Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2021

Open Access 01-12-2021 | Hypertension | Research article

Hyperhomocysteinemia and its relations to conventional risk factors for cardiovascular diseases in adult Nigerians: the REMAH study

Authors: Babangida S. Chori, Benjamin Danladi, Bassey A. Inyang, Michael P. Okoh, Maxwell M. Nwegbu, Adewale L. Alli, Augustine N. Odili

Published in: BMC Cardiovascular Disorders | Issue 1/2021

Login to get access

Abstract

Background

Evidence linking homocysteine (Hcy) with cardiovascular diseases (CVD) or its risk factors are limited in a sub-Saharan black population.

Objective

We set out to evaluate the association between Hcy and hypertension and other CVD risk factors in a population of adult Nigerians.

Methods

Data of 156 adults aged 18–70 years was accessed from the North Central study site of the REmoving the MAsk on Hypertension (REMAH) study. Homocysteine, blood glucose and lipid profile in whole blood/serum were measured using standard laboratory methods. Hypertension was diagnosed if average of 5 consecutive blood pressure (BP) measurements obtained using a mercury sphygmomanometer was equal to or higher than 140 systolic and/or 90 mmHg diastolic or the individual is on antihypertensive medication. Hyperhomocysteinemia (HHcy) was defined as Hcy > 10 µmol/L.

Results

Of the 156 participants, 72 (43.5%) were hypertensive, of whom 18 had HHcy. Subjects with HHcy were significantly (p < 0.05) older (41.5 vs. 40.6yrs), had lower HDL-cholesterol (0.6 vs. 0.8 mmol/L) and higher systolic (145.5 vs. 126.0 mmHg) and diastolic BP (92.9 vs. 79.6 mmHg), compared to those without HHcy. Intake of alcohol and a 1 yr increase in age were respectively and significantly (p < 0.05) associated with a 1.54 and 0.10 µmol/L increase in Hcy. In a multivariable model adjusted for age, sex and body mass index, a 1 µmol/L increase in Hcy, was associated with a 1.69 mmHg and 1.34 mmHg increase in systolic and diastolic pressure (p < 0.0001) respectively; and a 0.01 mmol/L decrease in HDL-cholesterol (p < 0.05).

Conclusion

HHcy occurs among hypertensive Nigerians and it is independently associated with age, HDL-cholesterol, systolic and diastolic BP.
Appendix
Available only for authorised users
Literature
1.
go back to reference Murray CJ, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. 2020;396(10258):1223–1249. Murray CJ, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. 2020;396(10258):1223–1249.
2.
go back to reference WHO. A Global Brief on Hypertension, World Health Day 2013 WHO. A Global Brief on Hypertension, World Health Day 2013
3.
go back to reference Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6.CrossRef Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6.CrossRef
4.
go back to reference Wu Y, Huxley R, Li L, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from the China National Nutrition and Health Survey 2002. Circulation. 2008;118(25):2679–86.CrossRef Wu Y, Huxley R, Li L, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from the China National Nutrition and Health Survey 2002. Circulation. 2008;118(25):2679–86.CrossRef
5.
go back to reference Towfighi A, Markovic D, Ovbiagele B. Pronounced association of elevated serum homocysteine with stroke in subgroups of individuals: a nationwide study. J Neurol Sci. 2010;298(1–2):153–7.CrossRef Towfighi A, Markovic D, Ovbiagele B. Pronounced association of elevated serum homocysteine with stroke in subgroups of individuals: a nationwide study. J Neurol Sci. 2010;298(1–2):153–7.CrossRef
6.
go back to reference van Guldener C, Nanayakkara PW. Stehouwer CDJChr Homocysteine and blood pressure. 2003;5(1):26. van Guldener C, Nanayakkara PW. Stehouwer CDJChr Homocysteine and blood pressure. 2003;5(1):26.
7.
go back to reference Perla-Kajan J, Utyro O, Rusek M, Malinowska A, Sitkiewicz E, Jakubowski H. N-Homocysteinylation impairs collagen cross-linking in cystathionine beta-synthase-deficient mice: a novel mechanism of connective tissue abnormalities. FASEB J. 2016;30(11):3810–21.CrossRef Perla-Kajan J, Utyro O, Rusek M, Malinowska A, Sitkiewicz E, Jakubowski H. N-Homocysteinylation impairs collagen cross-linking in cystathionine beta-synthase-deficient mice: a novel mechanism of connective tissue abnormalities. FASEB J. 2016;30(11):3810–21.CrossRef
8.
go back to reference Bonaa KH, Njolstad I, Ueland PM, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354(15):1578–88.CrossRef Bonaa KH, Njolstad I, Ueland PM, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354(15):1578–88.CrossRef
9.
go back to reference Investigators HOPEH. Homocysteine Lowering with Folic Acid and B Vitamin in Vascular Disease. 2006 343 2006. Investigators HOPEH. Homocysteine Lowering with Folic Acid and B Vitamin in Vascular Disease. 2006 343 2006.
10.
go back to reference Yang B, Fan S, Zhi X, et al. Interactions of homocysteine and conventional predisposing factors on hypertension in Chinese adults. J Clin Hypertens (Greenwich ). 2017;19(11):1162–70.CrossRef Yang B, Fan S, Zhi X, et al. Interactions of homocysteine and conventional predisposing factors on hypertension in Chinese adults. J Clin Hypertens (Greenwich ). 2017;19(11):1162–70.CrossRef
11.
go back to reference Augustine N. ODILI BSC, Benjamin DANLADI, Peter C. NWAKILE, Innocent C. OKOYE, Umar ABDULLAHI, Maxwell N. NWEGBU, Kefas ZAWAYA, Ime ESSIEN, Kabiru SADA, John O. OGEDENGBE, Akinyemi AJE, Godsent ISIGUZO. Prevalence, Awareness, Treatment and Control of Hypertension in Nigeria: Data from a nationwide survey 2017. Glob Heart. 2020;15(1):47. Augustine N. ODILI BSC, Benjamin DANLADI, Peter C. NWAKILE, Innocent C. OKOYE, Umar ABDULLAHI, Maxwell N. NWEGBU, Kefas ZAWAYA, Ime ESSIEN, Kabiru SADA, John O. OGEDENGBE, Akinyemi AJE, Godsent ISIGUZO. Prevalence, Awareness, Treatment and Control of Hypertension in Nigeria: Data from a nationwide survey 2017. Glob Heart. 2020;15(1):47.
12.
go back to reference Nwakile PC, Chori BS, Danladi B, et al. Removing the mask on hypertension (REMAH) study: Design; quality of blood pressure phenotypes and characteristics of the first 490 participants. Blood Press. 2019:1–10. Nwakile PC, Chori BS, Danladi B, et al. Removing the mask on hypertension (REMAH) study: Design; quality of blood pressure phenotypes and characteristics of the first 490 participants. Blood Press. 2019:1–10.
13.
go back to reference World Medical Association Declaration of Helsinki: Recommendations Guiding Physicians in Biomedical Research Involving Human Subjects. JAMA; 3/19/1997, 1997. World Medical Association Declaration of Helsinki: Recommendations Guiding Physicians in Biomedical Research Involving Human Subjects. JAMA; 3/19/1997, 1997.
14.
go back to reference Onyemelukwe OU, Maiha BB. Prevalence of hyperhomocysteinaemia, selected determinants and relation to hypertension severity in Northern-Nigerian hypertensives: the ABU homocysteine survey. Ghana Med J. 2020;54(1):17–29.CrossRef Onyemelukwe OU, Maiha BB. Prevalence of hyperhomocysteinaemia, selected determinants and relation to hypertension severity in Northern-Nigerian hypertensives: the ABU homocysteine survey. Ghana Med J. 2020;54(1):17–29.CrossRef
15.
go back to reference Engvall E, Perlmann P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol. 1972;109(1):129–135. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol. 1972;109(1):129–135.
17.
go back to reference Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219.CrossRef Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219.CrossRef
18.
go back to reference Sacco RL, Adams R, Albers G, et al. Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: the American Academy of Neurology affirms the value of this guideline. 2006;113(10):e409–49. Sacco RL, Adams R, Albers G, et al. Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: the American Academy of Neurology affirms the value of this guideline. 2006;113(10):e409–49.
19.
go back to reference McCully KS. Homocysteine, vitamins, and vascular disease prevention. Am J Clin Nutr. 2007;86(5):1563s–8s.CrossRef McCully KS. Homocysteine, vitamins, and vascular disease prevention. Am J Clin Nutr. 2007;86(5):1563s–8s.CrossRef
20.
go back to reference Ajuluchukwu A, Oluwatowoju I, Adebayo K, Onakoya AJWJLSMR. Plasma Total Homocysteine in Diverse Cardiovascular Diseases in Urban Africans. 2011;1:126–32. Ajuluchukwu A, Oluwatowoju I, Adebayo K, Onakoya AJWJLSMR. Plasma Total Homocysteine in Diverse Cardiovascular Diseases in Urban Africans. 2011;1:126–32.
21.
go back to reference Marie T. Ruel NM, Lisa Smith. Patterns and Determinants of Fruit and Vegetable Consumption in sub-Saharan Africa: A Multicountry Comparison. International Food Policy Research Institute;2005. Marie T. Ruel NM, Lisa Smith. Patterns and Determinants of Fruit and Vegetable Consumption in sub-Saharan Africa: A Multicountry Comparison. International Food Policy Research Institute;2005.
22.
go back to reference Miller V, Yusuf S, Chow CK, et al. Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet Global Health. 2016;4(10):e695-703.CrossRef Miller V, Yusuf S, Chow CK, et al. Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet Global Health. 2016;4(10):e695-703.CrossRef
23.
go back to reference Guo S, Pang H, Guo H, et al. Ethnic differences in the prevalence of high homocysteine levels among low-income rural Kazakh and Uyghur adults in far western China and its implications for preventive public health. Health. 2015;12(5):5373–85. Guo S, Pang H, Guo H, et al. Ethnic differences in the prevalence of high homocysteine levels among low-income rural Kazakh and Uyghur adults in far western China and its implications for preventive public health. Health. 2015;12(5):5373–85.
24.
go back to reference Chang Y, Li Y, Guo X, Chen Y, Dai D, Sun Y. The Prevalence of Hypertension Accompanied by High Homocysteine and its Risk Factors in a Rural Population: A Cross-Sectional Study from Northeast China. Int J Environ Res Public Health. 2017;14(4). Chang Y, Li Y, Guo X, Chen Y, Dai D, Sun Y. The Prevalence of Hypertension Accompanied by High Homocysteine and its Risk Factors in a Rural Population: A Cross-Sectional Study from Northeast China. Int J Environ Res Public Health. 2017;14(4).
25.
go back to reference de Bree A, van der Put NM, Mennen LI, et al. Prevalences of hyperhomocysteinemia, unfavorable cholesterol profile and hypertension in European populations. Eur J Clin Nutr. 2005;59(4):480–8.CrossRef de Bree A, van der Put NM, Mennen LI, et al. Prevalences of hyperhomocysteinemia, unfavorable cholesterol profile and hypertension in European populations. Eur J Clin Nutr. 2005;59(4):480–8.CrossRef
26.
go back to reference Ilhan N, Kucuksu M, Kaman D, Ilhan N, Ozbay Y. The 677 C/T MTHFR polymorphism is associated with essential hypertension, coronary artery disease, and higher homocysteine levels. Arch Med Res. 2008;39(1):125–30.CrossRef Ilhan N, Kucuksu M, Kaman D, Ilhan N, Ozbay Y. The 677 C/T MTHFR polymorphism is associated with essential hypertension, coronary artery disease, and higher homocysteine levels. Arch Med Res. 2008;39(1):125–30.CrossRef
27.
go back to reference Wang H, Jiang X, Yang F, et al. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood. 2003;101(10):3901–7.CrossRef Wang H, Jiang X, Yang F, et al. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood. 2003;101(10):3901–7.CrossRef
28.
go back to reference Refsum H, Nurk E, Smith AD, et al. The Hordaland Homocysteine Study: A Community-Based Study of Homocysteine, Its Determinants, and Associations with Disease. The Journal of Nutrition. 2006;136(6):1731S-1740S.CrossRef Refsum H, Nurk E, Smith AD, et al. The Hordaland Homocysteine Study: A Community-Based Study of Homocysteine, Its Determinants, and Associations with Disease. The Journal of Nutrition. 2006;136(6):1731S-1740S.CrossRef
29.
go back to reference Arruda VR, von Zuben PM, Chiaparini LC, Annichino-Bizzacchi JM, Costa FFJT, haemostasis. The mutation Ala677→ Val in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis. 1997;77(05):0818–0821. Arruda VR, von Zuben PM, Chiaparini LC, Annichino-Bizzacchi JM, Costa FFJT, haemostasis. The mutation Ala677→ Val in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis. 1997;77(05):0818–0821.
30.
go back to reference Yadav AS, Bhagwat VR, Rathod IM. Relationship of plasma homocysteine with lipid profile parameters in ischemic heart disease. Indian J Clin Biochem. 2006;21(1):106–10.CrossRef Yadav AS, Bhagwat VR, Rathod IM. Relationship of plasma homocysteine with lipid profile parameters in ischemic heart disease. Indian J Clin Biochem. 2006;21(1):106–10.CrossRef
31.
go back to reference Momin M, Jia J, Fan F, et al. Relationship between plasma homocysteine level and lipid profiles in a community-based Chinese population. Lipids Health Dis. 2017;16(1):54.CrossRef Momin M, Jia J, Fan F, et al. Relationship between plasma homocysteine level and lipid profiles in a community-based Chinese population. Lipids Health Dis. 2017;16(1):54.CrossRef
32.
go back to reference Mahalle N, Kulkarni MV, Garg MK, Naik SS. Vitamin B12 deficiency and hyperhomocysteinemia as correlates of cardiovascular risk factors in Indian subjects with coronary artery disease. J Cardiol. 2013;61(4):289–94.CrossRef Mahalle N, Kulkarni MV, Garg MK, Naik SS. Vitamin B12 deficiency and hyperhomocysteinemia as correlates of cardiovascular risk factors in Indian subjects with coronary artery disease. J Cardiol. 2013;61(4):289–94.CrossRef
33.
go back to reference Mikael LG, Genest J Jr, Rozen R. Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ Res. 2006;98(4):564–71.CrossRef Mikael LG, Genest J Jr, Rozen R. Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ Res. 2006;98(4):564–71.CrossRef
34.
go back to reference Namekata K, Enokido Y, Ishii I, Nagai Y, Harada T, Kimura H. Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J Biol Chem. 2004;279(51):52961–9.CrossRef Namekata K, Enokido Y, Ishii I, Nagai Y, Harada T, Kimura H. Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J Biol Chem. 2004;279(51):52961–9.CrossRef
35.
go back to reference Velez-Carrasco W, Merkel M, Twiss CO, Smith JD. Dietary methionine effects on plasma homocysteine and HDL metabolism in mice. J Nutr Biochem. 2008;19(6):362–70.CrossRef Velez-Carrasco W, Merkel M, Twiss CO, Smith JD. Dietary methionine effects on plasma homocysteine and HDL metabolism in mice. J Nutr Biochem. 2008;19(6):362–70.CrossRef
36.
go back to reference Horton JD, Shimomura I. Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis. Curr Opin Lipidol. 1999;10(2):143–50.CrossRef Horton JD, Shimomura I. Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis. Curr Opin Lipidol. 1999;10(2):143–50.CrossRef
37.
go back to reference McMahon JA, Skeaff CM, Williams SM, Green TJ. Lowering Homocysteine with B Vitamins Has No Effect on Blood Pressure in Older Adults. The Journal of Nutrition; 5/1/2007, 2007. McMahon JA, Skeaff CM, Williams SM, Green TJ. Lowering Homocysteine with B Vitamins Has No Effect on Blood Pressure in Older Adults. The Journal of Nutrition; 5/1/2007, 2007.
38.
go back to reference Sundström J, Sullivan L, D’Agostino RB, et al. Plasma homocysteine, hypertension incidence, and blood pressure tracking: the Framingham Heart Study. Hypertension. 2003;42(6):1100–5.CrossRef Sundström J, Sullivan L, D’Agostino RB, et al. Plasma homocysteine, hypertension incidence, and blood pressure tracking: the Framingham Heart Study. Hypertension. 2003;42(6):1100–5.CrossRef
39.
go back to reference Sutton-Tyrrell K, Bostom A, Selhub J, Zeigler-Johnson C. High homocysteine levels are independently related to isolated systolic hypertension in older adults. Circulation. 1997;96(6):1745–9.CrossRef Sutton-Tyrrell K, Bostom A, Selhub J, Zeigler-Johnson C. High homocysteine levels are independently related to isolated systolic hypertension in older adults. Circulation. 1997;96(6):1745–9.CrossRef
40.
go back to reference C.Tyagi USaS. Homocysteine and Hypertension in Diabetes: Does PPAR? Have a Regulatory Role? PPAR Research. 2010;2010. C.Tyagi USaS. Homocysteine and Hypertension in Diabetes: Does PPAR? Have a Regulatory Role? PPAR Research. 2010;2010.
41.
go back to reference Stehouwer CD, van Guldener CJCC, Medicine L. Does homocysteine cause hypertension? 2003;41(11):1408–1411. Stehouwer CD, van Guldener CJCC, Medicine L. Does homocysteine cause hypertension? 2003;41(11):1408–1411.
42.
go back to reference Veeranki S, Tyagi SC. Defective homocysteine metabolism: potential implications for skeletal muscle malfunction. Int J Mol Sci. 2013;14(7):15074–91.CrossRef Veeranki S, Tyagi SC. Defective homocysteine metabolism: potential implications for skeletal muscle malfunction. Int J Mol Sci. 2013;14(7):15074–91.CrossRef
43.
go back to reference Lim U, Cassano PA. Homocysteine and blood pressure in the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol. 2002;156(12):1105–13.CrossRef Lim U, Cassano PA. Homocysteine and blood pressure in the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol. 2002;156(12):1105–13.CrossRef
44.
go back to reference Janson JJ, Galarza CR, Murua A, et al. Prevalence of hyperhomocysteinemia in an elderly population. Am J Hypertens. 2002;15(5):394–7.CrossRef Janson JJ, Galarza CR, Murua A, et al. Prevalence of hyperhomocysteinemia in an elderly population. Am J Hypertens. 2002;15(5):394–7.CrossRef
45.
go back to reference El-Sammak M, Kandil M, El-Hifni S, Hosni R, Ragab M. Elevated plasma homocysteine is positively associated with age independent of C677T mutation of the methylenetetrahydrofolate reductase gene in selected Egyptian subjects. Int J Med Sci. 2004;1(3):181–92.CrossRef El-Sammak M, Kandil M, El-Hifni S, Hosni R, Ragab M. Elevated plasma homocysteine is positively associated with age independent of C677T mutation of the methylenetetrahydrofolate reductase gene in selected Egyptian subjects. Int J Med Sci. 2004;1(3):181–92.CrossRef
46.
go back to reference Halsted CH, Villanueva JA, Devlin AM, Chandler CJ. Metabolic interactions of alcohol and folate. J Nutr. 2002;132(8 Suppl):2367S-2372S.CrossRef Halsted CH, Villanueva JA, Devlin AM, Chandler CJ. Metabolic interactions of alcohol and folate. J Nutr. 2002;132(8 Suppl):2367S-2372S.CrossRef
47.
go back to reference Domagala TB, Lacinski M, Trzeciak WH, Mackness B, Mackness MI, Jakubowski H. The correlation of homocysteine-thiolactonase activity of the paraoxonase (PON1) protein with coronary heart disease status. Cell Mol Biol (Noisy -le-grand). 2006;52(5):4–10. Domagala TB, Lacinski M, Trzeciak WH, Mackness B, Mackness MI, Jakubowski H. The correlation of homocysteine-thiolactonase activity of the paraoxonase (PON1) protein with coronary heart disease status. Cell Mol Biol (Noisy -le-grand). 2006;52(5):4–10.
48.
go back to reference Qin X, Li Y, Sun N, et al. Elevated Homocysteine Concentrations Decrease the Antihypertensive Effect of Angiotensin-Converting Enzyme Inhibitors in Hypertensive Patients. Arterioscler Thromb Vasc Biol. 2017;37(1):166–72.CrossRef Qin X, Li Y, Sun N, et al. Elevated Homocysteine Concentrations Decrease the Antihypertensive Effect of Angiotensin-Converting Enzyme Inhibitors in Hypertensive Patients. Arterioscler Thromb Vasc Biol. 2017;37(1):166–72.CrossRef
49.
go back to reference Sood HS, Hunt MJ, Tyagi SC. Peroxisome proliferator ameliorates endothelial dysfunction in a murine model of hyperhomocysteinemia. Am J Physiol Lung Cell Mol Physiol. 2003;284(2):L333-341.CrossRef Sood HS, Hunt MJ, Tyagi SC. Peroxisome proliferator ameliorates endothelial dysfunction in a murine model of hyperhomocysteinemia. Am J Physiol Lung Cell Mol Physiol. 2003;284(2):L333-341.CrossRef
Metadata
Title
Hyperhomocysteinemia and its relations to conventional risk factors for cardiovascular diseases in adult Nigerians: the REMAH study
Authors
Babangida S. Chori
Benjamin Danladi
Bassey A. Inyang
Michael P. Okoh
Maxwell M. Nwegbu
Adewale L. Alli
Augustine N. Odili
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2021
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-01913-x

Other articles of this Issue 1/2021

BMC Cardiovascular Disorders 1/2021 Go to the issue