Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2024

Open Access 01-12-2024 | Idiopathic Pulmonary Fibrosis | Research

Mendelian randomisation highlights type 1 diabetes as a causal determinant of idiopathic pulmonary fibrosis

Authors: Xinlai Ma, Yang Zhang, Fan Wu, Xue Liu, Wei Zhang

Published in: Diabetology & Metabolic Syndrome | Issue 1/2024

Login to get access

Abstract

Background

It is unclear whether type 1 diabetes (T1D) causes idiopathic pulmonary fibrosis (IPF), despite observational research linking the two conditions. Therefore, our study aimed to examine the causal link between T1D and the likelihood of IPF by employing the Mendelian randomization (MR) technique of two-sample Mendelian randomization.

Methods

Using data from two genome-wide association studies (GWAS) with European ancestry, we performed a two-sample MR analysis. These studies involved 18,856 individuals (6,683 cases and 12,173 controls) for T1D and 198,014 individuals (10,028 cases and 196,986 controls) for IPF. We utilized inverse-variance weighted (IVW) analysis as our main approach to determine the association between the risk of IPF and T1D. To evaluate multidirectionality, the MR-Egger regression test was utilized, whereas heterogeneity was assessed using Cochran’s Q test. Additionally, a leave-one-out analysis was performed to assess the reliability of the results.

Results

38 SNPs linked to T1D were employed as instrumental variables (IVs). Multiple MR methods yielded consistent results, and the MR analysis reveals a significant and positive causal impact of T1D on IPF (MR-IVW, odds ratio [OR] = 1.128, 95% confidence interval [CI] 1.034–1.230; P = 0.006). The limitations of the study include the lack of data from non-European groups and the inability to rule out the possibility of small links. Larger MR experiments are necessary to investigate minute impacts.

Conclusions

The results of this study provide evidence that T1D contributes to the onset and advancement of IPF. This finding may provide important insights into the cause of IPF and possible treatments in the future.
Appendix
Available only for authorised users
Literature
1.
go back to reference Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–52.CrossRefPubMed Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–52.CrossRefPubMed
2.
3.
4.
go back to reference Raghu G, Amatto VC, Behr J, Stowasser S. Comorbidities in idiopathic pulmonary fibrosis patients: a systematic literature review. Eur Respir J. 2015;46(4):1113–30.CrossRefPubMed Raghu G, Amatto VC, Behr J, Stowasser S. Comorbidities in idiopathic pulmonary fibrosis patients: a systematic literature review. Eur Respir J. 2015;46(4):1113–30.CrossRefPubMed
5.
go back to reference Oldham JM, Collard HR. Comorbid conditions in Idiopathic Pulmonary Fibrosis: Recognition and Management. Front Med (Lausanne). 2017;4:123.CrossRefPubMed Oldham JM, Collard HR. Comorbid conditions in Idiopathic Pulmonary Fibrosis: Recognition and Management. Front Med (Lausanne). 2017;4:123.CrossRefPubMed
6.
go back to reference Enomoto T, Usuki J, Azuma A, Nakagawa T, Kudoh S. Diabetes mellitus may increase risk for idiopathic pulmonary fibrosis. Chest. 2003;123(6):2007–11.CrossRefPubMed Enomoto T, Usuki J, Azuma A, Nakagawa T, Kudoh S. Diabetes mellitus may increase risk for idiopathic pulmonary fibrosis. Chest. 2003;123(6):2007–11.CrossRefPubMed
7.
go back to reference Kim YJ, Park JW, Kyung SY, et al. Clinical characteristics of idiopathic pulmonary fibrosis patients with diabetes mellitus: the national survey in Korea from 2003 to 2007. J Korean Med Sci. 2012;27(7):756–60.CrossRefPubMedPubMedCentral Kim YJ, Park JW, Kyung SY, et al. Clinical characteristics of idiopathic pulmonary fibrosis patients with diabetes mellitus: the national survey in Korea from 2003 to 2007. J Korean Med Sci. 2012;27(7):756–60.CrossRefPubMedPubMedCentral
8.
go back to reference Liu M, Luo P, Liu L, Wei X, Bai X, Li J, Wu L, Luo M. Immune-mediated inflammatory diseases and leukocyte telomere length: a mendelian randomization study. Front Genet. 2023;14:1129247.CrossRefPubMedPubMedCentral Liu M, Luo P, Liu L, Wei X, Bai X, Li J, Wu L, Luo M. Immune-mediated inflammatory diseases and leukocyte telomere length: a mendelian randomization study. Front Genet. 2023;14:1129247.CrossRefPubMedPubMedCentral
9.
go back to reference Jiang Y, Chen R, Xu S, Ding Y, Zhang M, Bao M, He B, Li S. Endocrine and metabolic factors and the risk of idiopathic pulmonary fibrosis: a mendelian randomization study. Front Endocrinol (Lausanne). 2024;14:1321576.CrossRefPubMed Jiang Y, Chen R, Xu S, Ding Y, Zhang M, Bao M, He B, Li S. Endocrine and metabolic factors and the risk of idiopathic pulmonary fibrosis: a mendelian randomization study. Front Endocrinol (Lausanne). 2024;14:1321576.CrossRefPubMed
10.
go back to reference Bothwell LE, Podolsky SH. The emergence of the Randomized, Controlled Trial. N Engl J Med. 2016;375(6):501–4.CrossRefPubMed Bothwell LE, Podolsky SH. The emergence of the Randomized, Controlled Trial. N Engl J Med. 2016;375(6):501–4.CrossRefPubMed
11.
go back to reference Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an Approach to assess causality using Observational Data. J Am Soc Nephrol. 2016;27(11):3253–65.CrossRefPubMedPubMedCentral Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an Approach to assess causality using Observational Data. J Am Soc Nephrol. 2016;27(11):3253–65.CrossRefPubMedPubMedCentral
12.
go back to reference Smith GD, Ebrahim S. Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.CrossRefPubMed Smith GD, Ebrahim S. Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.CrossRefPubMed
13.
go back to reference Burgess S, Butterworth A, Malarstig A, Thompson SG. Use of mendelian randomisation to assess potential benefit of clinical intervention. BMJ. 2012;345:e7325.CrossRefPubMed Burgess S, Butterworth A, Malarstig A, Thompson SG. Use of mendelian randomisation to assess potential benefit of clinical intervention. BMJ. 2012;345:e7325.CrossRefPubMed
14.
go back to reference Dhindsa RS, Mattsson J, Nag A, et al. Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis. Commun Biol. 2021;4(1):392.CrossRefPubMedPubMedCentral Dhindsa RS, Mattsson J, Nag A, et al. Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis. Commun Biol. 2021;4(1):392.CrossRefPubMedPubMedCentral
15.
go back to reference Chen Z, Boehnke M, Wen X, Mukherjee B. Revisiting the genome-wide significance threshold for common variant GWAS. G3 (Bethesda). 2021;11(2):jkaa056.CrossRefPubMed Chen Z, Boehnke M, Wen X, Mukherjee B. Revisiting the genome-wide significance threshold for common variant GWAS. G3 (Bethesda). 2021;11(2):jkaa056.CrossRefPubMed
16.
go back to reference Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol. 2011;40(3):755–64.CrossRefPubMed Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol. 2011;40(3):755–64.CrossRefPubMed
17.
go back to reference Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, Davey Smith G, Sterne JA. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res. 2012;21(3):223–42.CrossRefPubMedPubMedCentral Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, Davey Smith G, Sterne JA. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res. 2012;21(3):223–42.CrossRefPubMedPubMedCentral
18.
go back to reference Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.CrossRefPubMedPubMedCentral Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.CrossRefPubMedPubMedCentral
19.
go back to reference Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.CrossRefPubMedPubMedCentral Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.CrossRefPubMedPubMedCentral
20.
go back to reference Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.CrossRefPubMedPubMedCentral Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.CrossRefPubMedPubMedCentral
21.
go back to reference Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.CrossRefPubMedPubMedCentral Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.CrossRefPubMedPubMedCentral
22.
go back to reference Zhu G, Zhou S, Xu Y, Gao R, Li H, Zhai B, Liu X, He Y, Wang X, Han G, Su W, Wang R. Mendelian randomization study on the causal effects of omega-3 fatty acids on rheumatoid arthritis. Clin Rheumatol. 2022;41(5):1305–12.CrossRefPubMed Zhu G, Zhou S, Xu Y, Gao R, Li H, Zhai B, Liu X, He Y, Wang X, Han G, Su W, Wang R. Mendelian randomization study on the causal effects of omega-3 fatty acids on rheumatoid arthritis. Clin Rheumatol. 2022;41(5):1305–12.CrossRefPubMed
23.
go back to reference Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in mendelian randomization studies. Hum Mol Genet. 2018;27(R2):R195–208.CrossRefPubMedPubMedCentral Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in mendelian randomization studies. Hum Mol Genet. 2018;27(R2):R195–208.CrossRefPubMedPubMedCentral
24.
go back to reference Yavorska OO, Burgess S. MendelianRandomization: an R package for performing mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–9.CrossRefPubMedPubMedCentral Yavorska OO, Burgess S. MendelianRandomization: an R package for performing mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–9.CrossRefPubMedPubMedCentral
25.
go back to reference Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.CrossRefPubMedPubMedCentral Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.CrossRefPubMedPubMedCentral
26.
go back to reference Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, Matsuhisa M, Yamasaki Y. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal. 2007;9(3):355–66.CrossRefPubMed Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, Matsuhisa M, Yamasaki Y. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal. 2007;9(3):355–66.CrossRefPubMed
27.
go back to reference Tang R, Zhou Y, Mei S, Xu Q, Feng J, Xing S, Gao Y, Qin S, He Z. Fibrotic extracellular vesicles contribute to mechanical ventilation-induced pulmonary fibrosis development by activating lung fibroblasts via JNK signalling pathway: an experimental study. BMJ Open Respir Res. 2023;10(1):e001753.CrossRefPubMedPubMedCentral Tang R, Zhou Y, Mei S, Xu Q, Feng J, Xing S, Gao Y, Qin S, He Z. Fibrotic extracellular vesicles contribute to mechanical ventilation-induced pulmonary fibrosis development by activating lung fibroblasts via JNK signalling pathway: an experimental study. BMJ Open Respir Res. 2023;10(1):e001753.CrossRefPubMedPubMedCentral
28.
go back to reference Jagadapillai R, Rane MJ, Lin X, Roberts AM, Hoyle GW, Cai L, Gozal E. Diabetic Microvascular Disease and Pulmonary Fibrosis: the contribution of platelets and systemic inflammation. Int J Mol Sci. 2016;17(11):1853.CrossRefPubMedPubMedCentral Jagadapillai R, Rane MJ, Lin X, Roberts AM, Hoyle GW, Cai L, Gozal E. Diabetic Microvascular Disease and Pulmonary Fibrosis: the contribution of platelets and systemic inflammation. Int J Mol Sci. 2016;17(11):1853.CrossRefPubMedPubMedCentral
29.
go back to reference Gressner OA, Gressner AM. Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int. 2008;28(8):1065–79.CrossRefPubMed Gressner OA, Gressner AM. Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int. 2008;28(8):1065–79.CrossRefPubMed
30.
go back to reference Wang CM, Hsu CT, Niu HS, Chang CH, Cheng JT, Shieh JM. Lung damage induced by hyperglycemia in diabetic rats: the role of signal transducer and activator of transcription 3 (STAT3). J Diabetes Complications. 2016 Nov-Dec;30(8):1426–33. Wang CM, Hsu CT, Niu HS, Chang CH, Cheng JT, Shieh JM. Lung damage induced by hyperglycemia in diabetic rats: the role of signal transducer and activator of transcription 3 (STAT3). J Diabetes Complications. 2016 Nov-Dec;30(8):1426–33.
31.
go back to reference Fariña J, Furió V, Fernandez-Aceñero MJ, Muzas MA. Nodular fibrosis of the lung in diabetes mellitus. Virchows Arch. 1995;427(1):61–3.CrossRefPubMed Fariña J, Furió V, Fernandez-Aceñero MJ, Muzas MA. Nodular fibrosis of the lung in diabetes mellitus. Virchows Arch. 1995;427(1):61–3.CrossRefPubMed
32.
go back to reference Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol. 2014;9:157–79.CrossRefPubMed Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol. 2014;9:157–79.CrossRefPubMed
Metadata
Title
Mendelian randomisation highlights type 1 diabetes as a causal determinant of idiopathic pulmonary fibrosis
Authors
Xinlai Ma
Yang Zhang
Fan Wu
Xue Liu
Wei Zhang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2024
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-024-01331-x

Other articles of this Issue 1/2024

Diabetology & Metabolic Syndrome 1/2024 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.