Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Idiopathic Pulmonary Fibrosis | Review

SIgA in various pulmonary diseases

Authors: Xintian Wang, Jun Zhang, Yan Wu, Yuncong Xu, Jinxu Zheng

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Secretory immunoglobulin A (SIgA) is one of the most abundant immunoglobulin subtypes among mucosa, which plays an indispensable role in the first-line protection against invading pathogens and antigens. Therefore, the role of respiratory SIgA in respiratory mucosal immune diseases has attracted more and more attention. Although the role of SIgA in intestinal mucosal immunity has been widely studied, the cell types responsible for SIgA and the interactions between cells are still unclear. Here, we conducted a wide search of relevant studies and sorted out the relationship between SIgA and some pulmonary diseases (COPD, asthma, tuberculosis, idiopathic pulmonary fibrosis, COVID-19, lung cancer), which found SIgA is involved in the pathogenesis and progression of various lung diseases, intending to provide new ideas for the prevention, diagnosis, and treatment of related lung diseases.
Literature
1.
2.
3.
go back to reference Kaetzel CS, Mestecky J, Johansen FE. Two cells, one antibody: the discovery of the cellular origins and transport of secretory IgA. J Immunol. 2017;198(5):1765–7.PubMedCrossRef Kaetzel CS, Mestecky J, Johansen FE. Two cells, one antibody: the discovery of the cellular origins and transport of secretory IgA. J Immunol. 2017;198(5):1765–7.PubMedCrossRef
4.
go back to reference Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol. 2011;4(6):598–602.PubMedPubMedCentralCrossRef Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol. 2011;4(6):598–602.PubMedPubMedCentralCrossRef
5.
go back to reference Rees F, Doherty M, Grainge MJ, Lanyon P, Zhang W. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology (Oxford). 2017;56(11):1945–61.PubMedCrossRef Rees F, Doherty M, Grainge MJ, Lanyon P, Zhang W. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology (Oxford). 2017;56(11):1945–61.PubMedCrossRef
6.
go back to reference Hodges-Simeon CR, Prall SP, Blackwell AD, Gurven M, Gaulin SJC. Adrenal maturation, nutritional status, and mucosal immunity in Bolivian youth. Am J Hum Biol. 2017;29(5):e23025.CrossRef Hodges-Simeon CR, Prall SP, Blackwell AD, Gurven M, Gaulin SJC. Adrenal maturation, nutritional status, and mucosal immunity in Bolivian youth. Am J Hum Biol. 2017;29(5):e23025.CrossRef
7.
8.
go back to reference Suzuki K, Fagarasan S. Diverse regulatory pathways for IgA synthesis in the gut. Mucosal Immunol. 2009;2(6):468–71.PubMedCrossRef Suzuki K, Fagarasan S. Diverse regulatory pathways for IgA synthesis in the gut. Mucosal Immunol. 2009;2(6):468–71.PubMedCrossRef
9.
go back to reference Salerno-Goncalves R, Safavie F, Fasano A, Sztein MB. Free and complexed-secretory immunoglobulin A triggers distinct intestinal epithelial cell responses. Clin Exp Immunol. 2016;185(3):338–47.PubMedPubMedCentralCrossRef Salerno-Goncalves R, Safavie F, Fasano A, Sztein MB. Free and complexed-secretory immunoglobulin A triggers distinct intestinal epithelial cell responses. Clin Exp Immunol. 2016;185(3):338–47.PubMedPubMedCentralCrossRef
10.
go back to reference Sheng X, Guo Y, Tang Q, Tang X, Xing J, Chi H, et al. Upregulation of polymeric immunoglobulin receptor expression in flounder (Paralichthys olivaceus) gill cells by cytokine tumor necrosis factor-α via activating PI3K and NF-κB signaling pathways. Mol Immunol. 2021;135:170–82.PubMedCrossRef Sheng X, Guo Y, Tang Q, Tang X, Xing J, Chi H, et al. Upregulation of polymeric immunoglobulin receptor expression in flounder (Paralichthys olivaceus) gill cells by cytokine tumor necrosis factor-α via activating PI3K and NF-κB signaling pathways. Mol Immunol. 2021;135:170–82.PubMedCrossRef
11.
12.
go back to reference Yoshino Y, Yamamoto A, Misu K, Wakabayashi Y, Kitazawa T, Ota Y. Exposure to low temperatures suppresses the production of B-cell activating factor via TLR3 in BEAS-2B cells. Biochem Biophys Rep. 2020;24: 100809.PubMedPubMedCentral Yoshino Y, Yamamoto A, Misu K, Wakabayashi Y, Kitazawa T, Ota Y. Exposure to low temperatures suppresses the production of B-cell activating factor via TLR3 in BEAS-2B cells. Biochem Biophys Rep. 2020;24: 100809.PubMedPubMedCentral
14.
go back to reference Gohy S, Hupin C, Ladjemi MZ, Hox V, Pilette C. Key role of the epithelium in chronic upper airways diseases. Clin Exp Allergy. 2020;50(2):135–46.PubMedCrossRef Gohy S, Hupin C, Ladjemi MZ, Hox V, Pilette C. Key role of the epithelium in chronic upper airways diseases. Clin Exp Allergy. 2020;50(2):135–46.PubMedCrossRef
15.
go back to reference Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature. 2020;587(7835):619–25.PubMedPubMedCentralCrossRef Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature. 2020;587(7835):619–25.PubMedPubMedCentralCrossRef
16.
go back to reference Knight DA, Holgate ST. The airway epithelium: structural and functional properties in health and disease. Respirology. 2003;8(4):432–46.PubMedCrossRef Knight DA, Holgate ST. The airway epithelium: structural and functional properties in health and disease. Respirology. 2003;8(4):432–46.PubMedCrossRef
17.
go back to reference Boers JE, Ambergen AW, Thunnissen FB. Number and proliferation of basal and parabasal cells in normal human airway epithelium. Am J Respir Crit Care Med. 1998;157(6 Pt 1):2000–6.PubMedCrossRef Boers JE, Ambergen AW, Thunnissen FB. Number and proliferation of basal and parabasal cells in normal human airway epithelium. Am J Respir Crit Care Med. 1998;157(6 Pt 1):2000–6.PubMedCrossRef
18.
go back to reference Rock JR, Randell SH, Hogan BL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 2010;3(9–10):545–56.PubMedPubMedCentralCrossRef Rock JR, Randell SH, Hogan BL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 2010;3(9–10):545–56.PubMedPubMedCentralCrossRef
19.
go back to reference Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 2014;15(2):123–38.PubMedPubMedCentralCrossRef Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 2014;15(2):123–38.PubMedPubMedCentralCrossRef
20.
go back to reference Zuo WL, Shenoy SA, Li S, O’Beirne SL, Strulovici-Barel Y, Leopold PL, et al. Ontogeny and biology of human small airway epithelial club cells. Am J Respir Crit Care Med. 2018;198(11):1375–88.PubMedPubMedCentralCrossRef Zuo WL, Shenoy SA, Li S, O’Beirne SL, Strulovici-Barel Y, Leopold PL, et al. Ontogeny and biology of human small airway epithelial club cells. Am J Respir Crit Care Med. 2018;198(11):1375–88.PubMedPubMedCentralCrossRef
21.
go back to reference Hiemstra PS, Bourdin A. Club cells, CC10 and self-control at the epithelial surface. Eur Respir J. 2014;44(4):831–2.PubMedCrossRef Hiemstra PS, Bourdin A. Club cells, CC10 and self-control at the epithelial surface. Eur Respir J. 2014;44(4):831–2.PubMedCrossRef
22.
go back to reference Boers JE, den Brok JL, Koudstaal J, Arends JW, Thunnissen FB. Number and proliferation of neuroendocrine cells in normal human airway epithelium. Am J Respir Crit Care Med. 1996;154(3 Pt 1):758–63.PubMedCrossRef Boers JE, den Brok JL, Koudstaal J, Arends JW, Thunnissen FB. Number and proliferation of neuroendocrine cells in normal human airway epithelium. Am J Respir Crit Care Med. 1996;154(3 Pt 1):758–63.PubMedCrossRef
23.
go back to reference Linnoila RI. Functional facets of the pulmonary neuroendocrine system. Lab Invest. 2006;86(5):425–44.PubMedCrossRef Linnoila RI. Functional facets of the pulmonary neuroendocrine system. Lab Invest. 2006;86(5):425–44.PubMedCrossRef
24.
go back to reference Branchfield K, Nantie L, Verheyden JM, Sui P, Wienhold MD, Sun X. Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science. 2016;351(6274):707–10.PubMedPubMedCentralCrossRef Branchfield K, Nantie L, Verheyden JM, Sui P, Wienhold MD, Sun X. Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science. 2016;351(6274):707–10.PubMedPubMedCentralCrossRef
25.
go back to reference Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 2018;560(7718):319–24.PubMedPubMedCentralCrossRef Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 2018;560(7718):319–24.PubMedPubMedCentralCrossRef
26.
go back to reference He WH, Zhang WD, Cheng CC, Lu J, Liu L, Chen ZH, et al. Expression characteristics of polymeric immunoglobulin receptor in Bactrian camel (Camelus bactrianus) lungs. PLoS ONE. 2022;17(3): e0264815.PubMedPubMedCentralCrossRef He WH, Zhang WD, Cheng CC, Lu J, Liu L, Chen ZH, et al. Expression characteristics of polymeric immunoglobulin receptor in Bactrian camel (Camelus bactrianus) lungs. PLoS ONE. 2022;17(3): e0264815.PubMedPubMedCentralCrossRef
27.
go back to reference Blackburn JB, Schaff JA, Gutor S, Du RH, Nichols D, Sherrill T, et al. Secretory cells are the primary source of pIgR in small airways. Am J Respir Cell Mol Biol. 2022;67(3):334–45.PubMedPubMedCentralCrossRef Blackburn JB, Schaff JA, Gutor S, Du RH, Nichols D, Sherrill T, et al. Secretory cells are the primary source of pIgR in small airways. Am J Respir Cell Mol Biol. 2022;67(3):334–45.PubMedPubMedCentralCrossRef
28.
go back to reference Schiller HB, Montoro DT, Simon LM, Rawlins EL, Meyer KB, Strunz M, et al. The human lung cell atlas: a high-resolution reference map of the human lung in health and disease. Am J Respir Cell Mol Biol. 2019;61(1):31–41.PubMedPubMedCentralCrossRef Schiller HB, Montoro DT, Simon LM, Rawlins EL, Meyer KB, Strunz M, et al. The human lung cell atlas: a high-resolution reference map of the human lung in health and disease. Am J Respir Cell Mol Biol. 2019;61(1):31–41.PubMedPubMedCentralCrossRef
29.
go back to reference Putcha N, Paul GG, Azar A, Wise RA, O’Neal WK, Dransfield MT, et al. Lower serum IgA is associated with COPD exacerbation risk in SPIROMICS. PLoS ONE. 2018;13(4): e0194924.PubMedPubMedCentralCrossRef Putcha N, Paul GG, Azar A, Wise RA, O’Neal WK, Dransfield MT, et al. Lower serum IgA is associated with COPD exacerbation risk in SPIROMICS. PLoS ONE. 2018;13(4): e0194924.PubMedPubMedCentralCrossRef
30.
go back to reference Polosukhin VV, Richmond BW, Du RH, Cates JM, Wu P, Nian H, et al. Secretory IgA deficiency in individual small airways is associated with persistent inflammation and remodeling. Am J Respir Crit Care Med. 2017;195(8):1010–21.PubMedPubMedCentralCrossRef Polosukhin VV, Richmond BW, Du RH, Cates JM, Wu P, Nian H, et al. Secretory IgA deficiency in individual small airways is associated with persistent inflammation and remodeling. Am J Respir Crit Care Med. 2017;195(8):1010–21.PubMedPubMedCentralCrossRef
31.
go back to reference Gohy ST, Detry BR, Lecocq M, Bouzin C, Weynand BA, Amatngalim GD, et al. Polymeric immunoglobulin receptor down-regulation in chronic obstructive pulmonary disease. Persistence in the cultured epithelium and role of transforming growth factor-β. Am J Respir Crit Care Med. 2014;190(5):509–21.PubMedCrossRef Gohy ST, Detry BR, Lecocq M, Bouzin C, Weynand BA, Amatngalim GD, et al. Polymeric immunoglobulin receptor down-regulation in chronic obstructive pulmonary disease. Persistence in the cultured epithelium and role of transforming growth factor-β. Am J Respir Crit Care Med. 2014;190(5):509–21.PubMedCrossRef
32.
go back to reference Ladjemi MZ, Gras D, Dupasquier S, Detry B, Lecocq M, Garulli C, et al. Bronchial epithelial IgA secretion is impaired in asthma. Role of IL-4/IL-13. Am J Respir Crit Care Med. 2018;197(11):1396–409.PubMedCrossRef Ladjemi MZ, Gras D, Dupasquier S, Detry B, Lecocq M, Garulli C, et al. Bronchial epithelial IgA secretion is impaired in asthma. Role of IL-4/IL-13. Am J Respir Crit Care Med. 2018;197(11):1396–409.PubMedCrossRef
33.
go back to reference Diana J, Moura IC, Vaugier C, Gestin A, Tissandie E, Beaudoin L, et al. Secretory IgA induces tolerogenic dendritic cells through SIGNR1 dampening autoimmunity in mice. J Immunol. 2013;191(5):2335–43.PubMedCrossRef Diana J, Moura IC, Vaugier C, Gestin A, Tissandie E, Beaudoin L, et al. Secretory IgA induces tolerogenic dendritic cells through SIGNR1 dampening autoimmunity in mice. J Immunol. 2013;191(5):2335–43.PubMedCrossRef
34.
go back to reference Abo Ali FH, Mahmoud NE, El-Sayed AYM, Abdelmaksoud MF, Shata AK, Fouad SH. Selective IgA deficiency a probable risk of recurrent chest infections in asthmatics. J Asthma Allergy. 2021;14:1323–33.PubMedPubMedCentralCrossRef Abo Ali FH, Mahmoud NE, El-Sayed AYM, Abdelmaksoud MF, Shata AK, Fouad SH. Selective IgA deficiency a probable risk of recurrent chest infections in asthmatics. J Asthma Allergy. 2021;14:1323–33.PubMedPubMedCentralCrossRef
35.
go back to reference Kim WJ, Choi IS, Kim CS, Lee JH, Kang HW. Relationship between serum IgA level and allergy/asthma. Korean J Intern Med. 2017;32(1):137–45.PubMedCrossRef Kim WJ, Choi IS, Kim CS, Lee JH, Kang HW. Relationship between serum IgA level and allergy/asthma. Korean J Intern Med. 2017;32(1):137–45.PubMedCrossRef
36.
go back to reference Xiao JN, Xiong Y, Chen Y, Xiao YJ, Ji P, Li Y, et al. Determination of lipoprotein Z-specific IgA in tuberculosis and latent tuberculosis infection. Front Cell Infect Microbiol. 2017;7:495.PubMedPubMedCentralCrossRef Xiao JN, Xiong Y, Chen Y, Xiao YJ, Ji P, Li Y, et al. Determination of lipoprotein Z-specific IgA in tuberculosis and latent tuberculosis infection. Front Cell Infect Microbiol. 2017;7:495.PubMedPubMedCentralCrossRef
37.
go back to reference Tjärnlund A, Rodríguez A, Cardona PJ, Guirado E, Ivanyi J, Singh M, et al. Polymeric IgR knockout mice are more susceptible to mycobacterial infections in the respiratory tract than wild-type mice. Int Immunol. 2006;18(5):807–16.PubMedCrossRef Tjärnlund A, Rodríguez A, Cardona PJ, Guirado E, Ivanyi J, Singh M, et al. Polymeric IgR knockout mice are more susceptible to mycobacterial infections in the respiratory tract than wild-type mice. Int Immunol. 2006;18(5):807–16.PubMedCrossRef
38.
go back to reference Arulanandam BP, Raeder RH, Nedrud JG, Bucher DJ, Le J, Metzger DW. IgA immunodeficiency leads to inadequate Th cell priming and increased susceptibility to influenza virus infection. J Immunol. 2001;166(1):226–31.PubMedCrossRef Arulanandam BP, Raeder RH, Nedrud JG, Bucher DJ, Le J, Metzger DW. IgA immunodeficiency leads to inadequate Th cell priming and increased susceptibility to influenza virus infection. J Immunol. 2001;166(1):226–31.PubMedCrossRef
39.
go back to reference Kaetzel CS, Robinson JK, Chintalacharuvu KR, Vaerman JP, Lamm ME. The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA. Proc Natl Acad Sci U S A. 1991;88(19):8796–800.PubMedPubMedCentralCrossRef Kaetzel CS, Robinson JK, Chintalacharuvu KR, Vaerman JP, Lamm ME. The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA. Proc Natl Acad Sci U S A. 1991;88(19):8796–800.PubMedPubMedCentralCrossRef
40.
go back to reference Arakawa S, Suzukawa M, Watanabe K, Kobayashi K, Matsui H, Nagai H, et al. Secretory immunoglobulin A induces human lung fibroblasts to produce inflammatory cytokines and undergo activation. Clin Exp Immunol. 2019;195(3):287–301.PubMedPubMedCentralCrossRef Arakawa S, Suzukawa M, Watanabe K, Kobayashi K, Matsui H, Nagai H, et al. Secretory immunoglobulin A induces human lung fibroblasts to produce inflammatory cytokines and undergo activation. Clin Exp Immunol. 2019;195(3):287–301.PubMedPubMedCentralCrossRef
41.
go back to reference Mota P, Soares M, Vasconcelos C, Ferreira A, Lima B, Manduchi E, et al. Predictive value of common genetic variants in idiopathic pulmonary fibrosis survival. J Mol Med (Berl). 2022;100(9):1341–53.PubMedCrossRef Mota P, Soares M, Vasconcelos C, Ferreira A, Lima B, Manduchi E, et al. Predictive value of common genetic variants in idiopathic pulmonary fibrosis survival. J Mol Med (Berl). 2022;100(9):1341–53.PubMedCrossRef
42.
go back to reference Zhang Q, Wang Y, Qu D, Yu J, Yang J. MUC5B the possible pathogenesis of idiopathic pulmonary fibrosis considering. Biomed Res Int. 2019;2019:9712464.PubMedPubMedCentral Zhang Q, Wang Y, Qu D, Yu J, Yang J. MUC5B the possible pathogenesis of idiopathic pulmonary fibrosis considering. Biomed Res Int. 2019;2019:9712464.PubMedPubMedCentral
43.
go back to reference Heukels P, van Hulst JAC, van Nimwegen M, Boorsma CE, Melgert BN, von der Thusen JH, et al. Enhanced Bruton’s tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis. Respir Res. 2019;20(1):232.PubMedPubMedCentralCrossRef Heukels P, van Hulst JAC, van Nimwegen M, Boorsma CE, Melgert BN, von der Thusen JH, et al. Enhanced Bruton’s tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis. Respir Res. 2019;20(1):232.PubMedPubMedCentralCrossRef
44.
go back to reference Padoan A, Sciacovelli L, Basso D, Negrini D, Zuin S, Cosma C, et al. IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: a longitudinal study. Clin Chim Acta. 2020;507:164–6.PubMedPubMedCentralCrossRef Padoan A, Sciacovelli L, Basso D, Negrini D, Zuin S, Cosma C, et al. IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: a longitudinal study. Clin Chim Acta. 2020;507:164–6.PubMedPubMedCentralCrossRef
45.
go back to reference Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claër L, et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med. 2021;13(577):eabd2223.PubMedCrossRef Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claër L, et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med. 2021;13(577):eabd2223.PubMedCrossRef
46.
go back to reference Chan RWY, Chan KCC, Lui GCY, Tsun JGS, Chan KYY, Yip JSK, et al. Mucosal antibody response to SARS-CoV-2 in paediatric and adult patients: a longitudinal study. Pathogens. 2022;11(4):397.PubMedPubMedCentralCrossRef Chan RWY, Chan KCC, Lui GCY, Tsun JGS, Chan KYY, Yip JSK, et al. Mucosal antibody response to SARS-CoV-2 in paediatric and adult patients: a longitudinal study. Pathogens. 2022;11(4):397.PubMedPubMedCentralCrossRef
47.
go back to reference LaSalle TJ, Gonye ALK, Freeman SS, Kaplonek P, Gushterova I, Kays KR, et al. Longitudinal characterization of circulating neutrophils uncovers phenotypes associated with severity in hospitalized COVID-19 patients. Cell Rep Med. 2022;3(10): 100779.PubMedPubMedCentralCrossRef LaSalle TJ, Gonye ALK, Freeman SS, Kaplonek P, Gushterova I, Kays KR, et al. Longitudinal characterization of circulating neutrophils uncovers phenotypes associated with severity in hospitalized COVID-19 patients. Cell Rep Med. 2022;3(10): 100779.PubMedPubMedCentralCrossRef
48.
go back to reference Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis. 2020;26(7):1478–88.PubMedPubMedCentralCrossRef Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis. 2020;26(7):1478–88.PubMedPubMedCentralCrossRef
49.
50.
go back to reference Phillips AC, Carroll D, Drayson MT, Der G. Salivary immunoglobulin A secretion rate is negatively associated with cancer mortality: the west of scotland twenty-07 study. PLoS ONE. 2015;10(12):e0145083.PubMedPubMedCentralCrossRef Phillips AC, Carroll D, Drayson MT, Der G. Salivary immunoglobulin A secretion rate is negatively associated with cancer mortality: the west of scotland twenty-07 study. PLoS ONE. 2015;10(12):e0145083.PubMedPubMedCentralCrossRef
51.
go back to reference Cunningham-Rundles C. The many faces of common variable immunodeficiency. Hematol Am Soc Hematol Educ Program. 2012;2012:301–5.CrossRef Cunningham-Rundles C. The many faces of common variable immunodeficiency. Hematol Am Soc Hematol Educ Program. 2012;2012:301–5.CrossRef
52.
go back to reference Shen YC, Chen L, Wen FQ. Inter[retation of 2019 global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. Zhonghua Yi Xue Za Zhi. 2018;98(48):3913–6.PubMed Shen YC, Chen L, Wen FQ. Inter[retation of 2019 global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. Zhonghua Yi Xue Za Zhi. 2018;98(48):3913–6.PubMed
53.
go back to reference Polosukhin VV, Cates JM, Lawson WE, Zaynagetdinov R, Milstone AP, Massion PP, et al. Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184(3):317–27.PubMedPubMedCentralCrossRef Polosukhin VV, Cates JM, Lawson WE, Zaynagetdinov R, Milstone AP, Massion PP, et al. Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184(3):317–27.PubMedPubMedCentralCrossRef
54.
go back to reference Richmond BW, Mansouri S, Serezani A, Novitskiy S, Blackburn JB, Du RH, et al. Monocyte-derived dendritic cells link localized secretory IgA deficiency to adaptive immune activation in COPD. Mucosal Immunol. 2021;14(2):431–42.PubMedCrossRef Richmond BW, Mansouri S, Serezani A, Novitskiy S, Blackburn JB, Du RH, et al. Monocyte-derived dendritic cells link localized secretory IgA deficiency to adaptive immune activation in COPD. Mucosal Immunol. 2021;14(2):431–42.PubMedCrossRef
55.
go back to reference Richmond BW, Brucker RM, Han W, Du RH, Zhang Y, Cheng DS, et al. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun. 2016;7:11240.PubMedPubMedCentralCrossRef Richmond BW, Brucker RM, Han W, Du RH, Zhang Y, Cheng DS, et al. Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun. 2016;7:11240.PubMedPubMedCentralCrossRef
56.
57.
go back to reference Zuo WL, Rostami MR, Shenoy SA, LeBlanc MG, Salit J, Strulovici-Barel Y, et al. Cell-specific expression of lung disease risk-related genes in the human small airway epithelium. Respir Res. 2020;21(1):200.PubMedPubMedCentralCrossRef Zuo WL, Rostami MR, Shenoy SA, LeBlanc MG, Salit J, Strulovici-Barel Y, et al. Cell-specific expression of lung disease risk-related genes in the human small airway epithelium. Respir Res. 2020;21(1):200.PubMedPubMedCentralCrossRef
58.
go back to reference Balzar S, Strand M, Nakano T, Wenzel SE. Subtle immunodeficiency in severe asthma: IgA and IgG2 correlate with lung function and symptoms. Int Arch Allergy Immunol. 2006;140(2):96–102.PubMedCrossRef Balzar S, Strand M, Nakano T, Wenzel SE. Subtle immunodeficiency in severe asthma: IgA and IgG2 correlate with lung function and symptoms. Int Arch Allergy Immunol. 2006;140(2):96–102.PubMedCrossRef
60.
go back to reference Ruane D, Chorny A, Lee H, Faith J, Pandey G, Shan M, et al. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses. J Exp Med. 2016;213(1):53–73.PubMedPubMedCentralCrossRef Ruane D, Chorny A, Lee H, Faith J, Pandey G, Shan M, et al. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses. J Exp Med. 2016;213(1):53–73.PubMedPubMedCentralCrossRef
61.
go back to reference Shkalim V, Monselize Y, Segal N, Zan-Bar I, Hoffer V, Garty BZ. Selective IgA deficiency in children in Israel. J Clin Immunol. 2010;30(5):761–5.PubMedCrossRef Shkalim V, Monselize Y, Segal N, Zan-Bar I, Hoffer V, Garty BZ. Selective IgA deficiency in children in Israel. J Clin Immunol. 2010;30(5):761–5.PubMedCrossRef
62.
go back to reference Urm SH, Yun HD, Fenta YA, Yoo KH, Abraham RS, Hagan J, et al. Asthma and risk of selective IgA deficiency or common variable immunodeficiency: a population-based case-control study. Mayo Clin Proc. 2013;88(8):813–21.PubMedCrossRef Urm SH, Yun HD, Fenta YA, Yoo KH, Abraham RS, Hagan J, et al. Asthma and risk of selective IgA deficiency or common variable immunodeficiency: a population-based case-control study. Mayo Clin Proc. 2013;88(8):813–21.PubMedCrossRef
63.
go back to reference Wang W, Yao T, Zhang T, Quan M, Wang C, Wang C, et al. Selective immunoglobulin A deficiency (SIgAD) primarily leads to recurrent infections and autoimmune diseases: a retrospective study of Chinese patients in the past 40 years. Genes Dis. 2020;7(1):115–21.PubMedCrossRef Wang W, Yao T, Zhang T, Quan M, Wang C, Wang C, et al. Selective immunoglobulin A deficiency (SIgAD) primarily leads to recurrent infections and autoimmune diseases: a retrospective study of Chinese patients in the past 40 years. Genes Dis. 2020;7(1):115–21.PubMedCrossRef
64.
go back to reference Dieguez-Alvarez M, Carballo I, Alonso-Sampedro M, Sopeña B, Gude F, Gonzalez-Quintela A. Serum immunoglobulin-A (IgA) concentrations in a general adult population: association with demographics and prevalence of selective IgA deficiency. Clin Chem Lab Med. 2020;58(4):e109–12.PubMedCrossRef Dieguez-Alvarez M, Carballo I, Alonso-Sampedro M, Sopeña B, Gude F, Gonzalez-Quintela A. Serum immunoglobulin-A (IgA) concentrations in a general adult population: association with demographics and prevalence of selective IgA deficiency. Clin Chem Lab Med. 2020;58(4):e109–12.PubMedCrossRef
65.
go back to reference Shahin RY, Ali FHA, Melek NAN, Elateef IAA, Attia MY. Study of selective immunoglobulin A deficiency among Egyptian patients with food allergy. Cent Eur J Immunol. 2020;45(2):184–8.PubMedPubMedCentralCrossRef Shahin RY, Ali FHA, Melek NAN, Elateef IAA, Attia MY. Study of selective immunoglobulin A deficiency among Egyptian patients with food allergy. Cent Eur J Immunol. 2020;45(2):184–8.PubMedPubMedCentralCrossRef
66.
go back to reference Mallah N, Rodriguez-Segade S, Gonzalez-Barcala FJ, Takkouche B. Blood eosinophil count as predictor of asthma exacerbation. A meta-analysis. Pediatr Allergy Immunol. 2021;32(3):465–78.PubMedCrossRef Mallah N, Rodriguez-Segade S, Gonzalez-Barcala FJ, Takkouche B. Blood eosinophil count as predictor of asthma exacerbation. A meta-analysis. Pediatr Allergy Immunol. 2021;32(3):465–78.PubMedCrossRef
67.
go back to reference Eger KA, Bel EH. The emergence of new biologics for severe asthma. Curr Opin Pharmacol. 2019;46:108–15.PubMedCrossRef Eger KA, Bel EH. The emergence of new biologics for severe asthma. Curr Opin Pharmacol. 2019;46:108–15.PubMedCrossRef
68.
go back to reference Abu-Ghazaleh RI, Fujisawa T, Mestecky J, Kyle RA, Gleich GJ. IgA-induced eosinophil degranulation. J Immunol. 1989;142(7):2393–400.PubMedCrossRef Abu-Ghazaleh RI, Fujisawa T, Mestecky J, Kyle RA, Gleich GJ. IgA-induced eosinophil degranulation. J Immunol. 1989;142(7):2393–400.PubMedCrossRef
69.
go back to reference Iikura M, Yamaguchi M, Fujisawa T, Miyamasu M, Takaishi T, Morita Y, et al. Secretory IgA induces degranulation of IL-3-primed basophils. J Immunol. 1998;161(3):1510–5.PubMedCrossRef Iikura M, Yamaguchi M, Fujisawa T, Miyamasu M, Takaishi T, Morita Y, et al. Secretory IgA induces degranulation of IL-3-primed basophils. J Immunol. 1998;161(3):1510–5.PubMedCrossRef
70.
go back to reference Alvarez N, Otero O, Camacho F, Borrero R, Tirado Y, Puig A, et al. Passive administration of purified secretory IgA from human colostrum induces protection against Mycobacterium tuberculosis in a murine model of progressive pulmonary infection. BMC Immunol. 2013;14(Suppl 1):S3.PubMedPubMedCentralCrossRef Alvarez N, Otero O, Camacho F, Borrero R, Tirado Y, Puig A, et al. Passive administration of purified secretory IgA from human colostrum induces protection against Mycobacterium tuberculosis in a murine model of progressive pulmonary infection. BMC Immunol. 2013;14(Suppl 1):S3.PubMedPubMedCentralCrossRef
71.
go back to reference Phalipon A, Corthésy B. Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol. 2003;24(2):55–8.PubMedCrossRef Phalipon A, Corthésy B. Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol. 2003;24(2):55–8.PubMedCrossRef
72.
go back to reference Tagliabue A, Boraschi D, Villa L, Keren DF, Lowell GH, Rappuoli R, et al. IgA-dependent cell-mediated activity against enteropathogenic bacteria: distribution, specificity, and characterization of the effector cells. J Immunol. 1984;133(2):988–92.PubMedCrossRef Tagliabue A, Boraschi D, Villa L, Keren DF, Lowell GH, Rappuoli R, et al. IgA-dependent cell-mediated activity against enteropathogenic bacteria: distribution, specificity, and characterization of the effector cells. J Immunol. 1984;133(2):988–92.PubMedCrossRef
73.
go back to reference de Vallière S, Abate G, Blazevic A, Heuertz RM, Hoft DF. Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect Immun. 2005;73(10):6711–20.PubMedPubMedCentralCrossRef de Vallière S, Abate G, Blazevic A, Heuertz RM, Hoft DF. Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect Immun. 2005;73(10):6711–20.PubMedPubMedCentralCrossRef
74.
go back to reference Alvarez N, Infante JF, Borrero R, Mata D, Payan JB, Hossain MM, et al. Histopathological study of the lungs of mice receiving human secretory IgA and challenged with Mycobacterium tuberculosis. Malays J Med Sci. 2014;21(3):31–7.PubMedPubMedCentral Alvarez N, Infante JF, Borrero R, Mata D, Payan JB, Hossain MM, et al. Histopathological study of the lungs of mice receiving human secretory IgA and challenged with Mycobacterium tuberculosis. Malays J Med Sci. 2014;21(3):31–7.PubMedPubMedCentral
75.
go back to reference Wu M, Zhao H, Li M, Yue Y, Xiong S, Xu W. Intranasal vaccination with mannosylated chitosan formulated DNA vaccine enables robust IgA and cellular response induction in the lungs of mice and improves protection against pulmonary Mycobacterial challenge. Front Cell Infect Microbiol. 2017;7:445.PubMedPubMedCentralCrossRef Wu M, Zhao H, Li M, Yue Y, Xiong S, Xu W. Intranasal vaccination with mannosylated chitosan formulated DNA vaccine enables robust IgA and cellular response induction in the lungs of mice and improves protection against pulmonary Mycobacterial challenge. Front Cell Infect Microbiol. 2017;7:445.PubMedPubMedCentralCrossRef
76.
go back to reference Ai W, Yue Y, Xiong S, Xu W. Enhanced protection against pulmonary mycobacterial challenge by chitosan-formulated polyepitope gene vaccine is associated with increased pulmonary secretory IgA and gamma-interferon(+) T cell responses. Microbiol Immunol. 2013;57(3):224–35.PubMedCrossRef Ai W, Yue Y, Xiong S, Xu W. Enhanced protection against pulmonary mycobacterial challenge by chitosan-formulated polyepitope gene vaccine is associated with increased pulmonary secretory IgA and gamma-interferon(+) T cell responses. Microbiol Immunol. 2013;57(3):224–35.PubMedCrossRef
77.
go back to reference Du X, Tan D, Gong Y, Zhang Y, Han J, Lv W, et al. A new poly(I:C)-decorated PLGA-PEG nanoparticle promotes Mycobacterium tuberculosis fusion protein to induce comprehensive immune in mice. Microbial Pathog. 2022;162:1053.CrossRef Du X, Tan D, Gong Y, Zhang Y, Han J, Lv W, et al. A new poly(I:C)-decorated PLGA-PEG nanoparticle promotes Mycobacterium tuberculosis fusion protein to induce comprehensive immune in mice. Microbial Pathog. 2022;162:1053.CrossRef
78.
go back to reference Rodríguez A, Tjärnlund A, Ivanji J, Singh M, García I, Williams A, et al. Role of IgA in the defense against respiratory infections IgA deficient mice exhibited increased susceptibility to intranasal infection with Mycobacterium bovis BCG. Vaccine. 2005;23(20):2565–72.PubMedCrossRef Rodríguez A, Tjärnlund A, Ivanji J, Singh M, García I, Williams A, et al. Role of IgA in the defense against respiratory infections IgA deficient mice exhibited increased susceptibility to intranasal infection with Mycobacterium bovis BCG. Vaccine. 2005;23(20):2565–72.PubMedCrossRef
79.
go back to reference Bjoraker J, Ryu J, Edwin M, Myers J, Tazelaar H, Schroeder D, et al. Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1998;157(1):199–203.PubMedCrossRef Bjoraker J, Ryu J, Edwin M, Myers J, Tazelaar H, Schroeder D, et al. Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1998;157(1):199–203.PubMedCrossRef
80.
go back to reference Khiroya R, Macaluso C, Montero M, Wells A, Chua F, Kokosi M, et al. Pleuroparenchymal fibroelastosis: a review of histopathologic features and the relationship between histologic parameters and survival. Am J Surg Pathol. 2017;41(12):1683–9.PubMedCrossRef Khiroya R, Macaluso C, Montero M, Wells A, Chua F, Kokosi M, et al. Pleuroparenchymal fibroelastosis: a review of histopathologic features and the relationship between histologic parameters and survival. Am J Surg Pathol. 2017;41(12):1683–9.PubMedCrossRef
81.
go back to reference Shiomi A, Usui T. Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediat Inflamm. 2015;2015: 568543.CrossRef Shiomi A, Usui T. Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediat Inflamm. 2015;2015: 568543.CrossRef
82.
go back to reference van de Graaf EA, Out TA, Kobesen A, Jansen HM. Lactoferrin and secretory IgA in the bronchoalveolar lavage fluid from patients with a stable asthma. Lung. 1991;169(5):275–83.PubMedCrossRef van de Graaf EA, Out TA, Kobesen A, Jansen HM. Lactoferrin and secretory IgA in the bronchoalveolar lavage fluid from patients with a stable asthma. Lung. 1991;169(5):275–83.PubMedCrossRef
83.
go back to reference Kobayashi K, Suzukawa M, Watanabe K, Arakawa S, Igarashi S, Asari I, et al. Secretory IgA accumulated in the airspaces of idiopathic pulmonary fibrosis and promoted VEGF, TGF-β and IL-8 production by A549 cells. Clin Exp Immunol. 2020;199(3):326–36.PubMedCrossRef Kobayashi K, Suzukawa M, Watanabe K, Arakawa S, Igarashi S, Asari I, et al. Secretory IgA accumulated in the airspaces of idiopathic pulmonary fibrosis and promoted VEGF, TGF-β and IL-8 production by A549 cells. Clin Exp Immunol. 2020;199(3):326–36.PubMedCrossRef
84.
go back to reference Aschner Y, Downey G. Transforming growth factor-β: master regulator of the respiratory system in health and disease. Am J Respir Cell Mol Biol. 2016;54(5):647–55.PubMedPubMedCentralCrossRef Aschner Y, Downey G. Transforming growth factor-β: master regulator of the respiratory system in health and disease. Am J Respir Cell Mol Biol. 2016;54(5):647–55.PubMedPubMedCentralCrossRef
85.
go back to reference Barratt S, Blythe T, Jarrett C, Ourradi K, Shelley-Fraser G, Day M, et al. Differential expression of VEGF-A isoforms is critical for development of pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196(4):479–93.PubMedPubMedCentralCrossRef Barratt S, Blythe T, Jarrett C, Ourradi K, Shelley-Fraser G, Day M, et al. Differential expression of VEGF-A isoforms is critical for development of pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196(4):479–93.PubMedPubMedCentralCrossRef
86.
87.
go back to reference Borsutzky S, Cazac BB, Roes J, Guzmán CA. TGF-beta receptor signaling is critical for mucosal IgA responses. J Immunol. 2004;173(5):3305–9.PubMedCrossRef Borsutzky S, Cazac BB, Roes J, Guzmán CA. TGF-beta receptor signaling is critical for mucosal IgA responses. J Immunol. 2004;173(5):3305–9.PubMedCrossRef
88.
go back to reference Chapman HA. Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol. 2011;73:413–35.PubMedCrossRef Chapman HA. Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol. 2011;73:413–35.PubMedCrossRef
89.
go back to reference Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006;103(35):13180–5.PubMedPubMedCentralCrossRef Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006;103(35):13180–5.PubMedPubMedCentralCrossRef
90.
91.
go back to reference Kanemaru R, Takahashi F, Kato M, Mitsuishi Y, Tajima K, Ihara H, et al. Dasatinib suppresses TGFβ-mediated epithelial-mesenchymal transition in alveolar epithelial cells and inhibits pulmonary fibrosis. Lung. 2018;196(5):531–41.PubMedCrossRef Kanemaru R, Takahashi F, Kato M, Mitsuishi Y, Tajima K, Ihara H, et al. Dasatinib suppresses TGFβ-mediated epithelial-mesenchymal transition in alveolar epithelial cells and inhibits pulmonary fibrosis. Lung. 2018;196(5):531–41.PubMedCrossRef
92.
go back to reference Ten Klooster L, van Moorsel CH, Kwakkel-van Erp JM, van Velzen-Blad H, Grutters JC. Immunoglobulin A in serum: an old acquaintance as a new prognostic biomarker in idiopathic pulmonary fibrosis. Clin Exp Immunol. 2015;181(2):357–61.PubMedPubMedCentralCrossRef Ten Klooster L, van Moorsel CH, Kwakkel-van Erp JM, van Velzen-Blad H, Grutters JC. Immunoglobulin A in serum: an old acquaintance as a new prognostic biomarker in idiopathic pulmonary fibrosis. Clin Exp Immunol. 2015;181(2):357–61.PubMedPubMedCentralCrossRef
94.
go back to reference Watanabe S, Kobayashi K, Suzukawa M, Igarashi S, Takada K, Imoto S, et al. Identification of ANXA2 on epithelial cells as a new receptor for secretory IgA using immunoprecipitation and mass spectrometry. Clin Exp Immunol. 2022;208(3):351–60.PubMedPubMedCentralCrossRef Watanabe S, Kobayashi K, Suzukawa M, Igarashi S, Takada K, Imoto S, et al. Identification of ANXA2 on epithelial cells as a new receptor for secretory IgA using immunoprecipitation and mass spectrometry. Clin Exp Immunol. 2022;208(3):351–60.PubMedPubMedCentralCrossRef
95.
go back to reference Powell RLR. Safety of breast/chest-feeding by those infected by SARS-CoV-2. Curr Opin Clin Nutr Metab Care. 2022;25(2):129–32.PubMedCrossRef Powell RLR. Safety of breast/chest-feeding by those infected by SARS-CoV-2. Curr Opin Clin Nutr Metab Care. 2022;25(2):129–32.PubMedCrossRef
96.
go back to reference Li D, Calderone R, Nsouli TM, Reznikov E, Bellanti JA. Salivary and serum IgA and IgG responses to SARS-CoV-2-spike protein following SARS-CoV-2 infection and after immunization with COVID-19 vaccines. Allergy Asthma Proc. 2022;43(5):419–30.PubMedPubMedCentralCrossRef Li D, Calderone R, Nsouli TM, Reznikov E, Bellanti JA. Salivary and serum IgA and IgG responses to SARS-CoV-2-spike protein following SARS-CoV-2 infection and after immunization with COVID-19 vaccines. Allergy Asthma Proc. 2022;43(5):419–30.PubMedPubMedCentralCrossRef
97.
go back to reference Smit WL, van Tol S, van der Wal S, van Vulpen F, la Grouw S, van Lelyveld L, et al. Heterologous immune responses of serum IgG and secretory IgA against the spike protein of endemic coronaviruses during severe COVID-19. Front Immunol. 2022;13: 839367.PubMedPubMedCentralCrossRef Smit WL, van Tol S, van der Wal S, van Vulpen F, la Grouw S, van Lelyveld L, et al. Heterologous immune responses of serum IgG and secretory IgA against the spike protein of endemic coronaviruses during severe COVID-19. Front Immunol. 2022;13: 839367.PubMedPubMedCentralCrossRef
98.
go back to reference Tsukinoki K, Yamamoto T, Handa K, Iwamiya M, Saruta J, Ino S, et al. Detection of cross-reactive immunoglobulin A against the severe acute respiratory syndrome-coronavirus-2 spike 1 subunit in saliva. PLoS ONE. 2021;16(11): e0249979.PubMedPubMedCentralCrossRef Tsukinoki K, Yamamoto T, Handa K, Iwamiya M, Saruta J, Ino S, et al. Detection of cross-reactive immunoglobulin A against the severe acute respiratory syndrome-coronavirus-2 spike 1 subunit in saliva. PLoS ONE. 2021;16(11): e0249979.PubMedPubMedCentralCrossRef
99.
go back to reference Tsukinoki K, Yamamoto T, Saito J, Sakaguchi W, Iguchi K, Inoue Y, et al. Prevalence of saliva immunoglobulin A antibodies reactive with severe acute respiratory syndrome coronavirus 2 among Japanese people unexposed to the virus. Microbiol Immunol. 2022;66(8):403–10.PubMedPubMedCentralCrossRef Tsukinoki K, Yamamoto T, Saito J, Sakaguchi W, Iguchi K, Inoue Y, et al. Prevalence of saliva immunoglobulin A antibodies reactive with severe acute respiratory syndrome coronavirus 2 among Japanese people unexposed to the virus. Microbiol Immunol. 2022;66(8):403–10.PubMedPubMedCentralCrossRef
100.
go back to reference Jing QL, Liu MJ, Zhang ZB, Fang LQ, Yuan J, Zhang AR, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. Lancet Infect Dis. 2020;20(10):1141–50.PubMedPubMedCentralCrossRef Jing QL, Liu MJ, Zhang ZB, Fang LQ, Yuan J, Zhang AR, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. Lancet Infect Dis. 2020;20(10):1141–50.PubMedPubMedCentralCrossRef
101.
go back to reference Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science. 2020;368(6498):1481–6.PubMedPubMedCentralCrossRef Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science. 2020;368(6498):1481–6.PubMedPubMedCentralCrossRef
102.
go back to reference Jafarzadeh A, Sadeghi M, Karam GA, Vazirinejad R. Salivary IgA and IgE levels in healthy subjects: relation to age and gender. Braz Oral Res. 2010;24(1):21–7.PubMedCrossRef Jafarzadeh A, Sadeghi M, Karam GA, Vazirinejad R. Salivary IgA and IgE levels in healthy subjects: relation to age and gender. Braz Oral Res. 2010;24(1):21–7.PubMedCrossRef
103.
go back to reference Zhou Y, Lu K, Pfefferle S, Bertram S, Glowacka I, Drosten C, et al. A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms. J Virol. 2010;84(17):8753–64.PubMedPubMedCentralCrossRef Zhou Y, Lu K, Pfefferle S, Bertram S, Glowacka I, Drosten C, et al. A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms. J Virol. 2010;84(17):8753–64.PubMedPubMedCentralCrossRef
104.
go back to reference Byars SG, Stearns SC, Boomsma JJ. Association of long-term risk of respiratory, allergic, and infectious diseases with removal of adenoids and tonsils in childhood. JAMA Otolaryngol Head Neck Surg. 2018;144(7):594–603.PubMedPubMedCentralCrossRef Byars SG, Stearns SC, Boomsma JJ. Association of long-term risk of respiratory, allergic, and infectious diseases with removal of adenoids and tonsils in childhood. JAMA Otolaryngol Head Neck Surg. 2018;144(7):594–603.PubMedPubMedCentralCrossRef
105.
go back to reference Quinti I, Mortari EP, Fernandez Salinas A, Milito C, Carsetti R. IgA antibodies and IgA deficiency in SARS-CoV-2 infection. Front Cell Infect Microbiol. 2021;11: 655896.PubMedPubMedCentralCrossRef Quinti I, Mortari EP, Fernandez Salinas A, Milito C, Carsetti R. IgA antibodies and IgA deficiency in SARS-CoV-2 infection. Front Cell Infect Microbiol. 2021;11: 655896.PubMedPubMedCentralCrossRef
106.
go back to reference Velikova T, Snegarova V, Kukov A, Batselova H, Mihova A, Nakov R. Gastrointestinal mucosal immunity and COVID-19. World J Gastroenterol. 2021;27(30):5047–59.PubMedPubMedCentralCrossRef Velikova T, Snegarova V, Kukov A, Batselova H, Mihova A, Nakov R. Gastrointestinal mucosal immunity and COVID-19. World J Gastroenterol. 2021;27(30):5047–59.PubMedPubMedCentralCrossRef
107.
go back to reference Hunagund S, Golan Y, Asiodu IV, Prahl M, Gaw SL. Effects of vaccination against influenza, pertussis, and COVID-19 on human milk antibodies: current evidence and implications for health equity. Front Immunol. 2022;13: 910383.PubMedPubMedCentralCrossRef Hunagund S, Golan Y, Asiodu IV, Prahl M, Gaw SL. Effects of vaccination against influenza, pertussis, and COVID-19 on human milk antibodies: current evidence and implications for health equity. Front Immunol. 2022;13: 910383.PubMedPubMedCentralCrossRef
108.
go back to reference Demers-Mathieu V, DaPra C, Fels S, Medo E. Receptor-binding domain severe acute respiratory syndrome coronavirus 2-specific antibodies in human milk from mothers with coronavirus disease 2019 polymerase chain reaction or with symptoms suggestive of coronavirus disease 2019. J Pediatr Gastroenterol Nutr. 2021;73(1):125–8.PubMedPubMedCentralCrossRef Demers-Mathieu V, DaPra C, Fels S, Medo E. Receptor-binding domain severe acute respiratory syndrome coronavirus 2-specific antibodies in human milk from mothers with coronavirus disease 2019 polymerase chain reaction or with symptoms suggestive of coronavirus disease 2019. J Pediatr Gastroenterol Nutr. 2021;73(1):125–8.PubMedPubMedCentralCrossRef
109.
110.
go back to reference Demers-Mathieu V, Do DM, Mathijssen GB, Sela DA, Seppo A, Järvinen KM, et al. Difference in levels of SARS-CoV-2 S1 and S2 subunits- and nucleocapsid protein-reactive SIgM/IgM, IgG and SIgA/IgA antibodies in human milk. J Perinatol. 2021;41(4):850–9.PubMedCrossRef Demers-Mathieu V, Do DM, Mathijssen GB, Sela DA, Seppo A, Järvinen KM, et al. Difference in levels of SARS-CoV-2 S1 and S2 subunits- and nucleocapsid protein-reactive SIgM/IgM, IgG and SIgA/IgA antibodies in human milk. J Perinatol. 2021;41(4):850–9.PubMedCrossRef
111.
go back to reference Sheikh-Mohamed S, Isho B, Chao GYC, Zuo M, Cohen C, Lustig Y, et al. Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal Immunol. 2022;15(5):799–808.PubMedPubMedCentralCrossRef Sheikh-Mohamed S, Isho B, Chao GYC, Zuo M, Cohen C, Lustig Y, et al. Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal Immunol. 2022;15(5):799–808.PubMedPubMedCentralCrossRef
112.
go back to reference Sano K, Bhavsar D, Singh G, Floda D, Srivastava K, Gleason C, et al. SARS-CoV-2 vaccination induces mucosal antibody responses in previously infected individuals. Nat Commun. 2022;13(1):5135.PubMedPubMedCentralCrossRef Sano K, Bhavsar D, Singh G, Floda D, Srivastava K, Gleason C, et al. SARS-CoV-2 vaccination induces mucosal antibody responses in previously infected individuals. Nat Commun. 2022;13(1):5135.PubMedPubMedCentralCrossRef
113.
go back to reference Ruetalo N, Flehmig B, Schindler M, Pridzun L, Haage A, Reichenbächer M, et al. Long-term humoral immune response against SARS-CoV-2 after natural infection and subsequent vaccination according to WHO international binding antibody units (BAU/mL). Viruses. 2021;13(12):2336.PubMedPubMedCentralCrossRef Ruetalo N, Flehmig B, Schindler M, Pridzun L, Haage A, Reichenbächer M, et al. Long-term humoral immune response against SARS-CoV-2 after natural infection and subsequent vaccination according to WHO international binding antibody units (BAU/mL). Viruses. 2021;13(12):2336.PubMedPubMedCentralCrossRef
114.
go back to reference Cao X, Zai J, Zhao Q, Xie L, Li Y. Intranasal immunization with recombinant Vaccinia virus encoding trimeric SARS-CoV-2 spike receptor-binding domain induces neutralizing antibody. Vaccine. 2022;40(40):5757–63.PubMedPubMedCentralCrossRef Cao X, Zai J, Zhao Q, Xie L, Li Y. Intranasal immunization with recombinant Vaccinia virus encoding trimeric SARS-CoV-2 spike receptor-binding domain induces neutralizing antibody. Vaccine. 2022;40(40):5757–63.PubMedPubMedCentralCrossRef
115.
go back to reference Zheng B, Peng W, Guo M, Huang M, Gu Y, Wang T, et al. Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19. Chem Eng J. 2021;418:129392.PubMedPubMedCentralCrossRef Zheng B, Peng W, Guo M, Huang M, Gu Y, Wang T, et al. Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19. Chem Eng J. 2021;418:129392.PubMedPubMedCentralCrossRef
116.
go back to reference Ye ZW, Ong CP, Tang K, Fan Y, Luo C, Zhou R, et al. Intranasal administration of a single dose of a candidate live attenuated vaccine derived from an NSP16-deficient SARS-CoV-2 strain confers sterilizing immunity in animals. Cell Mol Immunol. 2022;19(5):588–601.PubMedPubMedCentralCrossRef Ye ZW, Ong CP, Tang K, Fan Y, Luo C, Zhou R, et al. Intranasal administration of a single dose of a candidate live attenuated vaccine derived from an NSP16-deficient SARS-CoV-2 strain confers sterilizing immunity in animals. Cell Mol Immunol. 2022;19(5):588–601.PubMedPubMedCentralCrossRef
117.
go back to reference Turrubiates-Hernández FJ, Hernández-Bello J, Oregón-Romero E, González-Estevez G, Muñoz-Valle JF. The involvement of vitamin A in the production of secretory IgA in the respiratory epithelium for potential protection against SARS-CoV-2 infection. Rev Alerg Mex. 2021;68(3):185–97.PubMedCrossRef Turrubiates-Hernández FJ, Hernández-Bello J, Oregón-Romero E, González-Estevez G, Muñoz-Valle JF. The involvement of vitamin A in the production of secretory IgA in the respiratory epithelium for potential protection against SARS-CoV-2 infection. Rev Alerg Mex. 2021;68(3):185–97.PubMedCrossRef
118.
go back to reference Kim E, Attia Z, Woodfint RM, Zeng C, Kim SH, Steiner HE, et al. Inhibition of elastase enhances the adjuvanticity of alum and promotes anti-SARS-CoV-2 systemic and mucosal immunity. Proc Natl Acad Sci U S A. 2021;118(34):e2102435118.PubMedPubMedCentralCrossRef Kim E, Attia Z, Woodfint RM, Zeng C, Kim SH, Steiner HE, et al. Inhibition of elastase enhances the adjuvanticity of alum and promotes anti-SARS-CoV-2 systemic and mucosal immunity. Proc Natl Acad Sci U S A. 2021;118(34):e2102435118.PubMedPubMedCentralCrossRef
119.
go back to reference Rowe JC, Attia Z, Kim E, Cormet-Boyaka E, Boyaka PN. A novel supplementation approach to enhance host response to sublingual vaccination. Sci Rep. 2019;9(1):715.PubMedPubMedCentralCrossRef Rowe JC, Attia Z, Kim E, Cormet-Boyaka E, Boyaka PN. A novel supplementation approach to enhance host response to sublingual vaccination. Sci Rep. 2019;9(1):715.PubMedPubMedCentralCrossRef
120.
go back to reference Attia Z, Rowe JC, Kim E, Varikuti S, Steiner HE, Zaghawa A, et al. Inhibitors of elastase stimulate murine B lymphocyte differentiation into IgG- and IgA-producing cells. Eur J Immunol. 2018;48(8):1295–301.PubMedPubMedCentralCrossRef Attia Z, Rowe JC, Kim E, Varikuti S, Steiner HE, Zaghawa A, et al. Inhibitors of elastase stimulate murine B lymphocyte differentiation into IgG- and IgA-producing cells. Eur J Immunol. 2018;48(8):1295–301.PubMedPubMedCentralCrossRef
121.
go back to reference Ruiz MJ, Siracusano G, Cottignies-Calamarte A, Tudor D, Real F, Zhu A, et al. Persistent but dysfunctional mucosal SARS-CoV-2-specific IgA and low lung IL-1β associate with COVID-19 fatal outcome: a cross-sectional analysis. Front Immunol. 2022;13: 842468.PubMedPubMedCentralCrossRef Ruiz MJ, Siracusano G, Cottignies-Calamarte A, Tudor D, Real F, Zhu A, et al. Persistent but dysfunctional mucosal SARS-CoV-2-specific IgA and low lung IL-1β associate with COVID-19 fatal outcome: a cross-sectional analysis. Front Immunol. 2022;13: 842468.PubMedPubMedCentralCrossRef
122.
go back to reference Staats LAN, Pfeiffer H, Knopf J, Lindemann A, Fürst J, Kremer AE, et al. IgA2 antibodies against SARS-CoV-2 correlate with NET formation and fatal outcome in severely diseased COVID-19 patients. Cells. 2020;9(12):2676.PubMedPubMedCentralCrossRef Staats LAN, Pfeiffer H, Knopf J, Lindemann A, Fürst J, Kremer AE, et al. IgA2 antibodies against SARS-CoV-2 correlate with NET formation and fatal outcome in severely diseased COVID-19 patients. Cells. 2020;9(12):2676.PubMedPubMedCentralCrossRef
123.
go back to reference Melero I, Villalba-Esparza M, Recalde-Zamacona B, Jiménez-Sánchez D, Teijeira Á, Argueta A, et al. Neutrophil extracellular traps, local IL-8 expression, and cytotoxic T-lymphocyte response in the lungs of patients with fatal COVID-19. Chest. 2022;162(5):1006–16.PubMedCrossRef Melero I, Villalba-Esparza M, Recalde-Zamacona B, Jiménez-Sánchez D, Teijeira Á, Argueta A, et al. Neutrophil extracellular traps, local IL-8 expression, and cytotoxic T-lymphocyte response in the lungs of patients with fatal COVID-19. Chest. 2022;162(5):1006–16.PubMedCrossRef
124.
go back to reference Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–79.PubMedCrossRef Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–79.PubMedCrossRef
125.
go back to reference Masso-Silva JA, Moshensky A, Lam MTY, Odish MF, Patel A, Xu L, et al. Increased peripheral blood neutrophil activation phenotypes and neutrophil extracellular trap formation in critically ill coronavirus disease 2019 (COVID-19) patients: a case series and review of the literature. Clin Infect Dis. 2022;74(3):479–89.PubMedCrossRef Masso-Silva JA, Moshensky A, Lam MTY, Odish MF, Patel A, Xu L, et al. Increased peripheral blood neutrophil activation phenotypes and neutrophil extracellular trap formation in critically ill coronavirus disease 2019 (COVID-19) patients: a case series and review of the literature. Clin Infect Dis. 2022;74(3):479–89.PubMedCrossRef
126.
go back to reference Sun H, Chen Y, Zou X, Li Q, Li H, Shu Y, et al. Salivary secretory immunoglobulin (SIgA) and lysozyme in malignant tumor patients. Biomed Res Int. 2016;2016:8701423.PubMedPubMedCentralCrossRef Sun H, Chen Y, Zou X, Li Q, Li H, Shu Y, et al. Salivary secretory immunoglobulin (SIgA) and lysozyme in malignant tumor patients. Biomed Res Int. 2016;2016:8701423.PubMedPubMedCentralCrossRef
127.
go back to reference Zheng H, Li M, Ren W, Zeng L, Liu H-D, Hu D, et al. Expression and secretion of immunoglobulin alpha heavy chain with diverse VDJ recombinations by human epithelial cancer cells. Mol Immunol. 2007;44(9):2221–7.PubMedCrossRef Zheng H, Li M, Ren W, Zeng L, Liu H-D, Hu D, et al. Expression and secretion of immunoglobulin alpha heavy chain with diverse VDJ recombinations by human epithelial cancer cells. Mol Immunol. 2007;44(9):2221–7.PubMedCrossRef
128.
129.
go back to reference Sava G, Bergamo A, Capozzi I, Clerici K, Pacor S, Gagliardi R, et al. Stimulation of GALT and activation of mesenteric lymph node lymphocytes by a modified lysozyme in CBA mice with MCa mammary carcinoma. J Exp Ther Oncol. 1996;1(6):342–9.PubMed Sava G, Bergamo A, Capozzi I, Clerici K, Pacor S, Gagliardi R, et al. Stimulation of GALT and activation of mesenteric lymph node lymphocytes by a modified lysozyme in CBA mice with MCa mammary carcinoma. J Exp Ther Oncol. 1996;1(6):342–9.PubMed
130.
go back to reference de Lustig ES, Matos E, Spector C, Scheitman B, Diaz A. Secretory IgA content in human normal and tumoral bronchial mucosa in vitro. Oncology. 1980;37(1):16–9.PubMedCrossRef de Lustig ES, Matos E, Spector C, Scheitman B, Diaz A. Secretory IgA content in human normal and tumoral bronchial mucosa in vitro. Oncology. 1980;37(1):16–9.PubMedCrossRef
131.
go back to reference Iglehart JD, Warzynski MJ, Montelaro RC, Bolognesi DP, Sabiston DC Jr, Wolfe WG. Function of the secretory immune system in bronchogenic carcinoma. Immunoglobulin A levels in respiratory secretions. J Thorac Cardiovasc Surg. 1981;82(1):63–9.PubMedCrossRef Iglehart JD, Warzynski MJ, Montelaro RC, Bolognesi DP, Sabiston DC Jr, Wolfe WG. Function of the secretory immune system in bronchogenic carcinoma. Immunoglobulin A levels in respiratory secretions. J Thorac Cardiovasc Surg. 1981;82(1):63–9.PubMedCrossRef
132.
go back to reference Wesselius LJ, Dark DS, Hanson FN, Wheaton DL. Airway secretory IgA concentrations in patients with lung cancer. Evaluation of the uninvolved lung. Chest. 1989;95(6):1265–8.PubMedCrossRef Wesselius LJ, Dark DS, Hanson FN, Wheaton DL. Airway secretory IgA concentrations in patients with lung cancer. Evaluation of the uninvolved lung. Chest. 1989;95(6):1265–8.PubMedCrossRef
133.
go back to reference Atis S, Tutluoglu B, Salepci B, Ocal Z. Serum IgA and secretory IgA levels in bronchial lavages from patients with a variety of respiratory diseases. J Investig Allergol Clin Immunol. 2001;11(2):112–7.PubMed Atis S, Tutluoglu B, Salepci B, Ocal Z. Serum IgA and secretory IgA levels in bronchial lavages from patients with a variety of respiratory diseases. J Investig Allergol Clin Immunol. 2001;11(2):112–7.PubMed
Metadata
Title
SIgA in various pulmonary diseases
Authors
Xintian Wang
Jun Zhang
Yan Wu
Yuncong Xu
Jinxu Zheng
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01282-5

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue