Skip to main content
Top
Published in: Cardiovascular Toxicology 5/2019

01-10-2019 | Fetal Alcohol Spectrum Disorder

Prenatal Alcohol Exposure Causes Adverse Cardiac Extracellular Matrix Changes and Dysfunction in Neonatal Mice

Authors: Van K. Ninh, Elia C. El Hajj, Alan J. Mouton, Jason D. Gardner

Published in: Cardiovascular Toxicology | Issue 5/2019

Login to get access

Abstract

Fetal alcohol syndrome (FAS) is the most severe condition of fetal alcohol spectrum disorders (FASD) and is associated with congenital heart defects. However, more subtle defects such as ventricular wall thinning and cardiac compliance may be overlooked in FASD. Our studies focus on the role of cardiac fibroblasts in the neonatal heart, and how they are affected by prenatal alcohol exposure (PAE). We hypothesize that PAE affects fibroblast function contributing to dysregulated collagen synthesis, which leads to cardiac dysfunction. To investigate these effects, pregnant C57/BL6 mice were intraperitoneally injected with 2.9 g EtOH/kg dose to achieve a blood alcohol content of approximately 0.35 on gestation days 6.75 and 7.25. Pups were sacrificed on neonatal day 5 following echocardiography measurements of left ventricular (LV) chamber dimension and function. Hearts were used for primary cardiac fibroblast isolation or protein expression analysis. PAE animals had thinner ventricular walls than saline exposed animals, which was associated with increased LV wall stress and decreased ejection fraction. In isolated fibroblasts, PAE decreased collagen I/III ratio and increased gene expression of profibrotic markers, including α-smooth muscle actin and lysyl oxidase. Notch1 signaling was assessed as a possible mechanism for fibroblast activation, and indicated that gene expression of Notch1 receptor and downstream Hey1 transcription factor were increased. Cardiac tissue analysis revealed decreased collagen I/III ratio and increased protein expression of α-smooth muscle actin and lysyl oxidase. However, Notch1 signaling components decreased in whole heart tissue. Our study demonstrates that PAE caused adverse changes in the cardiac collagen profile and a decline in cardiac function in the neonatal heart.
Literature
7.
go back to reference Naimi, T. S., Lipscomb, L. E., Brewer, R. D., & Gilbert, B. C. (2003). Binge drinking in the preconception period and the risk of unintended pregnancy: Implications for women and their children. Pediatrics, 111(5 Pt 2), 1136–1141.PubMed Naimi, T. S., Lipscomb, L. E., Brewer, R. D., & Gilbert, B. C. (2003). Binge drinking in the preconception period and the risk of unintended pregnancy: Implications for women and their children. Pediatrics, 111(5 Pt 2), 1136–1141.PubMed
10.
go back to reference Loser, H., & Majewski, F. (1977). Type and frequency of cardiac defects in embryofetal alcohol syndrome. Report of 16 cases. British Heart Journal, 39(12), 1374–1379.CrossRefPubMedPubMedCentral Loser, H., & Majewski, F. (1977). Type and frequency of cardiac defects in embryofetal alcohol syndrome. Report of 16 cases. British Heart Journal, 39(12), 1374–1379.CrossRefPubMedPubMedCentral
15.
go back to reference Turcotte, L. A., Aberle, N. S., Norby, F. L., Wang, G. J., & Ren, J. (2002). Influence of prenatal ethanol exposure on vascular contractile response in rat thoracic aorta. Alcohol, 26(2), 75–81.CrossRefPubMed Turcotte, L. A., Aberle, N. S., Norby, F. L., Wang, G. J., & Ren, J. (2002). Influence of prenatal ethanol exposure on vascular contractile response in rat thoracic aorta. Alcohol, 26(2), 75–81.CrossRefPubMed
19.
go back to reference Gershlak, J. R., Resnikoff, J. I., Sullivan, K. E., Williams, C., Wang, R. M., & Black, L. D. 3rd (2013). Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochemical and Biophysical Research Communications, 439(2), 161–166. https://doi.org/10.1016/j.bbrc.2013.08.074.CrossRefPubMed Gershlak, J. R., Resnikoff, J. I., Sullivan, K. E., Williams, C., Wang, R. M., & Black, L. D. 3rd (2013). Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochemical and Biophysical Research Communications, 439(2), 161–166. https://​doi.​org/​10.​1016/​j.​bbrc.​2013.​08.​074.CrossRefPubMed
23.
go back to reference El Hajj, E. C., El Hajj, M. C., Voloshenyuk, T. G., Mouton, A. J., Khoutorova, E., Molina, P. E., et al. (2014). Alcohol modulation of cardiac matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs favors collagen accumulation. Alcoholism: Clinical and Experimental Research, 38(2), 448–456. https://doi.org/10.1111/acer.12239.CrossRef El Hajj, E. C., El Hajj, M. C., Voloshenyuk, T. G., Mouton, A. J., Khoutorova, E., Molina, P. E., et al. (2014). Alcohol modulation of cardiac matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs favors collagen accumulation. Alcoholism: Clinical and Experimental Research, 38(2), 448–456. https://​doi.​org/​10.​1111/​acer.​12239.CrossRef
27.
go back to reference Vrancken Peeters, M. P., Gittenberger-de Groot, A. C., Mentink, M. M., & Poelmann, R. E. (1999). Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anatomy and Embryology (Berlin), 199(4), 367–378.CrossRef Vrancken Peeters, M. P., Gittenberger-de Groot, A. C., Mentink, M. M., & Poelmann, R. E. (1999). Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anatomy and Embryology (Berlin), 199(4), 367–378.CrossRef
29.
go back to reference Xing, Y., Bai, R. Y., Yan, W. H., Han, X. F., Duan, P., Xu, Y., et al. (2007). Expression changes of Notch-related genes during the differentiation of human mesenchymal stem cells into neurons. Sheng Li Xue Bao, 59(3), 267–272.PubMed Xing, Y., Bai, R. Y., Yan, W. H., Han, X. F., Duan, P., Xu, Y., et al. (2007). Expression changes of Notch-related genes during the differentiation of human mesenchymal stem cells into neurons. Sheng Li Xue Bao, 59(3), 267–272.PubMed
30.
go back to reference Timmerman, L. A., Grego-Bessa, J., Raya, A., Bertran, E., Perez-Pomares, J. M., Diez, J., et al. (2004). Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes & Development, 18(1), 99–115. https://doi.org/10.1101/gad.276304.CrossRef Timmerman, L. A., Grego-Bessa, J., Raya, A., Bertran, E., Perez-Pomares, J. M., Diez, J., et al. (2004). Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes & Development, 18(1), 99–115. https://​doi.​org/​10.​1101/​gad.​276304.CrossRef
31.
go back to reference Forsyth, C. B., Shaikh, M., Bishehsari, F., Swanson, G., Voigt, R. M., Dodiya, H., et al. (2017). Alcohol feeding in mice promotes colonic hyperpermeability and changes in colonic organoid stem cell fate. Alcoholism: Clinical and Experimental Research, 41(12), 2100–2113. https://doi.org/10.1111/acer.13519.CrossRef Forsyth, C. B., Shaikh, M., Bishehsari, F., Swanson, G., Voigt, R. M., Dodiya, H., et al. (2017). Alcohol feeding in mice promotes colonic hyperpermeability and changes in colonic organoid stem cell fate. Alcoholism: Clinical and Experimental Research, 41(12), 2100–2113. https://​doi.​org/​10.​1111/​acer.​13519.CrossRef
32.
33.
38.
go back to reference Cavieres, M. F., & Smith, S. M. (2000). Genetic and developmental modulation of cardiac deficits in prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 24(1), 102–109.CrossRef Cavieres, M. F., & Smith, S. M. (2000). Genetic and developmental modulation of cardiac deficits in prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 24(1), 102–109.CrossRef
39.
go back to reference Bertrand, J., Floyd, L. L., & Weber, M. K., Fetal Alcohol Syndrome Prevention Team DoBD, Developmental Disabilities NCoBD, Developmental Disabilities CfDC, et al. (2005). Guidelines for identifying and referring persons with fetal alcohol syndrome. MMWR Recommendations and Reports, 54(RR-11), 1–14.PubMed Bertrand, J., Floyd, L. L., & Weber, M. K., Fetal Alcohol Syndrome Prevention Team DoBD, Developmental Disabilities NCoBD, Developmental Disabilities CfDC, et al. (2005). Guidelines for identifying and referring persons with fetal alcohol syndrome. MMWR Recommendations and Reports, 54(RR-11), 1–14.PubMed
43.
go back to reference Martinsen, B. J., et al. (2005) Cardiac development. In P. A. Iaizzo (Ed.), Handbook of cardiac anatomy, physiology, and devices (pp. 15–23). New Jersey: Humana Press.CrossRef Martinsen, B. J., et al. (2005) Cardiac development. In P. A. Iaizzo (Ed.), Handbook of cardiac anatomy, physiology, and devices (pp. 15–23). New Jersey: Humana Press.CrossRef
50.
go back to reference Capasso, J. M., Li, P., Guideri, G., Malhotra, A., Cortese, R., & Anversa, P. (1992). Myocardial mechanical, biochemical, and structural alterations induced by chronic ethanol ingestion in rats. Circulation Research, 71(2), 346–356.CrossRefPubMed Capasso, J. M., Li, P., Guideri, G., Malhotra, A., Cortese, R., & Anversa, P. (1992). Myocardial mechanical, biochemical, and structural alterations induced by chronic ethanol ingestion in rats. Circulation Research, 71(2), 346–356.CrossRefPubMed
52.
go back to reference Lorell, B. H., & Carabello, B. A. (2000). Left ventricular hypertrophy: Pathogenesis, detection, and prognosis. Circulation, 102(4), 470–479.CrossRefPubMed Lorell, B. H., & Carabello, B. A. (2000). Left ventricular hypertrophy: Pathogenesis, detection, and prognosis. Circulation, 102(4), 470–479.CrossRefPubMed
53.
go back to reference Wold, L. E., Norby, F. L., Hintz, K. K., Colligan, P. B., Epstein, P. N., & Ren, J. (2001). Prenatal ethanol exposure alters ventricular myocyte contractile function in the offspring of rats: Influence of maternal Mg2+ supplementation. Cardiovascular Toxicology, 1(3), 215–224.CrossRefPubMed Wold, L. E., Norby, F. L., Hintz, K. K., Colligan, P. B., Epstein, P. N., & Ren, J. (2001). Prenatal ethanol exposure alters ventricular myocyte contractile function in the offspring of rats: Influence of maternal Mg2+ supplementation. Cardiovascular Toxicology, 1(3), 215–224.CrossRefPubMed
54.
go back to reference Ren, J., Wold, L. E., Natavio, M., Ren, B. H., Hannigan, J. H., & Brown, R. A. (2002). Influence of prenatal alcohol exposure on myocardial contractile function in adult rat hearts: Role of intracellular calcium and apoptosis. Alcohol Alcohol, 37(1), 30–37.CrossRefPubMed Ren, J., Wold, L. E., Natavio, M., Ren, B. H., Hannigan, J. H., & Brown, R. A. (2002). Influence of prenatal alcohol exposure on myocardial contractile function in adult rat hearts: Role of intracellular calcium and apoptosis. Alcohol Alcohol, 37(1), 30–37.CrossRefPubMed
63.
go back to reference Boopathy, A. V., Pendergrass, K. D., Che, P. L., Yoon, Y. S., & Davis, M. E. (2013). Oxidative stress-induced Notch1 signaling promotes cardiogenic gene expression in mesenchymal stem cells. Stem Cell Research & Therapy, 4(2), 43. https://doi.org/10.1186/scrt190.CrossRef Boopathy, A. V., Pendergrass, K. D., Che, P. L., Yoon, Y. S., & Davis, M. E. (2013). Oxidative stress-induced Notch1 signaling promotes cardiogenic gene expression in mesenchymal stem cells. Stem Cell Research & Therapy, 4(2), 43. https://​doi.​org/​10.​1186/​scrt190.CrossRef
Metadata
Title
Prenatal Alcohol Exposure Causes Adverse Cardiac Extracellular Matrix Changes and Dysfunction in Neonatal Mice
Authors
Van K. Ninh
Elia C. El Hajj
Alan J. Mouton
Jason D. Gardner
Publication date
01-10-2019
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 5/2019
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-09503-8

Other articles of this Issue 5/2019

Cardiovascular Toxicology 5/2019 Go to the issue