-specific beta-catenin-binding protein mediating strong cell-cell adhesion. J Cell Sci 114(Pt 17):3177–3188PubMed
31.
go back to reference Goossens S, Janssens B, Bonne S, De Rycke R, Braet F, van Hengel J, van Roy F (2007) A unique and specific interaction between alphaT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs. J Cell Sci 120(Pt 12):2126–2136PubMed Goossens S, Janssens B, Bonne S, De Rycke R, Braet F, van Hengel J, van Roy F (2007) A unique and specific interaction between alphaT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs. J Cell Sci 120(Pt 12):2126–2136PubMed
32.
go back to reference Talhouk RS, Mroue R, Mokalled M, Abi-Mosleh L, Nehme R, Ismail A, Khalil A, Zaatari M, El-Sabban ME (2008) Heterocellular interaction enhances recruitment of alpha and beta-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells. Exp Cell Res 314(18):3275–3291PubMed Talhouk RS, Mroue R, Mokalled M, Abi-Mosleh L, Nehme R, Ismail A, Khalil A, Zaatari M, El-Sabban ME (2008) Heterocellular interaction enhances recruitment of alpha and beta-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells. Exp Cell Res 314(18):3275–3291PubMed
33.
go back to reference Choi S, Gustafson-Wagner EA, Wang Q, Harlan SM, Sinn HW, Lin JL, Lin JJ (2007) The intercalated disk protein, mXinalpha, is capable of interacting with beta-catenin and bundling actin filaments [corrected]. J Biol Chem 282(49):36024–36036PubMedPubMedCentral Choi S, Gustafson-Wagner EA, Wang Q, Harlan SM, Sinn HW, Lin JL, Lin JJ (2007) The intercalated disk protein, mXinalpha, is capable of interacting with beta-catenin and bundling actin filaments [corrected]. J Biol Chem 282(49):36024–36036PubMedPubMedCentral
34.
go back to reference Schroen B, Leenders JJ, van Erk A, Bertrand AT, van Loon M, van Leeuwen RE, Kubben N, Duisters RF, Schellings MW, Janssen BJ, Debets JJ, Schwake M, Hoydal MA, Heymans S, Saftig P, Pinto YM (2007) Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy. J Exp Med 204(5):1227–1235PubMedPubMedCentral Schroen B, Leenders JJ, van Erk A, Bertrand AT, van Loon M, van Leeuwen RE, Kubben N, Duisters RF, Schellings MW, Janssen BJ, Debets JJ, Schwake M, Hoydal MA, Heymans S, Saftig P, Pinto YM (2007) Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy. J Exp Med 204(5):1227–1235PubMedPubMedCentral
36.
go back to reference Bennett PM, Maggs AM, Baines AJ, Pinder JC (2006) The transitional junction: a new functional subcellular domain at the intercalated disc. Mol Biol Cell 17(4):2091–2100PubMedPubMedCentral Bennett PM, Maggs AM, Baines AJ, Pinder JC (2006) The transitional junction: a new functional subcellular domain at the intercalated disc. Mol Biol Cell 17(4):2091–2100PubMedPubMedCentral
37.
go back to reference Zong L, Zhu Y, Liang R, Zhao HB (2016) Gap junction mediated miRNA intercellular transfer and gene regulation: a novel mechanism for intercellular genetic communication. Sci Rep 6:19884PubMedPubMedCentral Zong L, Zhu Y, Liang R, Zhao HB (2016) Gap junction mediated miRNA intercellular transfer and gene regulation: a novel mechanism for intercellular genetic communication. Sci Rep 6:19884PubMedPubMedCentral
38.
go back to reference Bernstein SA, Morley GE (2006) Gap junctions and propagation of the cardiac action potential. Adv Cardiol 42:71–85PubMed Bernstein SA, Morley GE (2006) Gap junctions and propagation of the cardiac action potential. Adv Cardiol 42:71–85PubMed
39.
go back to reference Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62(2):228–232PubMed Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62(2):228–232PubMed
40.
go back to reference Severs NJ, Bruce AF, Dupont E, Rothery S (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80(1):9–19PubMedPubMedCentral Severs NJ, Bruce AF, Dupont E, Rothery S (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80(1):9–19PubMedPubMedCentral
41.
go back to reference Hunter AW, Barker RJ, Zhu C, Gourdie RG (2005) Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 16(12):5686–5698PubMedPubMedCentral Hunter AW, Barker RJ, Zhu C, Gourdie RG (2005) Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 16(12):5686–5698PubMedPubMedCentral
42.
go back to reference Rhett JM, Jourdan J, Gourdie RG (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol Biol Cell 22(9):1516–1528PubMedPubMedCentral Rhett JM, Jourdan J, Gourdie RG (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol Biol Cell 22(9):1516–1528PubMedPubMedCentral
43.
go back to reference Liu L, Li Y, Lin J, Liang Q, Sheng X, Wu J, Huang R, Liu S, Li Y (2010) Connexin 43 interacts with caveolin-3 in the heart. Mol Biol Rep 37(4):1685–1691PubMed Liu L, Li Y, Lin J, Liang Q, Sheng X, Wu J, Huang R, Liu S, Li Y (2010) Connexin 43 interacts with caveolin-3 in the heart. Mol Biol Rep 37(4):1685–1691PubMed
44.
go back to reference Giepmans BN, Verlaan I, Moolenaar WH (2001) Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin. Cell Commun Adhes 8(4–6):219–223PubMed Giepmans BN, Verlaan I, Moolenaar WH (2001) Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin. Cell Commun Adhes 8(4–6):219–223PubMed
45.
go back to reference Smyth JW, Hong TT, Gao D, Vogan JM, Jensen BC, Fong TS, Simpson PC, Stainier DY, Chi NC, Shaw RM (2010) Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Invest 120(1):266–279PubMed Smyth JW, Hong TT, Gao D, Vogan JM, Jensen BC, Fong TS, Simpson PC, Stainier DY, Chi NC, Shaw RM (2010) Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Invest 120(1):266–279PubMed
46.
go back to reference Benz PM, Merkel CJ, Offner K, Abesser M, Ullrich M, Fischer T, Bayer B, Wagner H, Gambaryan S, Ursitti JA, Adham IM, Linke WA, Feller SM, Fleming I, Renne T, Frantz S, Unger A, Schuh K (2013) Mena/VASP and alphaII-spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy. Cell Commun Signal 11:56PubMedPubMedCentral Benz PM, Merkel CJ, Offner K, Abesser M, Ullrich M, Fischer T, Bayer B, Wagner H, Gambaryan S, Ursitti JA, Adham IM, Linke WA, Feller SM, Fleming I, Renne T, Frantz S, Unger A, Schuh K (2013) Mena/VASP and alphaII-spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy. Cell Commun Signal 11:56PubMedPubMedCentral
47.
go back to reference Ram R, Wescott AP, Varandas K, Dirksen RT, Blaxall BC (2014) Mena associates with Rac1 and modulates connexin 43 remodeling in cardiomyocytes. Am J Physiol Heart Circ Physiol 306(1):H154–H159PubMed Ram R, Wescott AP, Varandas K, Dirksen RT, Blaxall BC (2014) Mena associates with Rac1 and modulates connexin 43 remodeling in cardiomyocytes. Am J Physiol Heart Circ Physiol 306(1):H154–H159PubMed
48.
go back to reference Basso C, Bauce B, Corrado D, Thiene G (2011) Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol 9(4):223–233PubMed Basso C, Bauce B, Corrado D, Thiene G (2011) Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol 9(4):223–233PubMed
49.
go back to reference Rampazzo A, Calore M, van Hengel J, van Roy F (2014) Intercalated discs and arrhythmogenic cardiomyopathy. Circ Cardiovasc Genet 7(6):930–940PubMed Rampazzo A, Calore M, van Hengel J, van Roy F (2014) Intercalated discs and arrhythmogenic cardiomyopathy. Circ Cardiovasc Genet 7(6):930–940PubMed
50.
go back to reference Marcus FI, Edson S, Towbin JA (2013) Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol 61(19):1945–1948PubMed Marcus FI, Edson S, Towbin JA (2013) Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol 61(19):1945–1948PubMed
51.
go back to reference Broussard JA, Getsios S, Green KJ (2015) Desmosome regulation and signaling in disease. Cell Tissue Res 360(3):501–512PubMedPubMedCentral Broussard JA, Getsios S, Green KJ (2015) Desmosome regulation and signaling in disease. Cell Tissue Res 360(3):501–512PubMedPubMedCentral
52.
go back to reference Najor NA (2018) Desmosomes in human disease. Annu Rev Pathol 13:51–70PubMed Najor NA (2018) Desmosomes in human disease. Annu Rev Pathol 13:51–70PubMed
53.
go back to reference Calore M, Lorenzon A, De Bortoli M, Poloni G, Rampazzo A (2015) Arrhythmogenic cardiomyopathy: a disease of intercalated discs. Cell Tissue Res 360(3):491–500PubMed Calore M, Lorenzon A, De Bortoli M, Poloni G, Rampazzo A (2015) Arrhythmogenic cardiomyopathy: a disease of intercalated discs. Cell Tissue Res 360(3):491–500PubMed
54.
go back to reference Hall CL, Sutanto H, Dalageorgou C, McKenna WJ, Syrris P, Futema M (2018) Frequency of genetic variants associated with arrhythmogenic right ventricular cardiomyopathy in the genome aggregation database. Eur J Hum Genet 26(9):1312–1318PubMedPubMedCentral Hall CL, Sutanto H, Dalageorgou C, McKenna WJ, Syrris P, Futema M (2018) Frequency of genetic variants associated with arrhythmogenic right ventricular cardiomyopathy in the genome aggregation database. Eur J Hum Genet 26(9):1312–1318PubMedPubMedCentral
55.
go back to reference van der Zwaag PA, Jongbloed JD, van den Berg MP, van der Smagt JJ, Jongbloed R, Bikker H, Hofstra RM, van Tintelen JP (2009) A genetic variants database for arrhythmogenic right ventricular dysplasia/cardiomyopathy. Hum Mutat 30(9):1278–1283PubMed van der Zwaag PA, Jongbloed JD, van den Berg MP, van der Smagt JJ, Jongbloed R, Bikker H, Hofstra RM, van Tintelen JP (2009) A genetic variants database for arrhythmogenic right ventricular dysplasia/cardiomyopathy. Hum Mutat 30(9):1278–1283PubMed
56.
go back to reference Lorenzon A, Pilichou K, Rigato I, Vazza G, De Bortoli M, Calore M, Occhi G, Carturan E, Lazzarini E, Cason M, Mazzotti E, Poloni G, Mostacciuolo ML, Daliento L, Thiene G, Corrado D, Basso C, Bauce B, Rampazzo A (2015) Homozygous desmocollin-2 mutations and arrhythmogenic cardiomyopathy. Am J Cardiol 116(8):1245–1251PubMed Lorenzon A, Pilichou K, Rigato I, Vazza G, De Bortoli M, Calore M, Occhi G, Carturan E, Lazzarini E, Cason M, Mazzotti E, Poloni G, Mostacciuolo ML, Daliento L, Thiene G, Corrado D, Basso C, Bauce B, Rampazzo A (2015) Homozygous desmocollin-2 mutations and arrhythmogenic cardiomyopathy. Am J Cardiol 116(8):1245–1251PubMed
57.
go back to reference Pilichou K, Lazzarini E, Rigato I, Celeghin R, De Bortoli M, Perazzolo Marra M, Cason M, Jongbloed J, Calore M, Rizzo S, Regazzo D, Poloni G, Iliceto S, Daliento L, Delise P, Corrado D, Van Tintelen JP, Thiene G, Rampazzo A, Basso C, Bauce B, Lorenzon A, Occhi G (2017) Large genomic rearrangements of desmosomal genes in Italian arrhythmogenic cardiomyopathy patients. Circ Arrhythm Electrophysiol 10 (10) Pilichou K, Lazzarini E, Rigato I, Celeghin R, De Bortoli M, Perazzolo Marra M, Cason M, Jongbloed J, Calore M, Rizzo S, Regazzo D, Poloni G, Iliceto S, Daliento L, Delise P, Corrado D, Van Tintelen JP, Thiene G, Rampazzo A, Basso C, Bauce B, Lorenzon A, Occhi G (2017) Large genomic rearrangements of desmosomal genes in Italian arrhythmogenic cardiomyopathy patients. Circ Arrhythm Electrophysiol 10 (10)
58.
go back to reference Awad MM, Dalal D, Cho E, Amat-Alarcon N, James C, Tichnell C, Tucker A, Russell SD, Bluemke DA, Dietz HC, Calkins H, Judge DP (2006) DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Hum Genet 79(1):136–142PubMedPubMedCentral Awad MM, Dalal D, Cho E, Amat-Alarcon N, James C, Tichnell C, Tucker A, Russell SD, Bluemke DA, Dietz HC, Calkins H, Judge DP (2006) DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Hum Genet 79(1):136–142PubMedPubMedCentral
59.
go back to reference Zhou X, Chen M, Song H, Wang B, Chen H, Wang J, Wang W, Feng S, Zhang F, Ju W, Li M, Gu K, Cao K, Wang DW, Yang B (2015) Comprehensive analysis of desmosomal gene mutations in Han Chinese patients with arrhythmogenic right ventricular cardiomyopathy. Eur J Med Genet 58(4):258–265PubMed Zhou X, Chen M, Song H, Wang B, Chen H, Wang J, Wang W, Feng S, Zhang F, Ju W, Li M, Gu K, Cao K, Wang DW, Yang B (2015) Comprehensive analysis of desmosomal gene mutations in Han Chinese patients with arrhythmogenic right ventricular cardiomyopathy. Eur J Med Genet 58(4):258–265PubMed
60.
go back to reference Liu JS, Fan LL, Li JJ, Xiang R (2017) Whole-exome sequencing identifies a novel mutation of desmocollin 2 in a Chinese family with arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol 119(9):1485–1489PubMed Liu JS, Fan LL, Li JJ, Xiang R (2017) Whole-exome sequencing identifies a novel mutation of desmocollin 2 in a Chinese family with arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol 119(9):1485–1489PubMed
61.
go back to reference Zhang M, Xue A, Shen Y, Oliveira JB, Li L, Zhao Z, Burke A (2015) Mutations of desmoglein-2 in sudden death from arrhythmogenic right ventricular cardiomyopathy and sudden unexplained death. Forensic Sci Int 255:85–88PubMed Zhang M, Xue A, Shen Y, Oliveira JB, Li L, Zhao Z, Burke A (2015) Mutations of desmoglein-2 in sudden death from arrhythmogenic right ventricular cardiomyopathy and sudden unexplained death. Forensic Sci Int 255:85–88PubMed
62.
go back to reference Pereira Fernandes M, Azevedo O, Pereira V, Calvo L, Lourenco A (2015) Arrhythmogenic right ventricular cardiomyopathy with left ventricular involvement: a novel splice site mutation in the DSG2 gene. Cardiology 130(3):159–161PubMed Pereira Fernandes M, Azevedo O, Pereira V, Calvo L, Lourenco A (2015) Arrhythmogenic right ventricular cardiomyopathy with left ventricular involvement: a novel splice site mutation in the DSG2 gene. Cardiology 130(3):159–161PubMed
63.
go back to reference Lin Y, Zhang Q, Zhong ZA, Xu Z, He S, Rao F, Liu Y, Tang J, Wang F, Liu H, Xie J, Wu H, Wang S, Li X, Shan Z, Deng C, Liao Z, Deng H, Liao H, Xue Y, Chen W, Zhan X, Zhang B, Wu S (2017) Whole genome sequence identified a rare homozygous pathogenic mutation of the DSG2 gene in a familial arrhythmogenic cardiomyopathy involving both ventricles. Cardiology 138(1):41–54PubMed Lin Y, Zhang Q, Zhong ZA, Xu Z, He S, Rao F, Liu Y, Tang J, Wang F, Liu H, Xie J, Wu H, Wang S, Li X, Shan Z, Deng C, Liao Z, Deng H, Liao H, Xue Y, Chen W, Zhan X, Zhang B, Wu S (2017) Whole genome sequence identified a rare homozygous pathogenic mutation of the DSG2 gene in a familial arrhythmogenic cardiomyopathy involving both ventricles. Cardiology 138(1):41–54PubMed
64.
go back to reference Qadri S, Anttonen O, Viikila J, Seppala EH, Myllykangas S, Alastalo TP, Holmstrom M, Helio T, Koskenvuo JW (2017) Case reports of two pedigrees with recessive arrhythmogenic right ventricular cardiomyopathy associated with homozygous Thr335Ala variant in DSG2. BMC Med Genet 18(1):86PubMedPubMedCentral Qadri S, Anttonen O, Viikila J, Seppala EH, Myllykangas S, Alastalo TP, Holmstrom M, Helio T, Koskenvuo JW (2017) Case reports of two pedigrees with recessive arrhythmogenic right ventricular cardiomyopathy associated with homozygous Thr335Ala variant in DSG2. BMC Med Genet 18(1):86PubMedPubMedCentral
65.
go back to reference Finsterer J, Stollberger C, Wollmann E, Dertinger S, Laccone F (2016) Autosomal dominant Carvajal plus syndrome due to the novel desmoplakin mutation c.1678A > T (p.Ile560Phe). Mol Genet Metab Rep 8:1–3PubMedPubMedCentral Finsterer J, Stollberger C, Wollmann E, Dertinger S, Laccone F (2016) Autosomal dominant Carvajal plus syndrome due to the novel desmoplakin mutation c.1678A > T (p.Ile560Phe). Mol Genet Metab Rep 8:1–3PubMedPubMedCentral
66.
go back to reference Bitar F, Najjar T, Hayashi R, Nemer G, Shigehara Y, Hamie L, Abbas O, Kibbi AG, Shimomura Y, Kurban M (2016) A novel heterozygous mutation in desmoplakin gene in a Lebanese patient with Carvajal syndrome and tooth agenesis. J Eur Acad Dermatol Venereol 30(12):e217–e219PubMed Bitar F, Najjar T, Hayashi R, Nemer G, Shigehara Y, Hamie L, Abbas O, Kibbi AG, Shimomura Y, Kurban M (2016) A novel heterozygous mutation in desmoplakin gene in a Lebanese patient with Carvajal syndrome and tooth agenesis. J Eur Acad Dermatol Venereol 30(12):e217–e219PubMed
67.
go back to reference Foss-Nieradko B, Franaszczyk M, Spiewak M, Oreziak A, Ploski R, Bilinska ZT (2016) Novel truncating desmoplakin mutation as a potential cause of sudden cardiac death in a family. Pol Arch Med Wewn 126(9):704–707PubMed Foss-Nieradko B, Franaszczyk M, Spiewak M, Oreziak A, Ploski R, Bilinska ZT (2016) Novel truncating desmoplakin mutation as a potential cause of sudden cardiac death in a family. Pol Arch Med Wewn 126(9):704–707PubMed
68.
go back to reference Docekal JW, Lee JC (2017) Novel gene mutation identified in a patient with arrhythmogenic ventricular cardiomyopathy. HeartRhythm Case Rep 3(10):459–463PubMedPubMedCentral Docekal JW, Lee JC (2017) Novel gene mutation identified in a patient with arrhythmogenic ventricular cardiomyopathy. HeartRhythm Case Rep 3(10):459–463PubMedPubMedCentral
69.
go back to reference Trenkwalder T, Deisenhofer I, Hadamitzky M, Schunkert H, Reinhard W (2015) Novel frame-shift mutation in PKP2 associated with arrhythmogenic right ventricular cardiomyopathy: a case report. BMC Med Genet 16:117PubMedPubMedCentral Trenkwalder T, Deisenhofer I, Hadamitzky M, Schunkert H, Reinhard W (2015) Novel frame-shift mutation in PKP2 associated with arrhythmogenic right ventricular cardiomyopathy: a case report. BMC Med Genet 16:117PubMedPubMedCentral
70.
go back to reference Soveizi M, Rabbani B, Rezaei Y, Saedi S, Najafi N, Maleki M, Mahdieh N (2017) Autosomal recessive nonsyndromic arrhythmogenic right ventricular cardiomyopathy without cutaneous involvements: a novel mutation. Ann Hum Genet 81(4):135–140PubMed Soveizi M, Rabbani B, Rezaei Y, Saedi S, Najafi N, Maleki M, Mahdieh N (2017) Autosomal recessive nonsyndromic arrhythmogenic right ventricular cardiomyopathy without cutaneous involvements: a novel mutation. Ann Hum Genet 81(4):135–140PubMed
71.
go back to reference Mahdieh N, Saedi S, Soveizi M, Rabbani B, Najafi N, Maleki M (2018) A novel PKP2 mutation and intrafamilial phenotypic variability in ARVC/D. Med J Islam Repub Iran 32:5PubMedPubMedCentral Mahdieh N, Saedi S, Soveizi M, Rabbani B, Najafi N, Maleki M (2018) A novel PKP2 mutation and intrafamilial phenotypic variability in ARVC/D. Med J Islam Repub Iran 32:5PubMedPubMedCentral
72.
go back to reference Mayosi BM, Fish M, Shaboodien G, Mastantuono E, Kraus S, Wieland T, Kotta MC, Chin A, Laing N, Ntusi NB, Chong M, Horsfall C, Pimstone SN, Gentilini D, Parati G, Strom TM, Meitinger T, Pare G, Schwartz PJ, Crotti L (2017) Identification of cadherin 2 (CDH2) mutations in arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet 10 (2) Mayosi BM, Fish M, Shaboodien G, Mastantuono E, Kraus S, Wieland T, Kotta MC, Chin A, Laing N, Ntusi NB, Chong M, Horsfall C, Pimstone SN, Gentilini D, Parati G, Strom TM, Meitinger T, Pare G, Schwartz PJ, Crotti L (2017) Identification of cadherin 2 (CDH2) mutations in arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet 10 (2)
73.
go back to reference Turkowski KL, Tester DJ, Bos JM, Haugaa KH, Ackerman MJ (2017) Whole exome sequencing with genomic triangulation implicates CDH2-encoded N-cadherin as a novel pathogenic substrate for arrhythmogenic cardiomyopathy. Congenit Heart Dis 12(2):226–235PubMed Turkowski KL, Tester DJ, Bos JM, Haugaa KH, Ackerman MJ (2017) Whole exome sequencing with genomic triangulation implicates CDH2-encoded N-cadherin as a novel pathogenic substrate for arrhythmogenic cardiomyopathy. Congenit Heart Dis 12(2):226–235PubMed
74.
go back to reference Wu Q, Wu Y, Zhang L, Zheng J, Tang S, Cheng J (2017) GJA1 gene variations in sudden unexplained nocturnal death syndrome in the Chinese Han population. Forensic Sci Int 270:178–182PubMed Wu Q, Wu Y, Zhang L, Zheng J, Tang S, Cheng J (2017) GJA1 gene variations in sudden unexplained nocturnal death syndrome in the Chinese Han population. Forensic Sci Int 270:178–182PubMed
75.
go back to reference Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ (2010) Arrhythmogenic cardiomyopathy: etiology, diagnosis, and treatment. Annu Rev Med 61:233–253PubMed Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ (2010) Arrhythmogenic cardiomyopathy: etiology, diagnosis, and treatment. Annu Rev Med 61:233–253PubMed
76.
go back to reference van Tintelen JP, Hofstra RM, Wiesfeld AC, van den Berg MP, Hauer RN, Jongbloed JD (2007) Molecular genetics of arrhythmogenic right ventricular cardiomyopathy: emerging horizon? Curr Opin Cardiol 22(3):185–192PubMed van Tintelen JP, Hofstra RM, Wiesfeld AC, van den Berg MP, Hauer RN, Jongbloed JD (2007) Molecular genetics of arrhythmogenic right ventricular cardiomyopathy: emerging horizon? Curr Opin Cardiol 22(3):185–192PubMed
77.
go back to reference Fressart V, Duthoit G, Donal E, Probst V, Deharo JC, Chevalier P, Klug D, Dubourg O, Delacretaz E, Cosnay P, Scanu P, Extramiana F, Keller D, Hidden-Lucet F, Simon F, Bessirard V, Roux-Buisson N, Hebert JL, Azarine A, Casset-Senon D, Rouzet F, Lecarpentier Y, Fontaine G, Coirault C, Frank R, Hainque B, Charron P (2010) Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice. Europace 12(6):861–868PubMed Fressart V, Duthoit G, Donal E, Probst V, Deharo JC, Chevalier P, Klug D, Dubourg O, Delacretaz E, Cosnay P, Scanu P, Extramiana F, Keller D, Hidden-Lucet F, Simon F, Bessirard V, Roux-Buisson N, Hebert JL, Azarine A, Casset-Senon D, Rouzet F, Lecarpentier Y, Fontaine G, Coirault C, Frank R, Hainque B, Charron P (2010) Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice. Europace 12(6):861–868PubMed
78.
go back to reference Wada Y, Ohno S, Aiba T, Horie M (2017) Unique genetic background and outcome of non-Caucasian Japanese probands with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Mol Genet Genomic Med 5(6):639–651PubMedPubMedCentral Wada Y, Ohno S, Aiba T, Horie M (2017) Unique genetic background and outcome of non-Caucasian Japanese probands with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Mol Genet Genomic Med 5(6):639–651PubMedPubMedCentral
79.
go back to reference Simpson MA, Mansour S, Ahnood D, Kalidas K, Patton MA, McKenna WJ, Behr ER, Crosby AH (2009) Homozygous mutation of desmocollin-2 in arrhythmogenic right ventricular cardiomyopathy with mild palmoplantar keratoderma and woolly hair. Cardiology 113(1):28–34PubMed Simpson MA, Mansour S, Ahnood D, Kalidas K, Patton MA, McKenna WJ, Behr ER, Crosby AH (2009) Homozygous mutation of desmocollin-2 in arrhythmogenic right ventricular cardiomyopathy with mild palmoplantar keratoderma and woolly hair. Cardiology 113(1):28–34PubMed
80.
go back to reference Syrris P, Ward D, Evans A, Asimaki A, Gandjbakhch E, Sen-Chowdhry S, McKenna WJ (2006) Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet 79(5):978–984PubMedPubMedCentral Syrris P, Ward D, Evans A, Asimaki A, Gandjbakhch E, Sen-Chowdhry S, McKenna WJ (2006) Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet 79(5):978–984PubMedPubMedCentral
81.
go back to reference Posch MG, Posch MJ, Geier C, Erdmann B, Mueller W, Richter A, Ruppert V, Pankuweit S, Maisch B, Perrot A, Buttgereit J, Dietz R, Haverkamp W, Ozcelik C (2008) A missense variant in desmoglein-2 predisposes to dilated cardiomyopathy. Mol Genet Metab 95(1–2):74–80PubMed Posch MG, Posch MJ, Geier C, Erdmann B, Mueller W, Richter A, Ruppert V, Pankuweit S, Maisch B, Perrot A, Buttgereit J, Dietz R, Haverkamp W, Ozcelik C (2008) A missense variant in desmoglein-2 predisposes to dilated cardiomyopathy. Mol Genet Metab 95(1–2):74–80PubMed
82.
go back to reference Lombardi R, Marian AJ (2011) Molecular genetics and pathogenesis of arrhythmogenic right ventricular cardiomyopathy: a disease of cardiac stem cells. Pediatr Cardiol 32(3):360–365PubMed Lombardi R, Marian AJ (2011) Molecular genetics and pathogenesis of arrhythmogenic right ventricular cardiomyopathy: a disease of cardiac stem cells. Pediatr Cardiol 32(3):360–365PubMed
83.
go back to reference Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, Lorenzon A, Frigo G, Vettori A, Valente M, Towbin J, Thiene G, Danieli GA, Rampazzo A (2006) Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 113(9):1171–1179PubMed Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, Lorenzon A, Frigo G, Vettori A, Valente M, Towbin J, Thiene G, Danieli GA, Rampazzo A (2006) Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 113(9):1171–1179PubMed
84.
go back to reference Kirchner F, Schuetz A, Boldt LH, Martens K, Dittmar G, Haverkamp W, Thierfelder L, Heinemann U, Gerull B (2012) Molecular insights into arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 missense mutations. Circ Cardiovasc Genet 5(4):400–411PubMed Kirchner F, Schuetz A, Boldt LH, Martens K, Dittmar G, Haverkamp W, Thierfelder L, Heinemann U, Gerull B (2012) Molecular insights into arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 missense mutations. Circ Cardiovasc Genet 5(4):400–411PubMed
85.
go back to reference Rasmussen TB, Nissen PH, Palmfeldt J, Gehmlich K, Dalager S, Jensen UB, Kim WY, Heickendorff L, Molgaard H, Jensen HK, Baandrup UT, Bross P, Mogensen J (2014) Truncating plakophilin-2 mutations in arrhythmogenic cardiomyopathy are associated with protein haploinsufficiency in both myocardium and epidermis. Circ Cardiovasc Genet 7(3):230–240PubMed Rasmussen TB, Nissen PH, Palmfeldt J, Gehmlich K, Dalager S, Jensen UB, Kim WY, Heickendorff L, Molgaard H, Jensen HK, Baandrup UT, Bross P, Mogensen J (2014) Truncating plakophilin-2 mutations in arrhythmogenic cardiomyopathy are associated with protein haploinsufficiency in both myocardium and epidermis. Circ Cardiovasc Genet 7(3):230–240PubMed
86.
go back to reference Xia X, Batra N, Shi Q, Bonewald LF, Sprague E, Jiang JX (2010) Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling. Mol Cell Biol 30(1):206–219PubMed Xia X, Batra N, Shi Q, Bonewald LF, Sprague E, Jiang JX (2010) Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/beta-catenin signaling. Mol Cell Biol 30(1):206–219PubMed
87.
go back to reference Chen J, Nekrasova OE, Patel DM, Klessner JL, Godsel LM, Koetsier JL, Amargo EV, Desai BV, Green KJ (2012) The C-terminal unique region of desmoglein 2 inhibits its internalization via tail-tail interactions. J Cell Biol 199(4):699–711PubMedPubMedCentral Chen J, Nekrasova OE, Patel DM, Klessner JL, Godsel LM, Koetsier JL, Amargo EV, Desai BV, Green KJ (2012) The C-terminal unique region of desmoglein 2 inhibits its internalization via tail-tail interactions. J Cell Biol 199(4):699–711PubMedPubMedCentral
88.
go back to reference Gehmlich K, Asimaki A, Cahill TJ, Ehler E, Syrris P, Zachara E, Re F, Avella A, Monserrat L, Saffitz JE, McKenna WJ (2010) Novel missense mutations in exon 15 of desmoglein-2: role of the intracellular cadherin segment in arrhythmogenic right ventricular cardiomyopathy? Heart Rhythm 7(10):1446–1453PubMedPubMedCentral Gehmlich K, Asimaki A, Cahill TJ, Ehler E, Syrris P, Zachara E, Re F, Avella A, Monserrat L, Saffitz JE, McKenna WJ (2010) Novel missense mutations in exon 15 of desmoglein-2: role of the intracellular cadherin segment in arrhythmogenic right ventricular cardiomyopathy? Heart Rhythm 7(10):1446–1453PubMedPubMedCentral
89.
go back to reference Gehmlich K, Syrris P, Reimann M, Asimaki A, Ehler E, Evans A, Quarta G, Pantazis A, Saffitz JE, McKenna WJ (2012) Molecular changes in the heart of a severe case of arrhythmogenic right ventricular cardiomyopathy caused by a desmoglein-2 null allele. Cardiovasc Pathol 21(4):275–282PubMed Gehmlich K, Syrris P, Reimann M, Asimaki A, Ehler E, Evans A, Quarta G, Pantazis A, Saffitz JE, McKenna WJ (2012) Molecular changes in the heart of a severe case of arrhythmogenic right ventricular cardiomyopathy caused by a desmoglein-2 null allele. Cardiovasc Pathol 21(4):275–282PubMed
90.
go back to reference Zhang M, Lu S, Wu X, Chen Y, Song X, Jin Z, Li H, Zhou Y, Chen F, Huo Y (2012) Multimarker approach for the prediction of cardiovascular events in patients with mild to moderate coronary artery lesions. A 3-year follow-up study. Int Heart J 53(2):85–90PubMed Zhang M, Lu S, Wu X, Chen Y, Song X, Jin Z, Li H, Zhou Y, Chen F, Huo Y (2012) Multimarker approach for the prediction of cardiovascular events in patients with mild to moderate coronary artery lesions. A 3-year follow-up study. Int Heart J 53(2):85–90PubMed
91.
go back to reference Beffagna G, De Bortoli M, Nava A, Salamon M, Lorenzon A, Zaccolo M, Mancuso L, Sigalotti L, Bauce B, Occhi G, Basso C, Lanfranchi G, Towbin JA, Thiene G, Danieli GA, Rampazzo A (2007) Missense mutations in desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Med Genet 8:65PubMedPubMedCentral Beffagna G, De Bortoli M, Nava A, Salamon M, Lorenzon A, Zaccolo M, Mancuso L, Sigalotti L, Bauce B, Occhi G, Basso C, Lanfranchi G, Towbin JA, Thiene G, Danieli GA, Rampazzo A (2007) Missense mutations in desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Med Genet 8:65PubMedPubMedCentral
92.
go back to reference Kaplan SR, Gard JJ, Protonotarios N, Tsatsopoulou A, Spiliopoulou C, Anastasakis A, Squarcioni CP, McKenna WJ, Thiene G, Basso C, Brousse N, Fontaine G, Saffitz JE (2004) Remodeling of myocyte gap junctions in arrhythmogenic right ventricular cardiomyopathy due to a deletion in plakoglobin (Naxos disease). Heart Rhythm 1(1):3–11PubMed Kaplan SR, Gard JJ, Protonotarios N, Tsatsopoulou A, Spiliopoulou C, Anastasakis A, Squarcioni CP, McKenna WJ, Thiene G, Basso C, Brousse N, Fontaine G, Saffitz JE (2004) Remodeling of myocyte gap junctions in arrhythmogenic right ventricular cardiomyopathy due to a deletion in plakoglobin (Naxos disease). Heart Rhythm 1(1):3–11PubMed
93.
go back to reference Asimaki A, Syrris P, Wichter T, Matthias P, Saffitz JE, McKenna WJ (2007) A novel dominant mutation in plakoglobin causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 81(5):964–973PubMedPubMedCentral Asimaki A, Syrris P, Wichter T, Matthias P, Saffitz JE, McKenna WJ (2007) A novel dominant mutation in plakoglobin causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 81(5):964–973PubMedPubMedCentral
94.
go back to reference Chalabreysse L, Senni F, Bruyere P, Aime B, Ollagnier C, Bozio A, Bouvagnet P (2011) A new hypo/oligodontia syndrome: Carvajal/Naxos syndrome secondary to desmoplakin-dominant mutations. J Dent Res 90(1):58–64PubMed Chalabreysse L, Senni F, Bruyere P, Aime B, Ollagnier C, Bozio A, Bouvagnet P (2011) A new hypo/oligodontia syndrome: Carvajal/Naxos syndrome secondary to desmoplakin-dominant mutations. J Dent Res 90(1):58–64PubMed
95.
go back to reference Keller DI, Stepowski D, Balmer C, Simon F, Guenthard J, Bauer F, Itin P, David N, Drouin-Garraud V, Fressart V (2012) De novo heterozygous desmoplakin mutations leading to Naxos-Carvajal disease. Swiss Med Wkly 142:w13670PubMed Keller DI, Stepowski D, Balmer C, Simon F, Guenthard J, Bauer F, Itin P, David N, Drouin-Garraud V, Fressart V (2012) De novo heterozygous desmoplakin mutations leading to Naxos-Carvajal disease. Swiss Med Wkly 142:w13670PubMed
96.
go back to reference Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP (2000) Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9(18):2761–2766PubMed Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP (2000) Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9(18):2761–2766PubMed
97.
go back to reference Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, Feng Z, Muller S, Kayvanpour E, Vogel B, Sedaghat-Hamedani F, Lim WK, Zhao X, Fradkin D, Kohler D, Fischer S, Franke J, Marquart S, Barb I, Li DT, Amr A, Ehlermann P, Mereles D, Weis T, Hassel S, Kremer A, King V, Wirsz E, Isnard R, Komajda M, Serio A, Grasso M, Syrris P, Wicks E, Plagnol V, Lopes L, Gadgaard T, Eiskjaer H, Jorgensen M, Garcia-Giustiniani D, Ortiz-Genga M, Crespo-Leiro MG, Deprez RH, Christiaans I, van Rijsingen IA, Wilde AA, Waldenstrom A, Bolognesi M, Bellazzi R, Morner S, Bermejo JL, Monserrat L, Villard E, Mogensen J, Pinto YM, Charron P, Elliott P, Arbustini E, Katus HA, Meder B (2015) Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 36(18):1123–1135aPubMed Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, Feng Z, Muller S, Kayvanpour E, Vogel B, Sedaghat-Hamedani F, Lim WK, Zhao X, Fradkin D, Kohler D, Fischer S, Franke J, Marquart S, Barb I, Li DT, Amr A, Ehlermann P, Mereles D, Weis T, Hassel S, Kremer A, King V, Wirsz E, Isnard R, Komajda M, Serio A, Grasso M, Syrris P, Wicks E, Plagnol V, Lopes L, Gadgaard T, Eiskjaer H, Jorgensen M, Garcia-Giustiniani D, Ortiz-Genga M, Crespo-Leiro MG, Deprez RH, Christiaans I, van Rijsingen IA, Wilde AA, Waldenstrom A, Bolognesi M, Bellazzi R, Morner S, Bermejo JL, Monserrat L, Villard E, Mogensen J, Pinto YM, Charron P, Elliott P, Arbustini E, Katus HA, Meder B (2015) Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 36(18):1123–1135aPubMed
98.
go back to reference Li J, Patel VV, Radice GL (2006) Dysregulation of cell adhesion proteins and cardiac arrhythmogenesis. Clin Med Res 4(1):42–52PubMedPubMedCentral Li J, Patel VV, Radice GL (2006) Dysregulation of cell adhesion proteins and cardiac arrhythmogenesis. Clin Med Res 4(1):42–52PubMedPubMedCentral
99.
go back to reference Li J, Patel VV, Kostetskii I, Xiong Y, Chu AF, Jacobson JT, Yu C, Morley GE, Molkentin JD, Radice GL (2005) Cardiac-specific loss of N-cadherin leads to alteration in connexins with conduction slowing and arrhythmogenesis. Circ Res 97(5):474–481PubMed Li J, Patel VV, Kostetskii I, Xiong Y, Chu AF, Jacobson JT, Yu C, Morley GE, Molkentin JD, Radice GL (2005) Cardiac-specific loss of N-cadherin leads to alteration in connexins with conduction slowing and arrhythmogenesis. Circ Res 97(5):474–481PubMed
100.
go back to reference Kostetskii I, Li J, Xiong Y, Zhou R, Ferrari VA, Patel VV, Molkentin JD, Radice GL (2005) Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circ Res 96(3):346–354PubMed Kostetskii I, Li J, Xiong Y, Zhou R, Ferrari VA, Patel VV, Molkentin JD, Radice GL (2005) Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circ Res 96(3):346–354PubMed
101.
go back to reference Janssens B, Mohapatra B, Vatta M, Goossens S, Vanpoucke G, Kools P, Montoye T, van Hengel J, Bowles NE, van Roy F, Towbin JA (2003) Assessment of the CTNNA3 gene encoding human alpha T-catenin regarding its involvement in dilated cardiomyopathy. Hum Genet 112(3):227–236PubMed Janssens B, Mohapatra B, Vatta M, Goossens S, Vanpoucke G, Kools P, Montoye T, van Hengel J, Bowles NE, van Roy F, Towbin JA (2003) Assessment of the CTNNA3 gene encoding human alpha T-catenin regarding its involvement in dilated cardiomyopathy. Hum Genet 112(3):227–236PubMed
102.
go back to reference Zemljic-Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD, Ross RS (2007) Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol 27(21):7522–7537PubMedPubMedCentral Zemljic-Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD, Ross RS (2007) Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol 27(21):7522–7537PubMedPubMedCentral
103.
go back to reference Vasile VC, Will ML, Ommen SR, Edwards WD, Olson TM, Ackerman MJ (2006) Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol Genet Metab 87(2):169–174PubMed Vasile VC, Will ML, Ommen SR, Edwards WD, Olson TM, Ackerman MJ (2006) Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol Genet Metab 87(2):169–174PubMed
104.
go back to reference Lim BK, Xiong D, Dorner A, Youn TJ, Yung A, Liu TI, Gu Y, Dalton ND, Wright AT, Evans SM, Chen J, Peterson KL, McCulloch AD, Yajima T, Knowlton KU (2008) Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart. J Clin Invest 118(8):2758–2770PubMedPubMedCentral Lim BK, Xiong D, Dorner A, Youn TJ, Yung A, Liu TI, Gu Y, Dalton ND, Wright AT, Evans SM, Chen J, Peterson KL, McCulloch AD, Yajima T, Knowlton KU (2008) Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart. J Clin Invest 118(8):2758–2770PubMedPubMedCentral
105.
go back to reference Kaur T, Mishra B, Saikia UN, Sharma M, Bahl A, Ratho RK (2012) Expression of coxsackievirus and adenovirus receptor and its cellular localization in myocardial tissues of dilated cardiomyopathy. Exp Clin Cardiol 17(4):183–186PubMedPubMedCentral Kaur T, Mishra B, Saikia UN, Sharma M, Bahl A, Ratho RK (2012) Expression of coxsackievirus and adenovirus receptor and its cellular localization in myocardial tissues of dilated cardiomyopathy. Exp Clin Cardiol 17(4):183–186PubMedPubMedCentral
106.
go back to reference Dobrowolski R, Willecke K (2009) Connexin-caused genetic diseases and corresponding mouse models. Antioxid Redox Signal 11(2):283–295PubMed Dobrowolski R, Willecke K (2009) Connexin-caused genetic diseases and corresponding mouse models. Antioxid Redox Signal 11(2):283–295PubMed
107.
go back to reference Kelly SC, Ratajczak P, Keller M, Purcell SM, Griffin T, Richard G (2006) A novel GJA 1 mutation in oculo-dento-digital dysplasia with curly hair and hyperkeratosis. Eur J Dermatol 16(3):241–245PubMed Kelly SC, Ratajczak P, Keller M, Purcell SM, Griffin T, Richard G (2006) A novel GJA 1 mutation in oculo-dento-digital dysplasia with curly hair and hyperkeratosis. Eur J Dermatol 16(3):241–245PubMed
108.
go back to reference Manias JL, Plante I, Gong XQ, Shao Q, Churko J, Bai D, Laird DW (2008) Fate of connexin43 in cardiac tissue harbouring a disease-linked connexin43 mutant. Cardiovasc Res 80(3):385–395PubMed Manias JL, Plante I, Gong XQ, Shao Q, Churko J, Bai D, Laird DW (2008) Fate of connexin43 in cardiac tissue harbouring a disease-linked connexin43 mutant. Cardiovasc Res 80(3):385–395PubMed
109.
go back to reference Prevedel L, Morocho C, Bennett MVL, Eugenin EA (2017) HIV-associated cardiovascular disease: role of connexin 43. Am J Pathol 187(9):1960–1970PubMedPubMedCentral Prevedel L, Morocho C, Bennett MVL, Eugenin EA (2017) HIV-associated cardiovascular disease: role of connexin 43. Am J Pathol 187(9):1960–1970PubMedPubMedCentral
110.
go back to reference Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J (2004) Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 62(2):426–436PubMed Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J (2004) Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 62(2):426–436PubMed
111.
go back to reference Michela P, Velia V, Aldo P, Ada P (2015) Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 768:71–76PubMed Michela P, Velia V, Aldo P, Ada P (2015) Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 768:71–76PubMed
112.
go back to reference Xu HF, Ding YJ, Shen YW, Xue AM, Xu HM, Luo CL, Li BX, Liu YL, Zhao ZQ (2012) MicroRNA- 1 represses Cx43 expression in viral myocarditis. Mol Cell Biochem 362(1–2):141–148PubMed Xu HF, Ding YJ, Shen YW, Xue AM, Xu HM, Luo CL, Li BX, Liu YL, Zhao ZQ (2012) MicroRNA- 1 represses Cx43 expression in viral myocarditis. Mol Cell Biochem 362(1–2):141–148PubMed
113.
go back to reference Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukumoto S, Saito K, Nakamura T, Siomi H, Ito H, Arai Y, Shinomiya K, Takeda S (2009) A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci U S A 106(49):20794–20799PubMedPubMedCentral Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukumoto S, Saito K, Nakamura T, Siomi H, Ito H, Arai Y, Shinomiya K, Takeda S (2009) A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci U S A 106(49):20794–20799PubMedPubMedCentral
114.
go back to reference Katsuno T, Umeda K, Matsui T, Hata M, Tamura A, Itoh M, Takeuchi K, Fujimori T, Nabeshima Y, Noda T, Tsukita S, Tsukita S (2008) Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell 19(6):2465–2475PubMedPubMedCentral Katsuno T, Umeda K, Matsui T, Hata M, Tamura A, Itoh M, Takeuchi K, Fujimori T, Nabeshima Y, Noda T, Tsukita S, Tsukita S (2008) Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell 19(6):2465–2475PubMedPubMedCentral
115.
go back to reference Kudo-Sakamoto Y, Akazawa H, Ito K, Takano J, Yano M, Yabumoto C, Naito AT, Oka T, Lee JK, Sakata Y, Suzuki J, Saido TC, Komuro I (2014) Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. J Biol Chem 289(28):19408–19419PubMedPubMedCentral Kudo-Sakamoto Y, Akazawa H, Ito K, Takano J, Yano M, Yabumoto C, Naito AT, Oka T, Lee JK, Sakata Y, Suzuki J, Saido TC, Komuro I (2014) Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. J Biol Chem 289(28):19408–19419PubMedPubMedCentral
116.
go back to reference Ando K, Uemura K, Kuzuya A, Maesako M, Asada-Utsugi M, Kubota M, Aoyagi N, Yoshioka K, Okawa K, Inoue H, Kawamata J, Shimohama S, Arai T, Takahashi R, Kinoshita A (2011) N-cadherin regulates p38 MAPK signaling via association with JNK-associated leucine zipper protein: implications for neurodegeneration in Alzheimer disease. J Biol Chem 286(9):7619–7628PubMed Ando K, Uemura K, Kuzuya A, Maesako M, Asada-Utsugi M, Kubota M, Aoyagi N, Yoshioka K, Okawa K, Inoue H, Kawamata J, Shimohama S, Arai T, Takahashi R, Kinoshita A (2011) N-cadherin regulates p38 MAPK signaling via association with JNK-associated leucine zipper protein: implications for neurodegeneration in Alzheimer disease. J Biol Chem 286(9):7619–7628PubMed
117.
go back to reference Rangrez AY, Eden M, Poyanmehr R, Kuhn C, Stiebeling K, Dierck F, Bernt A, Lullmann-Rauch R, Weiler H, Kirchof P, Frank D, Frey N (2016) Myozap deficiency promotes adverse cardiac remodeling via differential regulation of mitogen-activated protein kinase/serum-response factor and beta-catenin/GSK-3beta protein signaling. J Biol Chem 291(8):4128–4143PubMed Rangrez AY, Eden M, Poyanmehr R, Kuhn C, Stiebeling K, Dierck F, Bernt A, Lullmann-Rauch R, Weiler H, Kirchof P, Frank D, Frey N (2016) Myozap deficiency promotes adverse cardiac remodeling via differential regulation of mitogen-activated protein kinase/serum-response factor and beta-catenin/GSK-3beta protein signaling. J Biol Chem 291(8):4128–4143PubMed
118.
go back to reference Li J, Swope D, Raess N, Cheng L, Muller EJ, Radice GL (2011) Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling. Mol Cell Biol 31(6):1134–1144PubMedPubMedCentral Li J, Swope D, Raess N, Cheng L, Muller EJ, Radice GL (2011) Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling. Mol Cell Biol 31(6):1134–1144PubMedPubMedCentral
119.
go back to reference Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113(6):739–753PubMed Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113(6):739–753PubMed
120.
go back to reference Schlipp A, Schinner C, Spindler V, Vielmuth F, Gehmlich K, Syrris P, McKenna WJ, Dendorfer A, Hartlieb E, Waschke J (2014) Desmoglein-2 interaction is crucial for cardiomyocyte cohesion and function. Cardiovasc Res 104(2):245–257PubMed Schlipp A, Schinner C, Spindler V, Vielmuth F, Gehmlich K, Syrris P, McKenna WJ, Dendorfer A, Hartlieb E, Waschke J (2014) Desmoglein-2 interaction is crucial for cardiomyocyte cohesion and function. Cardiovasc Res 104(2):245–257PubMed
121.
go back to reference Schinner C, Vielmuth F, Rotzer V, Hiermaier M, Radeva MY, Co TK, Hartlieb E, Schmidt A, Imhof A, Messoudi A, Horn A, Schlipp A, Spindler V, Waschke J (2017) Adrenergic signaling strengthens cardiac myocyte cohesion. Circ Res 120(8):1305–1317PubMed Schinner C, Vielmuth F, Rotzer V, Hiermaier M, Radeva MY, Co TK, Hartlieb E, Schmidt A, Imhof A, Messoudi A, Horn A, Schlipp A, Spindler V, Waschke J (2017) Adrenergic signaling strengthens cardiac myocyte cohesion. Circ Res 120(8):1305–1317PubMed
122.
go back to reference Kamekura R, Kolegraff KN, Nava P, Hilgarth RS, Feng M, Parkos CA, Nusrat A (2014) Loss of the desmosomal cadherin desmoglein-2 suppresses colon cancer cell proliferation through EGFR signaling. Oncogene 33(36):4531–4536PubMed Kamekura R, Kolegraff KN, Nava P, Hilgarth RS, Feng M, Parkos CA, Nusrat A (2014) Loss of the desmosomal cadherin desmoglein-2 suppresses colon cancer cell proliferation through EGFR signaling. Oncogene 33(36):4531–4536PubMed
123.
go back to reference Tokonzaba E, Chen J, Cheng X, Den Z, Ganeshan R, Muller EJ, Koch PJ (2013) Plakoglobin as a regulator of desmocollin gene expression. J Invest Dermatol 133(12):2732–2740PubMedPubMedCentral Tokonzaba E, Chen J, Cheng X, Den Z, Ganeshan R, Muller EJ, Koch PJ (2013) Plakoglobin as a regulator of desmocollin gene expression. J Invest Dermatol 133(12):2732–2740PubMedPubMedCentral
124.
go back to reference Kolegraff K, Nava P, Helms MN, Parkos CA, Nusrat A (2011) Loss of desmocollin-2 confers a tumorigenic phenotype to colonic epithelial cells through activation of Akt/beta-catenin signaling. Mol Biol Cell 22(8):1121–1134PubMedPubMedCentral Kolegraff K, Nava P, Helms MN, Parkos CA, Nusrat A (2011) Loss of desmocollin-2 confers a tumorigenic phenotype to colonic epithelial cells through activation of Akt/beta-catenin signaling. Mol Biol Cell 22(8):1121–1134PubMedPubMedCentral
125.
go back to reference Fang WK, Liao LD, Li LY, Xie YM, Xu XE, Zhao WJ, Wu JY, Zhu MX, Wu ZY, Du ZP, Wu BL, Xie D, Guo MZ, Xu LY, Li EM (2013) Down-regulated desmocollin-2 promotes cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling in oesophageal squamous cell carcinoma. J Pathol 231(2):257–270PubMed Fang WK, Liao LD, Li LY, Xie YM, Xu XE, Zhao WJ, Wu JY, Zhu MX, Wu ZY, Du ZP, Wu BL, Xie D, Guo MZ, Xu LY, Li EM (2013) Down-regulated desmocollin-2 promotes cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling in oesophageal squamous cell carcinoma. J Pathol 231(2):257–270PubMed
126.
go back to reference Li D, Liu Y, Maruyama M, Zhu W, Chen H, Zhang W, Reuter S, Lin SF, Haneline LS, Field LJ, Chen PS, Shou W (2011) Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy. Hum Mol Genet 20(23):4582–4596PubMedPubMedCentral Li D, Liu Y, Maruyama M, Zhu W, Chen H, Zhang W, Reuter S, Lin SF, Haneline LS, Field LJ, Chen PS, Shou W (2011) Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy. Hum Mol Genet 20(23):4582–4596PubMedPubMedCentral
127.
go back to reference Spindler V, Dehner C, Hubner S, Waschke J (2014) Plakoglobin but not desmoplakin regulates keratinocyte cohesion via modulation of p38MAPK signaling. J Invest Dermatol 134(6):1655–1664PubMed Spindler V, Dehner C, Hubner S, Waschke J (2014) Plakoglobin but not desmoplakin regulates keratinocyte cohesion via modulation of p38MAPK signaling. J Invest Dermatol 134(6):1655–1664PubMed
128.
go back to reference Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, Marian AJ (2014) The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res 114(3):454–468PubMed Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, Marian AJ (2014) The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res 114(3):454–468PubMed
129.
go back to reference Khudiakov AA, Kostina DA, Kostareva AA, Tomilin AN, Malashicheva AB (2015) The effect of plakophilin-2 gene mutations on activity of the canonical Wnt signaling pathway. Tsitologiia 57(12):868–875PubMed Khudiakov AA, Kostina DA, Kostareva AA, Tomilin AN, Malashicheva AB (2015) The effect of plakophilin-2 gene mutations on activity of the canonical Wnt signaling pathway. Tsitologiia 57(12):868–875PubMed
130.
go back to reference Godsel LM, Dubash AD, Bass-Zubek AE, Amargo EV, Klessner JL, Hobbs RP, Chen X, Green KJ (2010) Plakophilin 2 couples actomyosin remodeling to desmosomal plaque assembly via RhoA. Mol Biol Cell 21(16):2844–2859PubMedPubMedCentral Godsel LM, Dubash AD, Bass-Zubek AE, Amargo EV, Klessner JL, Hobbs RP, Chen X, Green KJ (2010) Plakophilin 2 couples actomyosin remodeling to desmosomal plaque assembly via RhoA. Mol Biol Cell 21(16):2844–2859PubMedPubMedCentral
131.
go back to reference Arimoto K, Burkart C, Yan M, Ran D, Weng S, Zhang DE (2014) Plakophilin-2 promotes tumor development by enhancing ligand-dependent and -independent epidermal growth factor receptor dimerization and activation. Mol Cell Biol 34(20):3843–3854PubMedPubMedCentral Arimoto K, Burkart C, Yan M, Ran D, Weng S, Zhang DE (2014) Plakophilin-2 promotes tumor development by enhancing ligand-dependent and -independent epidermal growth factor receptor dimerization and activation. Mol Cell Biol 34(20):3843–3854PubMedPubMedCentral
132.
go back to reference Leitner L, Shaposhnikov D, Mengel A, Descot A, Julien S, Hoffmann R, Posern G (2011) MAL/MRTF-A controls migration of non-invasive cells by upregulation of cytoskeleton-associated proteins. J Cell Sci 124(Pt 24):4318–4331PubMed Leitner L, Shaposhnikov D, Mengel A, Descot A, Julien S, Hoffmann R, Posern G (2011) MAL/MRTF-A controls migration of non-invasive cells by upregulation of cytoskeleton-associated proteins. J Cell Sci 124(Pt 24):4318–4331PubMed
133.
go back to reference Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, Marian AJ (2006) Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest 116(7):2012–2021PubMedPubMedCentral Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, Marian AJ (2006) Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest 116(7):2012–2021PubMedPubMedCentral
134.
go back to reference Chen X, Bonne S, Hatzfeld M, van Roy F, Green KJ (2002) Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta-catenin signaling. J Biol Chem 277(12):10512–10522PubMed Chen X, Bonne S, Hatzfeld M, van Roy F, Green KJ (2002) Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta-catenin signaling. J Biol Chem 277(12):10512–10522PubMed
135.
go back to reference Patel DM, Dubash AD, Kreitzer G, Green KJ (2014) Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions. J Cell Biol 206(6):779–797PubMedPubMedCentral Patel DM, Dubash AD, Kreitzer G, Green KJ (2014) Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions. J Cell Biol 206(6):779–797PubMedPubMedCentral
136.
go back to reference Cabral RM, Tattersall D, Patel V, McPhail GD, Hatzimasoura E, Abrams DJ, South AP, Kelsell DP (2012) The DSPII splice variant is crucial for desmosome-mediated adhesion in HaCaT keratinocytes. J Cell Sci 125(Pt 12):2853–2861PubMed Cabral RM, Tattersall D, Patel V, McPhail GD, Hatzimasoura E, Abrams DJ, South AP, Kelsell DP (2012) The DSPII splice variant is crucial for desmosome-mediated adhesion in HaCaT keratinocytes. J Cell Sci 125(Pt 12):2853–2861PubMed
137.
go back to reference Li J, Gao E, Vite A, Yi R, Gomez L, Goossens S, van Roy F, Radice GL (2015) Alpha-catenins control cardiomyocyte proliferation by regulating yap activity. Circ Res 116(1):70–79PubMed Li J, Gao E, Vite A, Yi R, Gomez L, Goossens S, van Roy F, Radice GL (2015) Alpha-catenins control cardiomyocyte proliferation by regulating yap activity. Circ Res 116(1):70–79PubMed
138.
go back to reference Bergmann MW (2010) Wnt signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res 107(10):1198–1208PubMed Bergmann MW (2010) Wnt signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res 107(10):1198–1208PubMed
139.
go back to reference Dunach M, Del Valle-Perez B, Garcia de Herreros A (2017) p120-catenin in canonical Wnt signaling. Crit Rev Biochem Mol Biol 52(3):327–339PubMed Dunach M, Del Valle-Perez B, Garcia de Herreros A (2017) p120-catenin in canonical Wnt signaling. Crit Rev Biochem Mol Biol 52(3):327–339PubMed
140.
go back to reference Solan JL, Lampe PD (2016) Kinase programs spatiotemporally regulate gap junction assembly and disassembly: effects on wound repair. Semin Cell Dev Biol 50:40–48PubMed Solan JL, Lampe PD (2016) Kinase programs spatiotemporally regulate gap junction assembly and disassembly: effects on wound repair. Semin Cell Dev Biol 50:40–48PubMed
141.
go back to reference Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM (2006) Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res 98(12):1498–1505PubMedPubMedCentral Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM (2006) Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res 98(12):1498–1505PubMedPubMedCentral
142.
go back to reference Ishikawa S, Kuno A, Tanno M, Miki T, Kouzu H, Itoh T, Sato T, Sunaga D, Murase H, Miura T (2012) Role of connexin-43 in protective PI3K-Akt-GSK-3 beta signaling in cardiomyocytes. Am J Physiol Heart Circ Physiol 302(12):H2536–H2544PubMed Ishikawa S, Kuno A, Tanno M, Miki T, Kouzu H, Itoh T, Sato T, Sunaga D, Murase H, Miura T (2012) Role of connexin-43 in protective PI3K-Akt-GSK-3 beta signaling in cardiomyocytes. Am J Physiol Heart Circ Physiol 302(12):H2536–H2544PubMed
143.
go back to reference Dunn CA, Lampe PD (2014) Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci 127(Pt 2):455–464PubMedPubMedCentral Dunn CA, Lampe PD (2014) Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci 127(Pt 2):455–464PubMedPubMedCentral
144.
go back to reference Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124(1):119–131PubMed Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124(1):119–131PubMed
145.
go back to reference Farmer C, Morton PE, Snippe M, Santis G, Parsons M (2009) Coxsackie adenovirus receptor (CAR) regulates integrin function through activation of p44/42 MAPK. Exp Cell Res 315(15):2637–2647PubMed Farmer C, Morton PE, Snippe M, Santis G, Parsons M (2009) Coxsackie adenovirus receptor (CAR) regulates integrin function through activation of p44/42 MAPK. Exp Cell Res 315(15):2637–2647PubMed
146.
go back to reference Caruso L, Yuen S, Smith J, Husain M, Opavsky MA (2010) Cardiomyocyte-targeted overexpression of the coxsackie-adenovirus receptor causes a cardiomyopathy in association with beta-catenin signaling. J Mol Cell Cardiol 48(6):1194–1205PubMed Caruso L, Yuen S, Smith J, Husain M, Opavsky MA (2010) Cardiomyocyte-targeted overexpression of the coxsackie-adenovirus receptor causes a cardiomyopathy in association with beta-catenin signaling. J Mol Cell Cardiol 48(6):1194–1205PubMed
147.
go back to reference Grossmann KS, Grund C, Huelsken J, Behrend M, Erdmann B, Franke WW, Birchmeier W (2004) Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J Cell Biol 167(1):149–160PubMedPubMedCentral Grossmann KS, Grund C, Huelsken J, Behrend M, Erdmann B, Franke WW, Birchmeier W (2004) Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J Cell Biol 167(1):149–160PubMedPubMedCentral
148.
149.
150.
go back to reference Kim W, Kim M, Jho EH (2013) Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem J 450(1):9–21PubMed Kim W, Kim M, Jho EH (2013) Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem J 450(1):9–21PubMed
151.
go back to reference Anastas JN (2015) Functional crosstalk between Wnt signaling and tyrosine kinase signaling in cancer. Semin Oncol 42(6):820–831PubMed Anastas JN (2015) Functional crosstalk between Wnt signaling and tyrosine kinase signaling in cancer. Semin Oncol 42(6):820–831PubMed
152.
go back to reference Sadot E, Simcha I, Iwai K, Ciechanover A, Geiger B, Ben-Ze’ev A (2000) Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system. Oncogene 19(16):1992–2001PubMed Sadot E, Simcha I, Iwai K, Ciechanover A, Geiger B, Ben-Ze’ev A (2000) Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system. Oncogene 19(16):1992–2001PubMed
153.
go back to reference Strovel ET, Wu D, Sussman DJ (2000) Protein phosphatase 2Calpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem 275(4):2399–2403PubMed Strovel ET, Wu D, Sussman DJ (2000) Protein phosphatase 2Calpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem 275(4):2399–2403PubMed
154.
go back to reference Chen X, Shevtsov SP, Hsich E, Cui L, Haq S, Aronovitz M, Kerkela R, Molkentin JD, Liao R, Salomon RN, Patten R, Force T (2006) The beta-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol Cell Biol 26(12):4462–4473PubMedPubMedCentral Chen X, Shevtsov SP, Hsich E, Cui L, Haq S, Aronovitz M, Kerkela R, Molkentin JD, Liao R, Salomon RN, Patten R, Force T (2006) The beta-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol Cell Biol 26(12):4462–4473PubMedPubMedCentral
155.
go back to reference Zhurinsky J, Shtutman M, Ben-Ze’ev A (2000) Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 113(Pt 18):3127–3139PubMed Zhurinsky J, Shtutman M, Ben-Ze’ev A (2000) Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 113(Pt 18):3127–3139PubMed
156.
go back to reference Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W (2000) Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol 148(3):567–578PubMedPubMedCentral Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W (2000) Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol 148(3):567–578PubMedPubMedCentral
157.
go back to reference Miravet S, Piedra J, Miro F, Itarte E, Garcia de Herreros A, Dunach M (2002) The transcriptional factor Tcf-4 contains different binding sites for beta-catenin and plakoglobin. J Biol Chem 277(3):1884–1891PubMed Miravet S, Piedra J, Miro F, Itarte E, Garcia de Herreros A, Dunach M (2002) The transcriptional factor Tcf-4 contains different binding sites for beta-catenin and plakoglobin. J Biol Chem 277(3):1884–1891PubMed
158.
go back to reference Lombardi R, da Graca Cabreira-Hansen M, Bell A, Fromm RR, Willerson JT, Marian AJ (2011) Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res 109(12):1342–1353PubMedPubMedCentral Lombardi R, da Graca Cabreira-Hansen M, Bell A, Fromm RR, Willerson JT, Marian AJ (2011) Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res 109(12):1342–1353PubMedPubMedCentral
159.
go back to reference Aktary Z, Alaee M, Pasdar M (2017) Beyond cell-cell adhesion: plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 8(19):32270–32291PubMedPubMedCentral Aktary Z, Alaee M, Pasdar M (2017) Beyond cell-cell adhesion: plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 8(19):32270–32291PubMedPubMedCentral
160.
go back to reference Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332(6028):458–461PubMedPubMedCentral Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332(6028):458–461PubMedPubMedCentral
161.
go back to reference von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A 109(7):2394–2399 von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A 109(7):2394–2399
163.
go back to reference Hood AR, Ai X, Pogwizd SM (2017) Regulation of cardiac gap junctions by protein phosphatases. J Mol Cell Cardiol 107:52–57PubMed Hood AR, Ai X, Pogwizd SM (2017) Regulation of cardiac gap junctions by protein phosphatases. J Mol Cell Cardiol 107:52–57PubMed
164.
go back to reference Cooper CD, Lampe PD (2002) Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem 277(47):44962–44968PubMed Cooper CD, Lampe PD (2002) Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem 277(47):44962–44968PubMed
165.
go back to reference Lampe PD, Cooper CD, King TJ, Burt JM (2006) Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart. J Cell Sci 119(Pt 16):3435–3442PubMedPubMedCentral Lampe PD, Cooper CD, King TJ, Burt JM (2006) Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart. J Cell Sci 119(Pt 16):3435–3442PubMedPubMedCentral
166.
go back to reference Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou NH, Andersen S, Jensen ON, Hennan JK, Kjolbye AL (2006) Identification of ischemia-regulated phosphorylation sites in connexin43: a possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol 40(6):790–798PubMed Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou NH, Andersen S, Jensen ON, Hennan JK, Kjolbye AL (2006) Identification of ischemia-regulated phosphorylation sites in connexin43: a possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol 40(6):790–798PubMed
167.
go back to reference Hund TJ, Lerner DL, Yamada KA, Schuessler RB, Saffitz JE (2007) Protein kinase Cepsilon mediates salutary effects on electrical coupling induced by ischemic preconditioning. Heart Rhythm 4(9):1183–1193PubMedPubMedCentral Hund TJ, Lerner DL, Yamada KA, Schuessler RB, Saffitz JE (2007) Protein kinase Cepsilon mediates salutary effects on electrical coupling induced by ischemic preconditioning. Heart Rhythm 4(9):1183–1193PubMedPubMedCentral
168.
go back to reference Sosinsky GE, Solan JL, Gaietta GM, Ngan L, Lee GJ, Mackey MR, Lampe PD (2007) The C-terminus of connexin43 adopts different conformations in the Golgi and gap junction as detected with structure-specific antibodies. Biochem J 408(3):375–385PubMedPubMedCentral Sosinsky GE, Solan JL, Gaietta GM, Ngan L, Lee GJ, Mackey MR, Lampe PD (2007) The C-terminus of connexin43 adopts different conformations in the Golgi and gap junction as detected with structure-specific antibodies. Biochem J 408(3):375–385PubMedPubMedCentral
169.
go back to reference Solan JL, Marquez-Rosado L, Sorgen PL, Thornton PJ, Gafken PR, Lampe PD (2007) Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC. J Cell Biol 179(6):1301–1309PubMedPubMedCentral Solan JL, Marquez-Rosado L, Sorgen PL, Thornton PJ, Gafken PR, Lampe PD (2007) Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC. J Cell Biol 179(6):1301–1309PubMedPubMedCentral
170.
go back to reference Jozwiak J, Dhein S (2008) Local effects and mechanisms of antiarrhythmic peptide AAP10 in acute regional myocardial ischemia: electrophysiological and molecular findings. Naunyn Schmiedeberg's Arch Pharmacol 378(5):459–470 Jozwiak J, Dhein S (2008) Local effects and mechanisms of antiarrhythmic peptide AAP10 in acute regional myocardial ischemia: electrophysiological and molecular findings. Naunyn Schmiedeberg's Arch Pharmacol 378(5):459–470
171.
go back to reference Gilleron J, Fiorini C, Carette D, Avondet C, Falk MM, Segretain D, Pointis G (2008) Molecular reorganization of Cx43, Zo-1 and Src complexes during the endocytosis of gap junction plaques in response to a non-genomic carcinogen. J Cell Sci 121(Pt 24):4069–4078PubMed Gilleron J, Fiorini C, Carette D, Avondet C, Falk MM, Segretain D, Pointis G (2008) Molecular reorganization of Cx43, Zo-1 and Src complexes during the endocytosis of gap junction plaques in response to a non-genomic carcinogen. J Cell Sci 121(Pt 24):4069–4078PubMed
172.
go back to reference Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A, Hirst-Jensen BJ, Duffy HS, Sorgen PL (2009) Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res 104(9):1103–1112PubMedPubMedCentral Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A, Hirst-Jensen BJ, Duffy HS, Sorgen PL (2009) Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res 104(9):1103–1112PubMedPubMedCentral
173.
go back to reference Tamanini A, Nicolis E, Bonizzato A, Bezzerri V, Melotti P, Assael BM, Cabrini G (2006) Interaction of adenovirus type 5 fiber with the coxsackievirus and adenovirus receptor activates inflammatory response in human respiratory cells. J Virol 80(22):11241–11254PubMedPubMedCentral Tamanini A, Nicolis E, Bonizzato A, Bezzerri V, Melotti P, Assael BM, Cabrini G (2006) Interaction of adenovirus type 5 fiber with the coxsackievirus and adenovirus receptor activates inflammatory response in human respiratory cells. J Virol 80(22):11241–11254PubMedPubMedCentral
174.
go back to reference Loustalot F, Kremer EJ, Salinas S (2016) Membrane dynamics and signaling of the Coxsackievirus and adenovirus receptor. Int Rev Cell Mol Biol 322:331–362PubMed Loustalot F, Kremer EJ, Salinas S (2016) Membrane dynamics and signaling of the Coxsackievirus and adenovirus receptor. Int Rev Cell Mol Biol 322:331–362PubMed
175.
go back to reference Marchant D, Sall A, Si X, Abraham T, Wu W, Luo Z, Petersen T, Hegele RG, McManus BM (2009) ERK MAP kinase-activated Arf6 trafficking directs Coxsackievirus type B3 into an unproductive compartment during virus host-cell entry. J Gen Virol 90(Pt 4):854–862PubMed Marchant D, Sall A, Si X, Abraham T, Wu W, Luo Z, Petersen T, Hegele RG, McManus BM (2009) ERK MAP kinase-activated Arf6 trafficking directs Coxsackievirus type B3 into an unproductive compartment during virus host-cell entry. J Gen Virol 90(Pt 4):854–862PubMed
176.
go back to reference Franke WW, Borrmann CM, Grund C, Pieperhoff S (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 85(2):69–82PubMed Franke WW, Borrmann CM, Grund C, Pieperhoff S (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 85(2):69–82PubMed
177.
go back to reference Pieperhoff S, Franke WW (2007) The area composita of adhering junctions connecting heart muscle cells of vertebrates - IV: coalescence and amalgamation of desmosomal and adhaerens junction components - late processes in mammalian heart development. Eur J Cell Biol 86(7):377–391PubMed Pieperhoff S, Franke WW (2007) The area composita of adhering junctions connecting heart muscle cells of vertebrates - IV: coalescence and amalgamation of desmosomal and adhaerens junction components - late processes in mammalian heart development. Eur J Cell Biol 86(7):377–391PubMed
178.
go back to reference Pieperhoff S, Barth M, Rickelt S, Franke WW (2010) Desmosomal molecules in and out of adhering junctions: normal and diseased states of epidermal, cardiac and mesenchymally derived cells. Dermatol Res Pract 2010:139167PubMedPubMedCentral Pieperhoff S, Barth M, Rickelt S, Franke WW (2010) Desmosomal molecules in and out of adhering junctions: normal and diseased states of epidermal, cardiac and mesenchymally derived cells. Dermatol Res Pract 2010:139167PubMedPubMedCentral
179.
go back to reference Wilson AJ, Schoenauer R, Ehler E, Agarkova I, Bennett PM (2014) Cardiomyocyte growth and sarcomerogenesis at the intercalated disc. Cell Mol Life Sci 71(1):165–181PubMed Wilson AJ, Schoenauer R, Ehler E, Agarkova I, Bennett PM (2014) Cardiomyocyte growth and sarcomerogenesis at the intercalated disc. Cell Mol Life Sci 71(1):165–181PubMed
180.
go back to reference Geisler SB, Green KJ, Isom LL, Meshinchi S, Martens JR, Delmar M, Russell MW (2010) Ordered assembly of the adhesive and electrochemical connections within newly formed intercalated disks in primary cultures of adult rat cardiomyocytes. J Biomed Biotechnol 2010:624719PubMedPubMedCentral Geisler SB, Green KJ, Isom LL, Meshinchi S, Martens JR, Delmar M, Russell MW (2010) Ordered assembly of the adhesive and electrochemical connections within newly formed intercalated disks in primary cultures of adult rat cardiomyocytes. J Biomed Biotechnol 2010:624719PubMedPubMedCentral
181.
go back to reference Agullo-Pascual E, Reid DA, Keegan S, Sidhu M, Fenyo D, Rothenberg E, Delmar M (2013) Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. Cardiovasc Res 100(2):231–240PubMedPubMedCentral Agullo-Pascual E, Reid DA, Keegan S, Sidhu M, Fenyo D, Rothenberg E, Delmar M (2013) Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. Cardiovasc Res 100(2):231–240PubMedPubMedCentral
182.
go back to reference Oxford EM, Musa H, Maass K, Coombs W, Taffet SM, Delmar M (2007) Connexin43 remodeling caused by inhibition of plakophilin-2 expression in cardiac cells. Circ Res 101(7):703–711PubMed Oxford EM, Musa H, Maass K, Coombs W, Taffet SM, Delmar M (2007) Connexin43 remodeling caused by inhibition of plakophilin-2 expression in cardiac cells. Circ Res 101(7):703–711PubMed
183.
go back to reference Gehmlich K, Lambiase PD, Asimaki A, Ciaccio EJ, Ehler E, Syrris P, Saffitz JE, McKenna WJ (2011) A novel desmocollin-2 mutation reveals insights into the molecular link between desmosomes and gap junctions. Heart Rhythm 8(5):711–718PubMedPubMedCentral Gehmlich K, Lambiase PD, Asimaki A, Ciaccio EJ, Ehler E, Syrris P, Saffitz JE, McKenna WJ (2011) A novel desmocollin-2 mutation reveals insights into the molecular link between desmosomes and gap junctions. Heart Rhythm 8(5):711–718PubMedPubMedCentral
184.
go back to reference Sato PY, Musa H, Coombs W, Guerrero-Serna G, Patino GA, Taffet SM, Isom LL, Delmar M (2009) Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ Res 105(6):523–526PubMedPubMedCentral Sato PY, Musa H, Coombs W, Guerrero-Serna G, Patino GA, Taffet SM, Isom LL, Delmar M (2009) Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ Res 105(6):523–526PubMedPubMedCentral
185.
go back to reference Zemljic-Harpf AE, Godoy JC, Platoshyn O, Asfaw EK, Busija AR, Domenighetti AA, Ross RS (2014) Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci 127(Pt 5):1104–1116PubMedPubMedCentral Zemljic-Harpf AE, Godoy JC, Platoshyn O, Asfaw EK, Busija AR, Domenighetti AA, Ross RS (2014) Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci 127(Pt 5):1104–1116PubMedPubMedCentral
186.
go back to reference Agullo-Pascual E, Cerrone M, Delmar M (2014) Arrhythmogenic cardiomyopathy and Brugada syndrome: diseases of the connexome. FEBS Lett 588(8):1322–1330PubMedPubMedCentral Agullo-Pascual E, Cerrone M, Delmar M (2014) Arrhythmogenic cardiomyopathy and Brugada syndrome: diseases of the connexome. FEBS Lett 588(8):1322–1330PubMedPubMedCentral
187.
go back to reference Estigoy CB, Ponten F, Odeberg J, Herbert B, Guilhaus M, Charleston M, Ho JWK, Cameron D, Dos Remedios CG (2009) Intercalated discs: multiple proteins perform multiple functions in non-failing and failing human hearts. Biophys Rev 1(1):43PubMedPubMedCentral Estigoy CB, Ponten F, Odeberg J, Herbert B, Guilhaus M, Charleston M, Ho JWK, Cameron D, Dos Remedios CG (2009) Intercalated discs: multiple proteins perform multiple functions in non-failing and failing human hearts. Biophys Rev 1(1):43PubMedPubMedCentral
188.
go back to reference Soni S, Raaijmakers AJ, Raaijmakers LM, Damen JM, van Stuijvenberg L, Vos MA, Heck AJ, van Veen TA, Scholten A (2016) A proteomics approach to identify new putative cardiac intercalated disk proteins. PLoS One 11(5):e0152231PubMedPubMedCentral Soni S, Raaijmakers AJ, Raaijmakers LM, Damen JM, van Stuijvenberg L, Vos MA, Heck AJ, van Veen TA, Scholten A (2016) A proteomics approach to identify new putative cardiac intercalated disk proteins. PLoS One 11(5):e0152231PubMedPubMedCentral
189.
go back to reference Davis RP, van den Berg CW, Casini S, Braam SR, Mummery CL (2011) Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med 17(9):475–484PubMed Davis RP, van den Berg CW, Casini S, Braam SR, Mummery CL (2011) Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med 17(9):475–484PubMed
Metadata
Title
Intercalated discs: cellular adhesion and signaling in heart health and diseases
Authors
Guangze Zhao
Ye Qiu
Huifang M. Zhang
Decheng Yang
Publication date
01-01-2019
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 1/2019
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-018-9743-7

Other articles of this Issue 1/2019

Heart Failure Reviews 1/2019 Go to the issue