Skip to main content
Top
Published in: Clinical Pharmacokinetics 5/2020

01-05-2020 | Imipenem | Review Article

Clinical Pharmacokinetics and Pharmacodynamics of Imipenem–Cilastatin/Relebactam Combination Therapy

Author: Matthew W. McCarthy

Published in: Clinical Pharmacokinetics | Issue 5/2020

Login to get access

Abstract

On 16 July, 2019, the US Food and Drug Administration approved imipenem–cilastatin/relebactam (Recarbrio™) for the treatment of adults with complicated urinary tract infections and complicated intra-abdominal infections. This decision was based on substantial clinical and pre-clinical data, including rigorous pharmacokinetic and pharmacodynamic work, and is an important step forward in the management of these debilitating conditions. This article provides an overview of the body of research associated with imipenem–cilastatin/relebactam, beginning with an examination of the fundamental underpinnings of the pharmacokinetic/pharmacodynamic index. This is followed by the pharmacokinetic/pharmacodynamic work that led to the approval of this novel drug combination, including data derived from checkerboard and hollow fiber infection studies, as well as large, multi-center, phase III clinical trials known as RESTORE-IMI 1 and RESTORE-IMI 2. The article also explores how this important new antibiotic may be used to treat other infections in the years to come, including hospital-acquired bacterial pneumonia and ventilator-associated pneumonia attributed to imipenem-non-susceptible pathogens and certain atypical mycobacterial infections.
Literature
1.
go back to reference Balabanian G, Rose M, Manning N, Landman D, Quale J. Effect of porins and blaKPC expression on activity of imipenem with relebactam in Klebsiella pneumoniae: can antibiotic combinations overcome resistance? Microb Drug Resist. 2018;24(7):877–81.PubMed Balabanian G, Rose M, Manning N, Landman D, Quale J. Effect of porins and blaKPC expression on activity of imipenem with relebactam in Klebsiella pneumoniae: can antibiotic combinations overcome resistance? Microb Drug Resist. 2018;24(7):877–81.PubMed
2.
go back to reference Bassetti M, Righi E. Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbecks Arch Surg. 2015;400(2):153–65.PubMed Bassetti M, Righi E. Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbecks Arch Surg. 2015;400(2):153–65.PubMed
3.
go back to reference Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L, Shields RK, et al. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother. 2014;58(8):4443–51.PubMedPubMedCentral Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L, Shields RK, et al. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother. 2014;58(8):4443–51.PubMedPubMedCentral
4.
go back to reference Senchyna F, Gaur RL, Sandlund J, Truong C, Tremintin G, Kültz D, et al. Diversity of resistance mechanisms in carbapenem-resistant Enterobacteriaceae at a health care system in Northern California, from 2013 to 2016. Diagn Microbiol Infect Dis. 2019;93(3):250–7.PubMed Senchyna F, Gaur RL, Sandlund J, Truong C, Tremintin G, Kültz D, et al. Diversity of resistance mechanisms in carbapenem-resistant Enterobacteriaceae at a health care system in Northern California, from 2013 to 2016. Diagn Microbiol Infect Dis. 2019;93(3):250–7.PubMed
5.
go back to reference Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019;10:80.PubMedPubMedCentral Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019;10:80.PubMedPubMedCentral
6.
go back to reference Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68(10):2286–90.PubMed Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68(10):2286–90.PubMed
7.
go back to reference Bocharova Y, Savinova T, Shagin DA, Shelenkov AA, Mayanskiy NA, Chebotar IV. Inactivation of the oprD porin gene by a novel insertion sequence ISPa195 associated with large deletion in a carbapenem-resistant Pseudomonas aeruginosa clinical isolate. J Glob Antimicrob Resist. 2019;17:309–11.PubMed Bocharova Y, Savinova T, Shagin DA, Shelenkov AA, Mayanskiy NA, Chebotar IV. Inactivation of the oprD porin gene by a novel insertion sequence ISPa195 associated with large deletion in a carbapenem-resistant Pseudomonas aeruginosa clinical isolate. J Glob Antimicrob Resist. 2019;17:309–11.PubMed
8.
go back to reference Chetri S, Bhowmik D, Paul D, Pandey P, Chanda DD, Chakravarty A, et al. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol. 2019;19(1):210.PubMedPubMedCentral Chetri S, Bhowmik D, Paul D, Pandey P, Chanda DD, Chakravarty A, et al. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol. 2019;19(1):210.PubMedPubMedCentral
9.
go back to reference Barnes MD, Bethel CR, Alsop J, Becka SA, Rutter JD, Papp-Wallace KM, et al. Inactivation of the Pseudomonas-derived cephalosporinase-3 (PDC-3) by relebactam. Antimicrob Agents Chemother. 2018;62(5):e02406.PubMedPubMedCentral Barnes MD, Bethel CR, Alsop J, Becka SA, Rutter JD, Papp-Wallace KM, et al. Inactivation of the Pseudomonas-derived cephalosporinase-3 (PDC-3) by relebactam. Antimicrob Agents Chemother. 2018;62(5):e02406.PubMedPubMedCentral
10.
go back to reference Bassetti M, Vena A, Castaldo N, Righi E, Peghin M. New antibiotics for ventilator-associated pneumonia. Curr Opin Infect Dis. 2018;31(2):177–86.PubMed Bassetti M, Vena A, Castaldo N, Righi E, Peghin M. New antibiotics for ventilator-associated pneumonia. Curr Opin Infect Dis. 2018;31(2):177–86.PubMed
11.
go back to reference Figuera A, Rivero N, Pajuelo F, Font P, Leyra F, de La Cámara R, et al. Comparative study of piperacillin/tazobactam versus imipenem/cilastatin in febrile neutropenia (1994–1996). Med Clin (Barc). 2001;116(16):610–1. Figuera A, Rivero N, Pajuelo F, Font P, Leyra F, de La Cámara R, et al. Comparative study of piperacillin/tazobactam versus imipenem/cilastatin in febrile neutropenia (1994–1996). Med Clin (Barc). 2001;116(16):610–1.
12.
go back to reference Cumberland NS, Jones KP. Hospital acquired native valve endocarditis caused by Acinetobacter calcoaceticus and treated with imipenem/cilastin. J R Army Med Corps. 1987;133(3):156–8.PubMed Cumberland NS, Jones KP. Hospital acquired native valve endocarditis caused by Acinetobacter calcoaceticus and treated with imipenem/cilastin. J R Army Med Corps. 1987;133(3):156–8.PubMed
13.
go back to reference Dehne MG, Kroh UF. Imipenem/cilastin dosage during acute renal failure and hemofiltration. Intensive Care Med. 1995;21(10):863.PubMed Dehne MG, Kroh UF. Imipenem/cilastin dosage during acute renal failure and hemofiltration. Intensive Care Med. 1995;21(10):863.PubMed
14.
go back to reference Faber MD, del Busto R, Cruz C, Mezger E. Response of Weeksella virosa peritonitis to imipenem/cilastin. Adv Perit Dial. 1991;7:133–4.PubMed Faber MD, del Busto R, Cruz C, Mezger E. Response of Weeksella virosa peritonitis to imipenem/cilastin. Adv Perit Dial. 1991;7:133–4.PubMed
15.
go back to reference Lucasti C, Vasile L, Sandesc D, Venskutonis D, McLeroth P, Lala M, et al. Phase 2, dose-ranging study of relebactam with imipenem–cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016;60(10):6234–43.PubMedPubMedCentral Lucasti C, Vasile L, Sandesc D, Venskutonis D, McLeroth P, Lala M, et al. Phase 2, dose-ranging study of relebactam with imipenem–cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016;60(10):6234–43.PubMedPubMedCentral
16.
go back to reference Snydman DR, Jacobus NV, McDermott LA. In vitro evaluation of the activity of imipenem–relebactam against 451 recent clinical isolates of Bacteroides group and related species. Antimicrob Agents Chemother. 2016;60(10):6393–7.PubMedPubMedCentral Snydman DR, Jacobus NV, McDermott LA. In vitro evaluation of the activity of imipenem–relebactam against 451 recent clinical isolates of Bacteroides group and related species. Antimicrob Agents Chemother. 2016;60(10):6393–7.PubMedPubMedCentral
17.
go back to reference Mavridou E, Melchers RJ, van Mil AC, Mangin E, Motyl MR, Mouton JW. Pharmacodynamics of imipenem in combination with β-lactamase inhibitor MK7655 in a murine thigh model. Antimicrob Agents Chemother. 2015;59(2):790–5.PubMedPubMedCentral Mavridou E, Melchers RJ, van Mil AC, Mangin E, Motyl MR, Mouton JW. Pharmacodynamics of imipenem in combination with β-lactamase inhibitor MK7655 in a murine thigh model. Antimicrob Agents Chemother. 2015;59(2):790–5.PubMedPubMedCentral
18.
go back to reference Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44(1):79–86.PubMed Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44(1):79–86.PubMed
19.
go back to reference Falagas ME, Mavroudis AD, Vardakas KZ. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect? Expert Rev Antiinfect Ther. 2016;14(8):747–63. Falagas ME, Mavroudis AD, Vardakas KZ. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect? Expert Rev Antiinfect Ther. 2016;14(8):747–63.
20.
go back to reference Tam VH, Nikolaou M. A novel approach to pharmacodynamic assessment of antimicrobial agents: new insights to dosing regimen design. PLoS Comput Biol. 2011;7(1):e1001043.PubMedPubMedCentral Tam VH, Nikolaou M. A novel approach to pharmacodynamic assessment of antimicrobial agents: new insights to dosing regimen design. PLoS Comput Biol. 2011;7(1):e1001043.PubMedPubMedCentral
21.
go back to reference Bhagunde P, Chang KT, Hirsch EB, Ledesma KR, Nikolaou M, Tam VH. Novel modeling framework to guide design of optimal dosing strategies for β-lactamase inhibitors. Antimicrob Agents Chemother. 2012;56(5):2237–40.PubMedPubMedCentral Bhagunde P, Chang KT, Hirsch EB, Ledesma KR, Nikolaou M, Tam VH. Novel modeling framework to guide design of optimal dosing strategies for β-lactamase inhibitors. Antimicrob Agents Chemother. 2012;56(5):2237–40.PubMedPubMedCentral
22.
go back to reference Haile PA, Casillas LN, Bury MJ, Mehlmann JF, Singhaus R, Charnley AK, et al. Identification of quinoline-based RIP2 kinase inhibitors with an improved therapeutic index to the hERG ion channel. ACS Med Chem Lett. 2018;9(10):1039–44.PubMedPubMedCentral Haile PA, Casillas LN, Bury MJ, Mehlmann JF, Singhaus R, Charnley AK, et al. Identification of quinoline-based RIP2 kinase inhibitors with an improved therapeutic index to the hERG ion channel. ACS Med Chem Lett. 2018;9(10):1039–44.PubMedPubMedCentral
23.
go back to reference Choi JH, Seo H, Park JH, Son JH, Kim DI, Kim J, et al. Poly(d, l-lactic-co-glycolic acid) (PLGA) hollow fiber with segmental switchability of its chains sensitive to NIR light for synergistic cancer therapy. Colloids Surf B Biointerfaces. 2019;173:258–65.PubMed Choi JH, Seo H, Park JH, Son JH, Kim DI, Kim J, et al. Poly(d, l-lactic-co-glycolic acid) (PLGA) hollow fiber with segmental switchability of its chains sensitive to NIR light for synergistic cancer therapy. Colloids Surf B Biointerfaces. 2019;173:258–65.PubMed
24.
go back to reference Kloprogge F, Hammond R, Kipper K, Gillespie SH, Della Pasqua O. Mimicking in vivo exposures to drug combinations in vitro: anti-tuberculosis drugs in lung lesions and the hollow fiber model of infection. Sci Rep. 2019;9(1):13228.PubMedPubMedCentral Kloprogge F, Hammond R, Kipper K, Gillespie SH, Della Pasqua O. Mimicking in vivo exposures to drug combinations in vitro: anti-tuberculosis drugs in lung lesions and the hollow fiber model of infection. Sci Rep. 2019;9(1):13228.PubMedPubMedCentral
25.
go back to reference Lee W, Cai Y, Lim TP, Teo J, Chua SC, Kwa AL. In vitro pharmacodynamics and PK/PD in animals. Adv Exp Med Biol. 2019;1145:105–16.PubMed Lee W, Cai Y, Lim TP, Teo J, Chua SC, Kwa AL. In vitro pharmacodynamics and PK/PD in animals. Adv Exp Med Biol. 2019;1145:105–16.PubMed
26.
go back to reference Wu J, Racine F, Wismer MK, Young K, Carr DM, Xiao JC, et al. Exploring the pharmacokinetic/pharmacodynamic relationship of relebactam (MK-7655) in combination with imipenem in a hollow-fiber infection model. Antimicrob Agents Chemother. 2018;62(5):e02323.PubMedPubMedCentral Wu J, Racine F, Wismer MK, Young K, Carr DM, Xiao JC, et al. Exploring the pharmacokinetic/pharmacodynamic relationship of relebactam (MK-7655) in combination with imipenem in a hollow-fiber infection model. Antimicrob Agents Chemother. 2018;62(5):e02323.PubMedPubMedCentral
27.
go back to reference Motsch J, de Oliveira CM, Stus V, Köksal I, Lyulko O, Boucher HW, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus omipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz530(Epub ahead of print).CrossRefPubMedCentral Motsch J, de Oliveira CM, Stus V, Köksal I, Lyulko O, Boucher HW, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus omipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2019. https://​doi.​org/​10.​1093/​cid/​ciz530(Epub ahead of print).CrossRefPubMedCentral
28.
go back to reference Sims M, Mariyanovski V, McLeroth P, Akers W, Lee YC, Brown ML, et al. Prospective, randomized, double-blind, phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother. 2017;72(9):2616–26.PubMed Sims M, Mariyanovski V, McLeroth P, Akers W, Lee YC, Brown ML, et al. Prospective, randomized, double-blind, phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother. 2017;72(9):2616–26.PubMed
29.
go back to reference Lob SH, Karlowsky JA, Young K, Motyl MR, Hawser S, Kothari ND, et al. Activity of imipenem/relebactam against MDR Pseudomonas aeruginosa in Europe: SMART 2015-17. J Antimicrob Chemother. 2019;74(8):2284–8.PubMed Lob SH, Karlowsky JA, Young K, Motyl MR, Hawser S, Kothari ND, et al. Activity of imipenem/relebactam against MDR Pseudomonas aeruginosa in Europe: SMART 2015-17. J Antimicrob Chemother. 2019;74(8):2284–8.PubMed
30.
go back to reference Lob SH, Hackel MA, Kazmierczak KM, Young K, Motyl MR, Karlowsky JA, et al. Activity of imipenem–relebactam against Gram-negative ESKAPE pathogens isolated by clinical laboratories in the United States in 2015 (results from the SMART Global Surveillance Program). Antimicrob Agents Chemother. 2017;61(6):e02209.PubMedPubMedCentral Lob SH, Hackel MA, Kazmierczak KM, Young K, Motyl MR, Karlowsky JA, et al. Activity of imipenem–relebactam against Gram-negative ESKAPE pathogens isolated by clinical laboratories in the United States in 2015 (results from the SMART Global Surveillance Program). Antimicrob Agents Chemother. 2017;61(6):e02209.PubMedPubMedCentral
31.
go back to reference Bhagunde P, Zhang Z, Racine F, Carr D, Wu J, Young K, et al. A translational pharmacokinetic/pharmacodynamic model to characterize bacterial kill in the presence of imipenem–relebactam. Int J Infect Dis. 2019;89:55–61.PubMed Bhagunde P, Zhang Z, Racine F, Carr D, Wu J, Young K, et al. A translational pharmacokinetic/pharmacodynamic model to characterize bacterial kill in the presence of imipenem–relebactam. Int J Infect Dis. 2019;89:55–61.PubMed
32.
go back to reference Bhagunde P, Patel P, Lala M, Watson K, Copalu W, Xu M, et al. Population pharmacokinetic analysis for imipenem–relebactam in healthy volunteers and patients with bacterial infections. CPT Pharmacomet Syst Pharmacol. 2019;8(10):748–58. Bhagunde P, Patel P, Lala M, Watson K, Copalu W, Xu M, et al. Population pharmacokinetic analysis for imipenem–relebactam in healthy volunteers and patients with bacterial infections. CPT Pharmacomet Syst Pharmacol. 2019;8(10):748–58.
33.
go back to reference Papp-Wallace KM, Barnes MD, Alsop J, Taracila MA, Bethel CR, Becka SA, et al. Relebactam is a potent inhibitor of the KPC-2 β-lactamase and restores imipenem susceptibility in KPC-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62(6):e00174.PubMedPubMedCentral Papp-Wallace KM, Barnes MD, Alsop J, Taracila MA, Bethel CR, Becka SA, et al. Relebactam is a potent inhibitor of the KPC-2 β-lactamase and restores imipenem susceptibility in KPC-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62(6):e00174.PubMedPubMedCentral
34.
go back to reference Powles MA, Galgoci A, Misura A, Colwell L, Dingley KH, Tang W, et al. Efficacy of relebactam (MK-7655) in combination with imipenem–cilastatin in murine infection models. Antimicrob Agents Chemother. 2018;62(8):e02577.PubMedPubMedCentral Powles MA, Galgoci A, Misura A, Colwell L, Dingley KH, Tang W, et al. Efficacy of relebactam (MK-7655) in combination with imipenem–cilastatin in murine infection models. Antimicrob Agents Chemother. 2018;62(8):e02577.PubMedPubMedCentral
35.
go back to reference Probst-Kepper M, Geginat G. New antibiotics for treatment of highly resistant Gram-negative bacteria. Anasthesiol Intensivmed Notfallmed Schmerzther. 2018;53(7–08):529–42.PubMed Probst-Kepper M, Geginat G. New antibiotics for treatment of highly resistant Gram-negative bacteria. Anasthesiol Intensivmed Notfallmed Schmerzther. 2018;53(7–08):529–42.PubMed
36.
go back to reference Rhee EG, Rizk ML, Calder N, Nefliu M, Warrington SJ, Schwartz MS, et al. Pharmacokinetics, safety, and tolerability of single and multiple doses of relebactam, a β-lactamase inhibitor, in combination with imipenem and cilastatin in healthy participants. Antimicrob Agents Chemother. 2018;62(9):e00280.PubMedPubMedCentral Rhee EG, Rizk ML, Calder N, Nefliu M, Warrington SJ, Schwartz MS, et al. Pharmacokinetics, safety, and tolerability of single and multiple doses of relebactam, a β-lactamase inhibitor, in combination with imipenem and cilastatin in healthy participants. Antimicrob Agents Chemother. 2018;62(9):e00280.PubMedPubMedCentral
37.
go back to reference Nguyen L, Garcia J, Gruenberg K, MacDougall C. Multidrug-resistant Pseudomonas infections: hard to treat, but hope on the horizon? Curr Infect Dis Rep. 2018;20(8):23.PubMed Nguyen L, Garcia J, Gruenberg K, MacDougall C. Multidrug-resistant Pseudomonas infections: hard to treat, but hope on the horizon? Curr Infect Dis Rep. 2018;20(8):23.PubMed
38.
go back to reference Horner C, Mushtaq S, Livermore DM, Committee BRSS. Potentiation of imipenem by relebactam for Pseudomonas aeruginosa from bacteraemia and respiratory infections. J Antimicrob Chemother. 2019;74(7):1940–4.PubMed Horner C, Mushtaq S, Livermore DM, Committee BRSS. Potentiation of imipenem by relebactam for Pseudomonas aeruginosa from bacteraemia and respiratory infections. J Antimicrob Chemother. 2019;74(7):1940–4.PubMed
39.
go back to reference Karaiskos I, Galani I, Souli M, Giamarellou H. Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin Drug Metab Toxicol. 2019;15(2):133–49.PubMed Karaiskos I, Galani I, Souli M, Giamarellou H. Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin Drug Metab Toxicol. 2019;15(2):133–49.PubMed
40.
go back to reference Crass RL, Pai MP. Pharmacokinetics and pharmacodynamics of β-lactamase inhibitors. Pharmacotherapy. 2019;39(2):182–95.PubMed Crass RL, Pai MP. Pharmacokinetics and pharmacodynamics of β-lactamase inhibitors. Pharmacotherapy. 2019;39(2):182–95.PubMed
41.
go back to reference El Hafi B, Rasheed SS, Abou Fayad AG, Araj GF, Matar GM. Evaluating the efficacies of carbapenem/β-lactamase inhibitors against carbapenem-resistant Gram-negative bacteria. Front Microbiol. 2019;10:933.PubMedPubMedCentral El Hafi B, Rasheed SS, Abou Fayad AG, Araj GF, Matar GM. Evaluating the efficacies of carbapenem/β-lactamase inhibitors against carbapenem-resistant Gram-negative bacteria. Front Microbiol. 2019;10:933.PubMedPubMedCentral
42.
go back to reference Rizk ML, Rhee EG, Jumes PA, Gotfried MH, Zhao T, Mangin E, et al. Intrapulmonary pharmacokinetics of relebactam, a novel β-lactamase inhibitor, dosed in combination with imipenem–cilastatin in healthy subjects. Antimicrob Agents Chemother. 2018;62(3):e01411.PubMedPubMedCentral Rizk ML, Rhee EG, Jumes PA, Gotfried MH, Zhao T, Mangin E, et al. Intrapulmonary pharmacokinetics of relebactam, a novel β-lactamase inhibitor, dosed in combination with imipenem–cilastatin in healthy subjects. Antimicrob Agents Chemother. 2018;62(3):e01411.PubMedPubMedCentral
43.
go back to reference Gomez-Simmonds A, Stump S, Giddins MJ, Annavajhala MK, Uhlemann AC. Clonal background, resistance gene profile, and porin gene mutations modulate. Antimicrob Agents Chemother. 2018;62(8):e00573.PubMedPubMedCentral Gomez-Simmonds A, Stump S, Giddins MJ, Annavajhala MK, Uhlemann AC. Clonal background, resistance gene profile, and porin gene mutations modulate. Antimicrob Agents Chemother. 2018;62(8):e00573.PubMedPubMedCentral
44.
go back to reference Dubée V, Bernut A, Cortes M, Lesne T, Dorchene D, Lefebvre AL, et al. β-Lactamase inhibition by avibactam in Mycobacterium abscessus. J Antimicrob Chemother. 2015;70(4):1051–8.PubMed Dubée V, Bernut A, Cortes M, Lesne T, Dorchene D, Lefebvre AL, et al. β-Lactamase inhibition by avibactam in Mycobacterium abscessus. J Antimicrob Chemother. 2015;70(4):1051–8.PubMed
45.
go back to reference Lefebvre AL, Dubée V, Cortes M, Dorchêne D, Arthur M, Mainardi JL. Bactericidal and intracellular activity of β-lactams against Mycobacterium abscessus. J Antimicrob Chemother. 2016;71(6):1556–63.PubMed Lefebvre AL, Dubée V, Cortes M, Dorchêne D, Arthur M, Mainardi JL. Bactericidal and intracellular activity of β-lactams against Mycobacterium abscessus. J Antimicrob Chemother. 2016;71(6):1556–63.PubMed
46.
go back to reference Lefebvre AL, Le Moigne V, Bernut A, Veckerlé C, Compain F, Herrmann JL, et al. Inhibition of the β-lactamase Bla. Antimicrob Agents Chemother. 2017;61(4):e02440.PubMedPubMedCentral Lefebvre AL, Le Moigne V, Bernut A, Veckerlé C, Compain F, Herrmann JL, et al. Inhibition of the β-lactamase Bla. Antimicrob Agents Chemother. 2017;61(4):e02440.PubMedPubMedCentral
47.
go back to reference Le Run E, Atze H, Arthur M, Mainardi JL. Impact of relebactam-mediated inhibition of Mycobacterium abscessus BlaMab β-lactamase on the in vitro and intracellular efficacy of imipenem. J Antimicrob Chemother. 2020;75(2):379–83.PubMed Le Run E, Atze H, Arthur M, Mainardi JL. Impact of relebactam-mediated inhibition of Mycobacterium abscessus BlaMab β-lactamase on the in vitro and intracellular efficacy of imipenem. J Antimicrob Chemother. 2020;75(2):379–83.PubMed
48.
go back to reference Baraldi E, Lindahl O, Savic M, Findlay D, Årdal C. Antibiotic pipeline coordinators. J Law Med Ethics. 2018;46(1_Suppl):25–31.PubMed Baraldi E, Lindahl O, Savic M, Findlay D, Årdal C. Antibiotic pipeline coordinators. J Law Med Ethics. 2018;46(1_Suppl):25–31.PubMed
49.
go back to reference Bosso JA. The antimicrobial armamentarium: evaluating current and future treatment options. Pharmacotherapy. 2005;25(10 Pt 2):55S–62S.PubMed Bosso JA. The antimicrobial armamentarium: evaluating current and future treatment options. Pharmacotherapy. 2005;25(10 Pt 2):55S–62S.PubMed
50.
go back to reference Bush K. Investigational agents for the treatment of Gram-negative bacterial infections: a reality check. ACS Infect Dis. 2015;1(11):509–11.PubMed Bush K. Investigational agents for the treatment of Gram-negative bacterial infections: a reality check. ACS Infect Dis. 2015;1(11):509–11.PubMed
51.
go back to reference Asempa TE, Nicolau DP, Kuti JL. Activity of imipenem–relebactam alone or in combination with amikacin or colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63(9):e00997.PubMedPubMedCentral Asempa TE, Nicolau DP, Kuti JL. Activity of imipenem–relebactam alone or in combination with amikacin or colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63(9):e00997.PubMedPubMedCentral
52.
go back to reference Baeder DY, Yu G, Hozé N, Rolff J, Regoes RR. Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models. Philos Trans R Soc Lond B Biol Sci. 2016;371(1695):20150294.PubMedPubMedCentral Baeder DY, Yu G, Hozé N, Rolff J, Regoes RR. Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models. Philos Trans R Soc Lond B Biol Sci. 2016;371(1695):20150294.PubMedPubMedCentral
53.
go back to reference Breidenstein EB, Courvalin P, Meziane-Cherif D. Antimicrobial activity of plectasin NZ2114 in combination with cell wall targeting antibiotics against VanA-type Enterococcus faecalis. Microb Drug Resist. 2015;21(4):373–9.PubMed Breidenstein EB, Courvalin P, Meziane-Cherif D. Antimicrobial activity of plectasin NZ2114 in combination with cell wall targeting antibiotics against VanA-type Enterococcus faecalis. Microb Drug Resist. 2015;21(4):373–9.PubMed
54.
go back to reference Bader MS, Loeb M, Leto D, Brooks AA. Treatment of urinary tract infections in the era of antimicrobial resistance and new antimicrobial agents. Postgrad Med. 2019;24:1–17. Bader MS, Loeb M, Leto D, Brooks AA. Treatment of urinary tract infections in the era of antimicrobial resistance and new antimicrobial agents. Postgrad Med. 2019;24:1–17.
55.
go back to reference Chen L, Liang X, Jiang J, Li X, Li Y. Carbapenems vs tigecycline for the treatment of complicated intra-abdominal infections: a Bayesian network meta-analysis of randomized clinical trials. Medicine (Baltimore). 2019;98(40):e17436.PubMedPubMedCentral Chen L, Liang X, Jiang J, Li X, Li Y. Carbapenems vs tigecycline for the treatment of complicated intra-abdominal infections: a Bayesian network meta-analysis of randomized clinical trials. Medicine (Baltimore). 2019;98(40):e17436.PubMedPubMedCentral
56.
go back to reference Karlowsky JA, Lob SH, Young K, Motyl MR, Sahm DF. Activity of imipenem/relebactam against Pseudomonas aeruginosa with antimicrobial-resistant phenotypes from seven global regions: SMART 2015–2016. J Glob Antimicrob Resist. 2018;15:140–7.PubMed Karlowsky JA, Lob SH, Young K, Motyl MR, Sahm DF. Activity of imipenem/relebactam against Pseudomonas aeruginosa with antimicrobial-resistant phenotypes from seven global regions: SMART 2015–2016. J Glob Antimicrob Resist. 2018;15:140–7.PubMed
57.
go back to reference Karlowsky JA, Lob SH, Kazmierczak KM, Hawser SP, Magnet S, Young K, et al. In vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens isolated in 17 European countries: 2015 SMART surveillance programme. J Antimicrob Chemother. 2018;73(7):1872–9.PubMed Karlowsky JA, Lob SH, Kazmierczak KM, Hawser SP, Magnet S, Young K, et al. In vitro activity of imipenem/relebactam against Gram-negative ESKAPE pathogens isolated in 17 European countries: 2015 SMART surveillance programme. J Antimicrob Chemother. 2018;73(7):1872–9.PubMed
Metadata
Title
Clinical Pharmacokinetics and Pharmacodynamics of Imipenem–Cilastatin/Relebactam Combination Therapy
Author
Matthew W. McCarthy
Publication date
01-05-2020
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 5/2020
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-020-00865-3

Other articles of this Issue 5/2020

Clinical Pharmacokinetics 5/2020 Go to the issue