Skip to main content
Top
Published in: Heart Failure Reviews 1/2019

01-01-2019

Metabolic remodeling of substrate utilization during heart failure progression

Authors: Liang Chen, Jiangping Song, Shengshou Hu

Published in: Heart Failure Reviews | Issue 1/2019

Login to get access

Abstract

Heart failure (HF) is a clinical syndrome caused by a decline in cardiac systolic or diastolic function, which leaves the heart unable to pump enough blood to meet the normal physiological requirements of the human body. It is a serious disease burden worldwide affecting nearly 23 million patients. The concept that heart failure is “an engine out of fuel” has been generally accepted and metabolic remodeling has been recognized as an important aspect of this condition; it is characterized by defects in energy production and changes in metabolic pathways involved in the regulation of essential cellular functions such as the process of substrate utilization, the tricarboxylic acid cycle, oxidative phosphorylation, and high-energy phosphate metabolism. Advances in second-generation sequencing, proteomics, and metabolomics have made it possible to perform comprehensive tests on genes and metabolites that are crucial in the process of HF, thereby providing a clearer and comprehensive understanding of metabolic remodeling during HF. In recent years, new metabolic changes such as ketone bodies and branched-chain amino acids were demonstrated as alternative substrates in end-stage HF. This systematic review focuses on changes in metabolic substrate utilization during the progression of HF and the underlying regulatory mechanisms. Accordingly, the conventional concepts of metabolic remodeling characteristics are reviewed, and the latest developments, particularly multi-omics studies, are compiled.
Literature
1.
go back to reference Shen L et al (2017) Declining risk of sudden death in heart failure. N Engl J Med 377(1):41–51PubMed Shen L et al (2017) Declining risk of sudden death in heart failure. N Engl J Med 377(1):41–51PubMed
2.
go back to reference Dunlay SM, Roger VL, Redfield MM (2017) Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 14(10):591–602PubMed Dunlay SM, Roger VL, Redfield MM (2017) Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 14(10):591–602PubMed
3.
go back to reference Velazquez EJ et al (2016) Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 374(16):1511–1520PubMedPubMedCentral Velazquez EJ et al (2016) Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 374(16):1511–1520PubMedPubMedCentral
4.
go back to reference Filion KB et al (2016) A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med 374(12):1145–1154PubMed Filion KB et al (2016) A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med 374(12):1145–1154PubMed
5.
go back to reference Felker GM et al (2017) Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 318(8):713–720PubMedPubMedCentral Felker GM et al (2017) Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 318(8):713–720PubMedPubMedCentral
6.
go back to reference Ho KK et al (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22(4 Suppl A):6A–13APubMed Ho KK et al (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22(4 Suppl A):6A–13APubMed
7.
go back to reference Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113(6):709–724PubMedPubMedCentral Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113(6):709–724PubMedPubMedCentral
8.
go back to reference Byrne NJ et al (2016) Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc Res 110(2):249–257PubMedPubMedCentral Byrne NJ et al (2016) Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc Res 110(2):249–257PubMedPubMedCentral
9.
go back to reference Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356(11):1140–1151PubMed Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356(11):1140–1151PubMed
10.
go back to reference Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85(3):1093–1129PubMed Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85(3):1093–1129PubMed
11.
go back to reference Fillmore N, Lopaschuk GD (2013) Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta 1833(4):857–865PubMed Fillmore N, Lopaschuk GD (2013) Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta 1833(4):857–865PubMed
12.
go back to reference Lopaschuk GD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258PubMed Lopaschuk GD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258PubMed
13.
go back to reference Szablewski L (2017) Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 230(1):70–75PubMed Szablewski L (2017) Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 230(1):70–75PubMed
14.
15.
go back to reference Vimercati C et al (2014) Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart. Am J Physiol Heart Circ Physiol 306(5):H709–H717PubMedPubMedCentral Vimercati C et al (2014) Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart. Am J Physiol Heart Circ Physiol 306(5):H709–H717PubMedPubMedCentral
17.
go back to reference Carley AN, Lewandowski ED (2016) Triacylglycerol turnover in the failing heart. Biochim Biophys Acta 1861(10):1492–1499PubMed Carley AN, Lewandowski ED (2016) Triacylglycerol turnover in the failing heart. Biochim Biophys Acta 1861(10):1492–1499PubMed
18.
go back to reference Jenei ZA et al (2011) Packing of transmembrane domain 2 of carnitine palmitoyltransferase-1A affects oligomerization and malonyl-CoA sensitivity of the mitochondrial outer membrane protein. FASEB J 25(12):4522–4530PubMed Jenei ZA et al (2011) Packing of transmembrane domain 2 of carnitine palmitoyltransferase-1A affects oligomerization and malonyl-CoA sensitivity of the mitochondrial outer membrane protein. FASEB J 25(12):4522–4530PubMed
19.
go back to reference Abdurrachim D et al (2015) Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 106(2):194–205PubMed Abdurrachim D et al (2015) Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 106(2):194–205PubMed
20.
go back to reference O’Neill HM et al (2014) AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 57(8):1693–1702PubMed O’Neill HM et al (2014) AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 57(8):1693–1702PubMed
21.
go back to reference Saha AK et al (2000) Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. J Biol Chem 275(32):24279–24283PubMed Saha AK et al (2000) Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. J Biol Chem 275(32):24279–24283PubMed
22.
go back to reference Barreto-Torres G et al (2015) The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARalpha-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol 308(7):H749–H758PubMedPubMedCentral Barreto-Torres G et al (2015) The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARalpha-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol 308(7):H749–H758PubMedPubMedCentral
23.
go back to reference Sung MM et al (2015) AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovasc Res 107(2):235–245PubMedPubMedCentral Sung MM et al (2015) AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovasc Res 107(2):235–245PubMedPubMedCentral
24.
go back to reference Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116(4):434–448PubMed Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116(4):434–448PubMed
25.
go back to reference Abushouk AI et al (2017) Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 95(1):692–700PubMed Abushouk AI et al (2017) Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 95(1):692–700PubMed
26.
go back to reference Lam VH et al (2015) Activating PPARalpha prevents post-ischemic contractile dysfunction in hypertrophied neonatal hearts. Circ Res 117(1):41–51PubMed Lam VH et al (2015) Activating PPARalpha prevents post-ischemic contractile dysfunction in hypertrophied neonatal hearts. Circ Res 117(1):41–51PubMed
27.
go back to reference Smeets PJ et al (2008) Cardiac hypertrophy is enhanced in PPAR alpha−/− mice in response to chronic pressure overload. Cardiovasc Res 78(1):79–89PubMed Smeets PJ et al (2008) Cardiac hypertrophy is enhanced in PPAR alpha−/− mice in response to chronic pressure overload. Cardiovasc Res 78(1):79–89PubMed
28.
go back to reference Drosatos K et al (2016) Cardiac myocyte KLF5 regulates Ppara expression and cardiac function. Circ Res 118(2):241–253PubMed Drosatos K et al (2016) Cardiac myocyte KLF5 regulates Ppara expression and cardiac function. Circ Res 118(2):241–253PubMed
29.
go back to reference Palomer X et al (2016) PPARbeta/delta and lipid metabolism in the heart. Biochim Biophys Acta 1861(10):1569–1578PubMed Palomer X et al (2016) PPARbeta/delta and lipid metabolism in the heart. Biochim Biophys Acta 1861(10):1569–1578PubMed
30.
go back to reference Burkart EM et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117(12):3930–3939PubMedPubMedCentral Burkart EM et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117(12):3930–3939PubMedPubMedCentral
32.
go back to reference Abo AO, Lopaschuk GD (2014) Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochem Soc Trans 42(4):1043–1051 Abo AO, Lopaschuk GD (2014) Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochem Soc Trans 42(4):1043–1051
33.
go back to reference Guo Z (2015) Pyruvate dehydrogenase, Randle cycle, and skeletal muscle insulin resistance. Proc Natl Acad Sci U S A 112(22):E2854PubMedPubMedCentral Guo Z (2015) Pyruvate dehydrogenase, Randle cycle, and skeletal muscle insulin resistance. Proc Natl Acad Sci U S A 112(22):E2854PubMedPubMedCentral
34.
go back to reference Gomez-Arroyo J et al (2013) Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 6(1):136–144PubMed Gomez-Arroyo J et al (2013) Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 6(1):136–144PubMed
35.
go back to reference Christe ME, Rodgers RL (1994) Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 26(10):1371–1375PubMed Christe ME, Rodgers RL (1994) Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 26(10):1371–1375PubMed
36.
go back to reference Massie BM et al (1995) Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation 91(6):1814–1823PubMed Massie BM et al (1995) Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation 91(6):1814–1823PubMed
37.
go back to reference Degens H et al (2006) Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res Cardiol 101(1):17–26PubMed Degens H et al (2006) Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res Cardiol 101(1):17–26PubMed
38.
go back to reference Seymour AM et al (2015) In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc Res 106(2):249–260PubMedPubMedCentral Seymour AM et al (2015) In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc Res 106(2):249–260PubMedPubMedCentral
39.
go back to reference Kato T et al (2010) Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 3(3):420–430PubMed Kato T et al (2010) Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 3(3):420–430PubMed
40.
go back to reference O’Donnell JM et al (2008) The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover. J Mol Cell Cardiol 44(2):315–322PubMed O’Donnell JM et al (2008) The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover. J Mol Cell Cardiol 44(2):315–322PubMed
41.
go back to reference Lai L et al (2014) Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Fail 7(6):1022–1031PubMedPubMedCentral Lai L et al (2014) Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Fail 7(6):1022–1031PubMedPubMedCentral
42.
go back to reference Burke MA et al (2016) Molecular profiling of dilated cardiomyopathy that progresses to heart failure. JCI Insight 1(6):e86898PubMedPubMedCentral Burke MA et al (2016) Molecular profiling of dilated cardiomyopathy that progresses to heart failure. JCI Insight 1(6):e86898PubMedPubMedCentral
43.
go back to reference Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovasc Res 90(2):202–209PubMedPubMedCentral Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovasc Res 90(2):202–209PubMedPubMedCentral
44.
go back to reference Heggermont WA et al (2016) Metabolic support for the heart: complementary therapy for heart failure? Eur J Heart Fail 18(12):1420–1429PubMed Heggermont WA et al (2016) Metabolic support for the heart: complementary therapy for heart failure? Eur J Heart Fail 18(12):1420–1429PubMed
45.
go back to reference Pereira RO et al (2014) GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure. J Mol Cell Cardiol 72(1):95–103PubMedPubMedCentral Pereira RO et al (2014) GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure. J Mol Cell Cardiol 72(1):95–103PubMedPubMedCentral
46.
go back to reference Yan J et al (2009) Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119(21):2818–2828PubMedPubMedCentral Yan J et al (2009) Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119(21):2818–2828PubMedPubMedCentral
47.
go back to reference Kundu BK et al (2015) Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology 130(4):211–220PubMedPubMedCentral Kundu BK et al (2015) Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology 130(4):211–220PubMedPubMedCentral
48.
go back to reference Bedi KJ et al (2016) Evidence for Intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133(8):706–716PubMedPubMedCentral Bedi KJ et al (2016) Evidence for Intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133(8):706–716PubMedPubMedCentral
49.
go back to reference Peterzan MA et al (2017) Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 313(3):H597–H616PubMed Peterzan MA et al (2017) Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 313(3):H597–H616PubMed
50.
go back to reference El AZ et al (1992) Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Phys 262(4 Pt 2):H1068–H1074 El AZ et al (1992) Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Phys 262(4 Pt 2):H1068–H1074
51.
go back to reference Pound KM et al (2009) Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ Res 104(6):805–812PubMedPubMedCentral Pound KM et al (2009) Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ Res 104(6):805–812PubMedPubMedCentral
52.
go back to reference Lei B et al (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36(4):567–576PubMed Lei B et al (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36(4):567–576PubMed
53.
go back to reference Sansbury BE et al (2014) Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 7(4):634–642PubMedPubMedCentral Sansbury BE et al (2014) Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 7(4):634–642PubMedPubMedCentral
54.
go back to reference Davila-Roman VG et al (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40(2):271–277PubMed Davila-Roman VG et al (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40(2):271–277PubMed
55.
go back to reference Zhabyeyev P et al (2013) Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res 97(4):676–685PubMed Zhabyeyev P et al (2013) Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res 97(4):676–685PubMed
56.
go back to reference Amorim PA et al (2010) Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. J Thorac Cardiovasc Surg 140(5):1160–1167PubMed Amorim PA et al (2010) Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. J Thorac Cardiovasc Surg 140(5):1160–1167PubMed
57.
go back to reference Osorio JC et al (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106(5):606–612PubMed Osorio JC et al (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106(5):606–612PubMed
58.
go back to reference Doenst T et al (2010) Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 86(3):461–470PubMed Doenst T et al (2010) Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 86(3):461–470PubMed
59.
go back to reference Gupte AA et al (2014) Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ Cardiovasc Genet 7(3):266–276PubMedPubMedCentral Gupte AA et al (2014) Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ Cardiovasc Genet 7(3):266–276PubMedPubMedCentral
60.
go back to reference Tuunanen H, Ukkonen H, Knuuti J (2008) Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep 10(2):142–148PubMed Tuunanen H, Ukkonen H, Knuuti J (2008) Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep 10(2):142–148PubMed
63.
go back to reference Sun H et al (2016) Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133(21):2038–2049PubMedPubMedCentral Sun H et al (2016) Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133(21):2038–2049PubMedPubMedCentral
64.
go back to reference Foster DB et al (2016) Integrated omic analysis of a guinea pig model of heart failure and sudden cardiac death. J Proteome Res 15(9):3009–3028PubMedPubMedCentral Foster DB et al (2016) Integrated omic analysis of a guinea pig model of heart failure and sudden cardiac death. J Proteome Res 15(9):3009–3028PubMedPubMedCentral
65.
go back to reference Hunter WG et al (2016) Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J Am Heart Assoc 5(8):e003190PubMedPubMedCentral Hunter WG et al (2016) Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J Am Heart Assoc 5(8):e003190PubMedPubMedCentral
66.
go back to reference Ruiz M et al (2017) Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am J Physiol Heart Circ Physiol 313(4):H768–H781PubMed Ruiz M et al (2017) Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am J Physiol Heart Circ Physiol 313(4):H768–H781PubMed
67.
go back to reference Ahmad T et al (2016) Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J Am Coll Cardiol 67(3):291–299PubMedPubMedCentral Ahmad T et al (2016) Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J Am Coll Cardiol 67(3):291–299PubMedPubMedCentral
68.
go back to reference Fragasso G et al (2006) A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol 48(5):992–998PubMed Fragasso G et al (2006) A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol 48(5):992–998PubMed
69.
go back to reference Fragasso G et al (2011) Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure. Heart 97(18):1495–1500PubMed Fragasso G et al (2011) Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure. Heart 97(18):1495–1500PubMed
70.
go back to reference Tuunanen H et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114(20):2130–2137PubMed Tuunanen H et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114(20):2130–2137PubMed
71.
go back to reference Salerno A et al (2015) Effects of short-term manipulation of serum FFA concentrations on left ventricular energy metabolism and function in patients with heart failure: no association with circulating bio-markers of inflammation. Acta Diabetol 52(4):753–761PubMed Salerno A et al (2015) Effects of short-term manipulation of serum FFA concentrations on left ventricular energy metabolism and function in patients with heart failure: no association with circulating bio-markers of inflammation. Acta Diabetol 52(4):753–761PubMed
72.
go back to reference Martin MA et al (2000) Myocardial carnitine and carnitine palmitoyltransferase deficiencies in patients with severe heart failure. Biochim Biophys Acta 1502(3):330–336PubMed Martin MA et al (2000) Myocardial carnitine and carnitine palmitoyltransferase deficiencies in patients with severe heart failure. Biochim Biophys Acta 1502(3):330–336PubMed
73.
go back to reference Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171(8):2080–2090PubMedPubMedCentral Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171(8):2080–2090PubMedPubMedCentral
74.
go back to reference Wang Y et al (2013) Integrated proteomic and metabolomic analysis reveals the NADH-mediated TCA cycle and energy metabolism disorders based on a new model of chronic progressive heart failure. Mol BioSyst 9(12):3135–3145PubMed Wang Y et al (2013) Integrated proteomic and metabolomic analysis reveals the NADH-mediated TCA cycle and energy metabolism disorders based on a new model of chronic progressive heart failure. Mol BioSyst 9(12):3135–3145PubMed
75.
go back to reference Warren JS et al (2017) Metabolic reprogramming via PPARalpha signaling in cardiac hypertrophy and failure: from metabolomics to epigenetics. Am J Physiol Heart Circ Physiol 313(3):H584–H596PubMed Warren JS et al (2017) Metabolic reprogramming via PPARalpha signaling in cardiac hypertrophy and failure: from metabolomics to epigenetics. Am J Physiol Heart Circ Physiol 313(3):H584–H596PubMed
76.
go back to reference Kaimoto S et al (2017) Activation of PPAR-alpha in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am J Physiol Heart Circ Physiol 312(2):H305–H313PubMed Kaimoto S et al (2017) Activation of PPAR-alpha in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am J Physiol Heart Circ Physiol 312(2):H305–H313PubMed
77.
go back to reference Oka S et al (2015) Peroxisome proliferator activated receptor-alpha association with silent information regulator 1 suppresses cardiac fatty acid metabolism in the failing heart. Circ Heart Fail 8(6):1123–1132PubMedPubMedCentral Oka S et al (2015) Peroxisome proliferator activated receptor-alpha association with silent information regulator 1 suppresses cardiac fatty acid metabolism in the failing heart. Circ Heart Fail 8(6):1123–1132PubMedPubMedCentral
78.
go back to reference Morgan EE et al (2006) Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Am J Physiol Heart Circ Physiol 290(5):H1899–H1904PubMed Morgan EE et al (2006) Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Am J Physiol Heart Circ Physiol 290(5):H1899–H1904PubMed
79.
go back to reference Ogata T et al (2004) Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. J Am Coll Cardiol 43(8):1481–1488PubMed Ogata T et al (2004) Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. J Am Coll Cardiol 43(8):1481–1488PubMed
80.
go back to reference Brigadeau F et al (2007) The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol 49(6):408–415PubMed Brigadeau F et al (2007) The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol 49(6):408–415PubMed
81.
go back to reference Cheng L et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10(11):1245–1250PubMed Cheng L et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10(11):1245–1250PubMed
82.
go back to reference El AH et al (2013) The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metab 18(3):341–354 El AH et al (2013) The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metab 18(3):341–354
83.
go back to reference Sihag S et al (2009) PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 46(2):201–212PubMed Sihag S et al (2009) PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 46(2):201–212PubMed
84.
go back to reference Riehle C et al (2011) PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res 109(7):783–793PubMedPubMedCentral Riehle C et al (2011) PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res 109(7):783–793PubMedPubMedCentral
85.
go back to reference Lopaschuk GD, Ussher JR (2016) Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res 119(11):1173–1176PubMed Lopaschuk GD, Ussher JR (2016) Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res 119(11):1173–1176PubMed
87.
go back to reference Cotter DG, Schugar RC, Crawford PA (2013) Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 304(8):H1060–H1076PubMedPubMedCentral Cotter DG, Schugar RC, Crawford PA (2013) Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 304(8):H1060–H1076PubMedPubMedCentral
88.
go back to reference Yokokawa T et al (2016) Exhaled acetone concentration is related to hemodynamic severity in patients with non-ischemic chronic heart failure. Circ J 80(5):1178–1186PubMed Yokokawa T et al (2016) Exhaled acetone concentration is related to hemodynamic severity in patients with non-ischemic chronic heart failure. Circ J 80(5):1178–1186PubMed
89.
go back to reference Obokata M et al (2017) Association between circulating ketone bodies and worse outcomes in hemodialysis patients. J Am Heart Assoc 6(10):e006885PubMedPubMedCentral Obokata M et al (2017) Association between circulating ketone bodies and worse outcomes in hemodialysis patients. J Am Heart Assoc 6(10):e006885PubMedPubMedCentral
90.
go back to reference Taegtmeyer H (2016) Failing heart and starving brain: ketone bodies to the rescue. Circulation 134(4):265–266PubMed Taegtmeyer H (2016) Failing heart and starving brain: ketone bodies to the rescue. Circulation 134(4):265–266PubMed
91.
go back to reference Kolwicz SJ, Airhart S, Tian R (2016) Ketones step to the plate: a game changer for metabolic remodeling in heart failure? Circulation 133(8):689–691PubMedPubMedCentral Kolwicz SJ, Airhart S, Tian R (2016) Ketones step to the plate: a game changer for metabolic remodeling in heart failure? Circulation 133(8):689–691PubMedPubMedCentral
92.
go back to reference Wang W et al (2016) Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 311(5):H1160–H1169PubMed Wang W et al (2016) Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 311(5):H1160–H1169PubMed
93.
go back to reference Tanada Y et al (2015) Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci 137(1):20–27PubMed Tanada Y et al (2015) Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci 137(1):20–27PubMed
94.
go back to reference Takata M et al (2017) An exploratory study on the efficacy and safety of a BCAA preparation used in combination with cardiac rehabilitation for patients with chronic heart failure. BMC Cardiovasc Disord 17(1):205PubMedPubMedCentral Takata M et al (2017) An exploratory study on the efficacy and safety of a BCAA preparation used in combination with cardiac rehabilitation for patients with chronic heart failure. BMC Cardiovasc Disord 17(1):205PubMedPubMedCentral
95.
go back to reference Huynh K (2016) Heart failure: ketone bodies as fuel in heart failure. Nat Rev Cardiol 13(3):122–123PubMed Huynh K (2016) Heart failure: ketone bodies as fuel in heart failure. Nat Rev Cardiol 13(3):122–123PubMed
96.
go back to reference Biesele JJ, Tobioka M (1956) Mitochondria in living cells: an analysis of movements. J Biophys Biochem Cytol 2(4 Suppl):319–324PubMedPubMedCentral Biesele JJ, Tobioka M (1956) Mitochondria in living cells: an analysis of movements. J Biophys Biochem Cytol 2(4 Suppl):319–324PubMedPubMedCentral
97.
go back to reference Maneechote C et al (2017) Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 21(11):2643–2653PubMedPubMedCentral Maneechote C et al (2017) Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 21(11):2643–2653PubMedPubMedCentral
98.
go back to reference Nan J et al (2017) TNFR2 stimulation promotes mitochondrial fusion via Stat3- and NF-kB-dependent activation of OPA1 expression. Circ Res 121(4):392–410PubMedPubMedCentral Nan J et al (2017) TNFR2 stimulation promotes mitochondrial fusion via Stat3- and NF-kB-dependent activation of OPA1 expression. Circ Res 121(4):392–410PubMedPubMedCentral
99.
go back to reference Wai T et al (2015) Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350(6265):aad0116PubMed Wai T et al (2015) Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350(6265):aad0116PubMed
100.
go back to reference Nan J et al (2017) Molecular regulation of mitochondrial dynamics in cardiac disease. Biochim Biophys Acta 1864(7):1260–1273 Nan J et al (2017) Molecular regulation of mitochondrial dynamics in cardiac disease. Biochim Biophys Acta 1864(7):1260–1273
101.
go back to reference Martin OJ et al (2014) A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114(4):626–636PubMed Martin OJ et al (2014) A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114(4):626–636PubMed
102.
go back to reference Tsushima K et al (2018) Mitochondrial reactive oxygen species in Lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 122(1):58–73PubMed Tsushima K et al (2018) Mitochondrial reactive oxygen species in Lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 122(1):58–73PubMed
105.
go back to reference Li Q et al (2015) Multiple mass isotopomer tracing of acetyl-CoA metabolism in Langendorff-perfused rat hearts: channeling of acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. J Biol Chem 290(13):8121–8132PubMedPubMedCentral Li Q et al (2015) Multiple mass isotopomer tracing of acetyl-CoA metabolism in Langendorff-perfused rat hearts: channeling of acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. J Biol Chem 290(13):8121–8132PubMedPubMedCentral
106.
go back to reference Nadtochiy SM et al (2015) Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation. J Mol Cell Cardiol 88(1):64–72PubMedPubMedCentral Nadtochiy SM et al (2015) Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation. J Mol Cell Cardiol 88(1):64–72PubMedPubMedCentral
Metadata
Title
Metabolic remodeling of substrate utilization during heart failure progression
Authors
Liang Chen
Jiangping Song
Shengshou Hu
Publication date
01-01-2019
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 1/2019
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-018-9713-0

Other articles of this Issue 1/2019

Heart Failure Reviews 1/2019 Go to the issue