Skip to main content
Top
Published in: Metabolic Brain Disease 2/2015

01-04-2015 | Review Article

GABA receptors in brain development, function, and injury

Published in: Metabolic Brain Disease | Issue 2/2015

Login to get access

Abstract

This review presents a brief overview of the γ-aminobutyric acid (GABA) system in the developing and mature central nervous system (CNS) and its potential connections to pathologies of the CNS. γ-aminobutyric acid (GABA) is a major neurotransmitter expressed from the embryonic stage and throughout life. At an early developmental stage, GABA acts in an excitatory manner and is implicated in many processes of neurogenesis, including neuronal proliferation, migration, differentiation, and preliminary circuit-building, as well as the development of critical periods. In the mature CNS, GABA acts in an inhibitory manner, a switch mediated by chloride/cation transporter expression and summarized in this review. GABA also plays a role in the development of interstitial neurons of the white matter, as well as in oligodendrocyte development. Although the underlying cellular mechanisms are not yet well understood, we present current findings for the role of GABA in neurological diseases with characteristic white matter abnormalities, including anoxic-ischemic injury, periventricular leukomalacia, and schizophrenia. Development abnormalities of the GABAergic system appear particularly relevant in the etiology of schizophrenia. This review also covers the potential role of GABA in mature brain injury, namely transient ischemia, stroke, and traumatic brain injury/post-traumatic epilepsy.
Literature
go back to reference Anderson SA, Kaznowski CE, Horn C, Rubenstein JLR, McConnell SK (2002) Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb Cortex 12(7):702–709CrossRefPubMed Anderson SA, Kaznowski CE, Horn C, Rubenstein JLR, McConnell SK (2002) Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb Cortex 12(7):702–709CrossRefPubMed
go back to reference Antonopoulos J, Pappas IS, Parnavelas JG (1997) Activation of the GABAA receptor inhibits the proliferative effects of bFGF in cortical progenitor cells. Eur J Neurosci 9(2):291–298CrossRefPubMed Antonopoulos J, Pappas IS, Parnavelas JG (1997) Activation of the GABAA receptor inhibits the proliferative effects of bFGF in cortical progenitor cells. Eur J Neurosci 9(2):291–298CrossRefPubMed
go back to reference Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of Γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50(2):291–314PubMed Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of Γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50(2):291–314PubMed
go back to reference Barres BA, Koroshetz WJ, Swartz KJ, Chun LL, Corey DP (1990) Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron 4(4):507–524CrossRefPubMed Barres BA, Koroshetz WJ, Swartz KJ, Chun LL, Corey DP (1990) Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron 4(4):507–524CrossRefPubMed
go back to reference Behar TN, Schaffner AE, Scott CA, O’Connell C, Barker JL (1998) Differential response of cortical plate and ventricular zone cells to GABA as a migration stimulus. J Neurosci 18(16):6378–6387PubMed Behar TN, Schaffner AE, Scott CA, O’Connell C, Barker JL (1998) Differential response of cortical plate and ventricular zone cells to GABA as a migration stimulus. J Neurosci 18(16):6378–6387PubMed
go back to reference Ben-Ari Y, Tseeb V, Raggozzino D, Khazipov R, Gaiarsa JL (1994) Gamma-aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life. Prog Brain Res 102:261–273. doi:10.1016/S0079-6123(08)60545-2 CrossRefPubMed Ben-Ari Y, Tseeb V, Raggozzino D, Khazipov R, Gaiarsa JL (1994) Gamma-aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life. Prog Brain Res 102:261–273. doi:10.​1016/​S0079-6123(08)60545-2 CrossRefPubMed
go back to reference Benes FM, Vincent SL, Marie A, Khan Y (1996) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75(4):1021–1031CrossRefPubMed Benes FM, Vincent SL, Marie A, Khan Y (1996) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75(4):1021–1031CrossRefPubMed
go back to reference Billiards SS, Haynes RL, Folkerth RD, Borenstein NS, Trachtenberg FL, Rowitch DH, Ligon KL, Volpe JJ, Kinney HC (2008) Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol 18(2):153–163. doi:10.1111/j.1750-3639.2007.00107.x Billiards SS, Haynes RL, Folkerth RD, Borenstein NS, Trachtenberg FL, Rowitch DH, Ligon KL, Volpe JJ, Kinney HC (2008) Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol 18(2):153–163. doi:10.​1111/​j.​1750-3639.​2007.​00107.​x
go back to reference Blednov YA, Benavidez JM, Black M, Leiter CR, Osterndorff-Kahanek E, Johnson D, Borghese CM et al (2014) GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice. PLoS ONE 9(1) Blednov YA, Benavidez JM, Black M, Leiter CR, Osterndorff-Kahanek E, Johnson D, Borghese CM et al (2014) GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice. PLoS ONE 9(1)
go back to reference Boue-Grabot E, Roudbaraki M, Bascles L, Tramu G, Bloch B, Garret M (1998) Expression of GABA receptor rho subunits in rat brain. J Neurochem 70(3):899–907CrossRefPubMed Boue-Grabot E, Roudbaraki M, Bascles L, Tramu G, Bloch B, Garret M (1998) Expression of GABA receptor rho subunits in rat brain. J Neurochem 70(3):899–907CrossRefPubMed
go back to reference Chagnac-Amitai Y, Connors BW (1989) Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 61(4):747–758PubMed Chagnac-Amitai Y, Connors BW (1989) Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 61(4):747–758PubMed
go back to reference Chen G, Trombley PQ, van den Pol AN (1995) GABA receptors precede glutamate receptors in hypothalamic development; differential regulation by astrocytes. J Neurophysiol 74(4):1473–1484PubMed Chen G, Trombley PQ, van den Pol AN (1995) GABA receptors precede glutamate receptors in hypothalamic development; differential regulation by astrocytes. J Neurophysiol 74(4):1473–1484PubMed
go back to reference Chun JM, Shatz CJ (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J Comp Neurol 282(4):555–569CrossRefPubMed Chun JM, Shatz CJ (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J Comp Neurol 282(4):555–569CrossRefPubMed
go back to reference Clarkson AN, Huang BS, MacIsaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABAergic tonic inhibition promotes post-stroke functional recovery. Nature 468(7321):305–309CrossRefPubMedCentralPubMed Clarkson AN, Huang BS, MacIsaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABAergic tonic inhibition promotes post-stroke functional recovery. Nature 468(7321):305–309CrossRefPubMedCentralPubMed
go back to reference Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C (2001) Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol Dis 8(5):723–742. doi:10.1006/nbdi.2001.0436 CrossRefPubMed Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C (2001) Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol Dis 8(5):723–742. doi:10.​1006/​nbdi.​2001.​0436 CrossRefPubMed
go back to reference Del Rio JA, Soriano E, Ferrer I (1992) Development of GABA-immunoreactivity in the neocortex of the mouse. J Comp Neurol 326(4):501–526CrossRefPubMed Del Rio JA, Soriano E, Ferrer I (1992) Development of GABA-immunoreactivity in the neocortex of the mouse. J Comp Neurol 326(4):501–526CrossRefPubMed
go back to reference Druga R (2009) Neocortical inhibitory system. Folia Biol 55(6):201–217 Druga R (2009) Neocortical inhibitory system. Folia Biol 55(6):201–217
go back to reference Eastwood SL, Harrison PJ (2003) Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol Psychiatry 8(9):821–831. doi:10.1038/sj.mp.4001371 CrossRef Eastwood SL, Harrison PJ (2003) Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol Psychiatry 8(9):821–831. doi:10.​1038/​sj.​mp.​4001371 CrossRef
go back to reference Fern R, Waxman SG, Ransom BR (1994) Modulation of anoxic injury in CNS white matter by adenosine and interaction between adenosine and GABA. J Neurophysiol 72(6):2609–2616PubMed Fern R, Waxman SG, Ransom BR (1994) Modulation of anoxic injury in CNS white matter by adenosine and interaction between adenosine and GABA. J Neurophysiol 72(6):2609–2616PubMed
go back to reference Fern R, Waxman SG, Ransom BR (1995) Endogenous GABA attenuates CNS white matter dysfunction following anoxia. J Neurosci Off J Soc Neurosci 15(1 Pt 2):699–708 Fern R, Waxman SG, Ransom BR (1995) Endogenous GABA attenuates CNS white matter dysfunction following anoxia. J Neurosci Off J Soc Neurosci 15(1 Pt 2):699–708
go back to reference Harauzov A, Spolidoro M, DiCristo G, De Pasquale R, Cancedda L, Pizzorusso T, Viegi A, Berardi N, Maffei L (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30(1):361–371CrossRefPubMed Harauzov A, Spolidoro M, DiCristo G, De Pasquale R, Cancedda L, Pizzorusso T, Viegi A, Berardi N, Maffei L (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30(1):361–371CrossRefPubMed
go back to reference Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20(15):5764–5774PubMedCentralPubMed Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20(15):5764–5774PubMedCentralPubMed
go back to reference Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Metitiri OE, Straub RE et al (2011) Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. J Neurosci 31(30):11088–11095CrossRefPubMedCentralPubMed Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Metitiri OE, Straub RE et al (2011) Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. J Neurosci 31(30):11088–11095CrossRefPubMedCentralPubMed
go back to reference Iwai Y, Fagiolini M, Obata K, Hensch TK (2003) Rapid critical period induction by tonic inhibition in visual cortex. J Neurosci 23(17):6695–6702PubMed Iwai Y, Fagiolini M, Obata K, Hensch TK (2003) Rapid critical period induction by tonic inhibition in visual cortex. J Neurosci 23(17):6695–6702PubMed
go back to reference Joshi D, Fung SJ, Rothwell A, Weickert CS (2012) Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia. Biol Psychiatry 72(9):725–733CrossRefPubMed Joshi D, Fung SJ, Rothwell A, Weickert CS (2012) Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia. Biol Psychiatry 72(9):725–733CrossRefPubMed
go back to reference Kinney HC, Haynes RL, Xu G, Andiman SE, Folkerth RD, Sleeper LA, Volpe JJ (2012) Neuron deficit in the white matter and subplate in periventricular leukomalacia. Ann Neurol 71(3):397–406CrossRefPubMedCentralPubMed Kinney HC, Haynes RL, Xu G, Andiman SE, Folkerth RD, Sleeper LA, Volpe JJ (2012) Neuron deficit in the white matter and subplate in periventricular leukomalacia. Ann Neurol 71(3):397–406CrossRefPubMedCentralPubMed
go back to reference Lee V, Maguire J (2014) The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circ 8. doi:10.3389/fncir.2014.00003 Lee V, Maguire J (2014) The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circ 8. doi:10.​3389/​fncir.​2014.​00003
go back to reference Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568PubMed Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568PubMed
go back to reference LoTurco JJ, Owens DF, Heath MJS, Davis MBE, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15(6):1287–1298CrossRefPubMed LoTurco JJ, Owens DF, Heath MJS, Davis MBE, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15(6):1287–1298CrossRefPubMed
go back to reference Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, Davis JM, Costa E (2010) Lower number of cerebellar purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci U S A 107(9):4407–4411CrossRefPubMedCentralPubMed Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, Davis JM, Costa E (2010) Lower number of cerebellar purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci U S A 107(9):4407–4411CrossRefPubMedCentralPubMed
go back to reference Miller LG, Galpern WR, Dunlap K, Dinarello CA, Turner TJ (1991) Interleukin-1 augments gamma-aminobutyric acidA receptor function in brain. Mol Pharmacol 39(2):105–108PubMed Miller LG, Galpern WR, Dunlap K, Dinarello CA, Turner TJ (1991) Interleukin-1 augments gamma-aminobutyric acidA receptor function in brain. Mol Pharmacol 39(2):105–108PubMed
go back to reference Misgeld U, Bijak M, Jarolimek W (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46(4):423–462CrossRefPubMed Misgeld U, Bijak M, Jarolimek W (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46(4):423–462CrossRefPubMed
go back to reference Mtchedlishvili Z, Lepsveridze E, Xu H, Kharlamov EA, Lu B, Kelly KM (2010) Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol Dis 38(3):464–475. doi:10.1016/j.nbd.2010.03.012 Mtchedlishvili Z, Lepsveridze E, Xu H, Kharlamov EA, Lu B, Kelly KM (2010) Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol Dis 38(3):464–475. doi:10.​1016/​j.​nbd.​2010.​03.​012
go back to reference Obrietan K, van den Pol AN (1998) GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons. J Neurophysiol 79(3):1360–1370PubMed Obrietan K, van den Pol AN (1998) GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons. J Neurophysiol 79(3):1360–1370PubMed
go back to reference Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998) Reelin is preferentially expressed in neurons synthesizing γ-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci U S A 95(6):3221–3226CrossRefPubMedCentralPubMed Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998) Reelin is preferentially expressed in neurons synthesizing γ-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci U S A 95(6):3221–3226CrossRefPubMedCentralPubMed
go back to reference Petanjek Z, Dujmović A, Kostović I, Esclapez M (2008) Distinct origin of GABA-ergic neurons in forebrain of man, nonhuman primates and lower mammals. Coll Antropol 32(Suppl 1):9–17PubMed Petanjek Z, Dujmović A, Kostović I, Esclapez M (2008) Distinct origin of GABA-ergic neurons in forebrain of man, nonhuman primates and lower mammals. Coll Antropol 32(Suppl 1):9–17PubMed
go back to reference Pfeffer CK, Stein V, Keating DJ, Maier H, Rinke I, Rudhard Y, Hentschke M, Rune GM, Jentsch TJ, Hübner CA (2009) NKCC1-dependent GABAergic excitation drives synaptic network maturation during early hippocampal development. J Neurosci 29(11):3419–3430. doi:10.1523/JNEUROSCI.1377-08.2009 CrossRefPubMed Pfeffer CK, Stein V, Keating DJ, Maier H, Rinke I, Rudhard Y, Hentschke M, Rune GM, Jentsch TJ, Hübner CA (2009) NKCC1-dependent GABAergic excitation drives synaptic network maturation during early hippocampal development. J Neurosci 29(11):3419–3430. doi:10.​1523/​JNEUROSCI.​1377-08.​2009 CrossRefPubMed
go back to reference Riccio O, Murthy S, Szabo G, Vutskits L, Kiss JZ, Vitalis T, Lebrand C, Dayer AG (2012) New pool of cortical interneuron precursors in the early postnatal dorsal white matter. Cereb Cortex 22(1):86–98. doi:10.1093/cercor/bhr086 Riccio O, Murthy S, Szabo G, Vutskits L, Kiss JZ, Vitalis T, Lebrand C, Dayer AG (2012) New pool of cortical interneuron precursors in the early postnatal dorsal white matter. Cereb Cortex 22(1):86–98. doi:10.​1093/​cercor/​bhr086
go back to reference Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl|[minus]| co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397(6716):251–255. doi:10.1038/16697 CrossRefPubMed Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl|[minus]| co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397(6716):251–255. doi:10.​1038/​16697 CrossRefPubMed
go back to reference Robinson S, Li Q, DeChant A, Cohen ML (2006) Neonatal loss of Γ–aminobutyric acid pathway expression after human perinatal brain injury. J Neurosurg 104(6 Suppl):396PubMedCentralPubMed Robinson S, Li Q, DeChant A, Cohen ML (2006) Neonatal loss of Γ–aminobutyric acid pathway expression after human perinatal brain injury. J Neurosurg 104(6 Suppl):396PubMedCentralPubMed
go back to reference Rudy B, Fishell G, Lee SH, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100 % of neocortical GABAergic neurons. Dev Neurobiol 71(1):45–61. doi:10.1002/dneu.20853 Rudy B, Fishell G, Lee SH, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100 % of neocortical GABAergic neurons. Dev Neurobiol 71(1):45–61. doi:10.​1002/​dneu.​20853
go back to reference Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, Riddle A et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63(4):520–530CrossRefPubMedCentralPubMed Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, Riddle A et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63(4):520–530CrossRefPubMedCentralPubMed
go back to reference Strata F, Atzori M, Molnar M, Ugolini G, Tempia F, Cherubini E (1997) A pacemaker current in dye-coupled hilar interneurons contributes to the generation of giant GABAergic potentials in developing hippocampus. J Neurosci 17(4):1435–1446PubMed Strata F, Atzori M, Molnar M, Ugolini G, Tempia F, Cherubini E (1997) A pacemaker current in dye-coupled hilar interneurons contributes to the generation of giant GABAergic potentials in developing hippocampus. J Neurosci 17(4):1435–1446PubMed
go back to reference Suárez-Solá ML, González-Delgado FJ, Pueyo-Morlans M, Medina-Bolívar OC, Hernández-Acosta NC, González-Gómez M, Meyer G (2009) Neurons in the white matter of the adult human neocortex. Front Neuroanat 3:7. doi:10.3389/neuro.05.007.2009 Suárez-Solá ML, González-Delgado FJ, Pueyo-Morlans M, Medina-Bolívar OC, Hernández-Acosta NC, González-Gómez M, Meyer G (2009) Neurons in the white matter of the adult human neocortex. Front Neuroanat 3:7. doi:10.​3389/​neuro.​05.​007.​2009
go back to reference Sun D, Murali SG (1999) Na+−K+−2Cl−cotransporter in immature cortical neurons: a role in intracellular Cl−regulation. J Neurophysiol 81(4):1939–1948PubMed Sun D, Murali SG (1999) Na+−K+−2Cl−cotransporter in immature cortical neurons: a role in intracellular Cl−regulation. J Neurophysiol 81(4):1939–1948PubMed
go back to reference Tan S-S, Kalloniatis M, Sturm K, Tam PL, Reese BE, Faulkner-Jones B (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21(2):295–304CrossRefPubMed Tan S-S, Kalloniatis M, Sturm K, Tam PL, Reese BE, Faulkner-Jones B (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21(2):295–304CrossRefPubMed
go back to reference van den Pol AN, Gao XB, Patrylo PR, Ghosh PK, Obrietan K (1998) Glutamate inhibits GABA excitatory activity in developing neurons. J Neurosci 18(24):10749–10761 van den Pol AN, Gao XB, Patrylo PR, Ghosh PK, Obrietan K (1998) Glutamate inhibits GABA excitatory activity in developing neurons. J Neurosci 18(24):10749–10761
go back to reference Yang Y, Fung SJ, Rothwell A, Tianmei S, Weickert CS (2011) Increased interstitial white matter neuron density in the DLPFC of people with schizophrenia. Biol Psychiatry 69(1):63–70CrossRefPubMedCentralPubMed Yang Y, Fung SJ, Rothwell A, Tianmei S, Weickert CS (2011) Increased interstitial white matter neuron density in the DLPFC of people with schizophrenia. Biol Psychiatry 69(1):63–70CrossRefPubMedCentralPubMed
Metadata
Title
GABA receptors in brain development, function, and injury
Publication date
01-04-2015
Published in
Metabolic Brain Disease / Issue 2/2015
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-014-9560-1

Other articles of this Issue 2/2015

Metabolic Brain Disease 2/2015 Go to the issue