Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Human Alphaherpesvirus 3 | Research

Exploring human mixing patterns based on time use and social contact data and their implications for infectious disease transmission models

Authors: Thang Van Hoang, Lander Willem, Pietro Coletti, Kim Van Kerckhove, Joeri Minnen, Philippe Beutels, Niel Hens

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

The increasing availability of data on social contact patterns and time use provides invaluable information for studying transmission dynamics of infectious diseases. Social contact data provide information on the interaction of people in a population whereas the value of time use data lies in the quantification of exposure patterns. Both have been used as proxies for transmission risks within in a population and the combination of both sources has led to investigate which contacts are more suitable to describe these transmission risks.

Methods

We used social contact and time use data from 1707 participants from a survey conducted in Flanders, Belgium in 2010–2011. We calculated weighted exposure time and social contact matrices to analyze age- and gender-specific mixing patterns and to quantify behavioral changes by distance from home. We compared the value of both separate and combined data sources for explaining seroprevalence and incidence data on parvovirus-B19, Varicella-Zoster virus (VZV) and influenza like illnesses (ILI), respectively.

Results

Assortative mixing and inter-generational interaction is more pronounced in the exposure matrix due to the high proportion of time spent at home. This pattern is less pronounced in the social contact matrix, which is more impacted by the reported contacts at school and work. The average number of contacts declined with distance. On the individual-level, we observed an increase in the number of contacts and the transmission potential by distance when travelling. We found that both social contact data and time use data provide a good match with the seroprevalence and incidence data at hand. When comparing the use of different combinations of both data sources, we found that the social contact matrix based on close contacts of at least 4 h appeared to be the best proxy for parvovirus-B19 transmission. Social contacts and exposure time were both on their own able to explain VZV seroprevalence data though combining both scored best. Compared with the contact approach, the time use approach provided the better fit to the ILI incidence data.

Conclusions

Our work emphasises the common and complementary value of time use and social contact data for analysing mixing behavior and analysing infectious disease transmission. We derived spatial, temporal, age-, gender- and distance-specific mixing patterns, which are informative for future modelling studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008;5(3):74.CrossRef Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008;5(3):74.CrossRef
2.
go back to reference Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006;164(10):936–44.CrossRef Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006;164(10):936–44.CrossRef
3.
go back to reference Goeyvaerts N, Hens N, Ogunjimi B, Aerts M, Shkedy Z, Damme PV, Beutels P. Estimating infectious disease parameters from data on social contacts and serological status. J Royal Stat Soc. 2010;59(2):255–77. Goeyvaerts N, Hens N, Ogunjimi B, Aerts M, Shkedy Z, Damme PV, Beutels P. Estimating infectious disease parameters from data on social contacts and serological status. J Royal Stat Soc. 2010;59(2):255–77.
4.
go back to reference Ogunjimi B, Hens N, Goeyvaerts N, Aerts M, Van Damme P, Beutels P. Using empirical social contact data to model person to person infectious disease transmission: an illustration for varicella. Math Biosci. 2009;218(2):80–7.CrossRef Ogunjimi B, Hens N, Goeyvaerts N, Aerts M, Van Damme P, Beutels P. Using empirical social contact data to model person to person infectious disease transmission: an illustration for varicella. Math Biosci. 2009;218(2):80–7.CrossRef
5.
go back to reference Bansal S, Grenfell BT, Meyers LA. When individual behaviour matters: homogeneous and network models in epidemiology. J Royal Soc Interface. 2007;4(16):879–91.CrossRef Bansal S, Grenfell BT, Meyers LA. When individual behaviour matters: homogeneous and network models in epidemiology. J Royal Soc Interface. 2007;4(16):879–91.CrossRef
9.
go back to reference Hoang T, Coletti P, Melegaro A, Wallinga J, Grijalva CG, Edmunds JW, Beutels P, Hens N. A systematic review of social contact surveys to inform transmission models of close-contact infections. Epidemiology. 2019;30(5):723–36.CrossRef Hoang T, Coletti P, Melegaro A, Wallinga J, Grijalva CG, Edmunds JW, Beutels P, Hens N. A systematic review of social contact surveys to inform transmission models of close-contact infections. Epidemiology. 2019;30(5):723–36.CrossRef
10.
go back to reference Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, Edmunds WJ. Using time-use data to parameterize models for the spread of close-contact infectious diseases. Am J Epidemiol. 2008;168(9):1082–90.CrossRef Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, Edmunds WJ. Using time-use data to parameterize models for the spread of close-contact infectious diseases. Am J Epidemiol. 2008;168(9):1082–90.CrossRef
11.
go back to reference De Cao E, Zagheni E, Manfredi P, Melegaro A. The relative importance of frequency of contacts and duration of exposure for the spread of directly transmitted infections. Biostatistics. 2014;15(3):470–83.CrossRef De Cao E, Zagheni E, Manfredi P, Melegaro A. The relative importance of frequency of contacts and duration of exposure for the spread of directly transmitted infections. Biostatistics. 2014;15(3):470–83.CrossRef
12.
go back to reference McCreesh N, Morrow C, Middelkoop K, Wood R, White RG. Estimating age-mixing patterns relevant for the transmission of airborne infections. Epidemics. 2019;28:100339.CrossRef McCreesh N, Morrow C, Middelkoop K, Wood R, White RG. Estimating age-mixing patterns relevant for the transmission of airborne infections. Epidemics. 2019;28:100339.CrossRef
13.
go back to reference Geilhufe M, Held L, Skrøvseth SO, Simonsen GS, Godtliebsen F. Power law approximations of movement network data for modeling infectious disease spread. Biometrical J. 2014;56(3):363–82.CrossRef Geilhufe M, Held L, Skrøvseth SO, Simonsen GS, Godtliebsen F. Power law approximations of movement network data for modeling infectious disease spread. Biometrical J. 2014;56(3):363–82.CrossRef
14.
go back to reference Meyer S, Held L. Power-law models for infectious disease spread. Ann Appl Stat. 2014;8(3):1612–39.CrossRef Meyer S, Held L. Power-law models for infectious disease spread. Ann Appl Stat. 2014;8(3):1612–39.CrossRef
15.
go back to reference Meyer S, Held L. Incorporating social contact data in spatio-temporal models for infectious disease spread. Biostatistics. 2017;18(2):338–51. Meyer S, Held L. Incorporating social contact data in spatio-temporal models for infectious disease spread. Biostatistics. 2017;18(2):338–51.
16.
go back to reference Danon L, House TA, Read JM, Keeling MJ. Social encounter networks: collective properties and disease transmission. J Royal Soc Interface. 2012;9(76):2826–33.CrossRef Danon L, House TA, Read JM, Keeling MJ. Social encounter networks: collective properties and disease transmission. J Royal Soc Interface. 2012;9(76):2826–33.CrossRef
17.
go back to reference van de Kassteele J, van Eijkeren J, Wallinga J, et al. Efficient estimation of age-specific social contact rates between men and women. Ann Appl Stat. 2017;11(1):320–39. van de Kassteele J, van Eijkeren J, Wallinga J, et al. Efficient estimation of age-specific social contact rates between men and women. Ann Appl Stat. 2017;11(1):320–39.
18.
go back to reference Van Hoang T, Coletti P, Kifle YW, Van Kerckhove K, Vercruysse S, Willem L, Beutels P, Hens N. Close contact infection dynamics over time: insights from a second large-scale social contact survey in flanders, belgium, in 2010–2011. BMC Infect Dis. 2021;21(1):1–15.CrossRef Van Hoang T, Coletti P, Kifle YW, Van Kerckhove K, Vercruysse S, Willem L, Beutels P, Hens N. Close contact infection dynamics over time: insights from a second large-scale social contact survey in flanders, belgium, in 2010–2011. BMC Infect Dis. 2021;21(1):1–15.CrossRef
21.
go back to reference Hens N, Shkedy Z, Aerts M, Faes C, Van Damme P, Beutels P. Modeling infectious disease parameters based on serological and social contact data: a modern statistical perspective, vol. 63. London: Springer; 2012. Hens N, Shkedy Z, Aerts M, Faes C, Van Damme P, Beutels P. Modeling infectious disease parameters based on serological and social contact data: a modern statistical perspective, vol. 63. London: Springer; 2012.
22.
go back to reference Bollaerts K, Antoine J, Van Casteren V, Ducoffre G, Hens N, Quoilin S. Contribution of respiratory pathogens to influenza-like illness consultations. Epidemiol Infect. 2013;141(10):2196–204.CrossRef Bollaerts K, Antoine J, Van Casteren V, Ducoffre G, Hens N, Quoilin S. Contribution of respiratory pathogens to influenza-like illness consultations. Epidemiol Infect. 2013;141(10):2196–204.CrossRef
23.
go back to reference Van Casteren V, Mertens K, Antoine J, Wanyama S, Thomas I, Bossuyt N. Clinical surveillance of the influenza a (h1n1) 2009 pandemic through the network of sentinel general practitioners. Arch Public Health. 2010;68(2):1–6. Van Casteren V, Mertens K, Antoine J, Wanyama S, Thomas I, Bossuyt N. Clinical surveillance of the influenza a (h1n1) 2009 pandemic through the network of sentinel general practitioners. Arch Public Health. 2010;68(2):1–6.
24.
go back to reference Little RJ, Rubin DB. Statistical Analysis with Missing Data vol. 793. John Wiley & Sons, U.S.A 2019. Little RJ, Rubin DB. Statistical Analysis with Missing Data vol. 793. John Wiley & Sons, U.S.A 2019.
25.
go back to reference Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3):1–67.CrossRef Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. J Stat Softw. 2011;45(3):1–67.CrossRef
26.
go back to reference Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci. 2007;8(3):206–13.CrossRef Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci. 2007;8(3):206–13.CrossRef
28.
go back to reference Schomaker M, Heumann C. Bootstrap inference when using multiple imputation. Stat Med. 2018;37(14):2252–66.CrossRef Schomaker M, Heumann C. Bootstrap inference when using multiple imputation. Stat Med. 2018;37(14):2252–66.CrossRef
30.
go back to reference Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduction ratio R\(_{0}\) in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–82.CrossRef Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduction ratio R\(_{0}\) in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–82.CrossRef
32.
go back to reference Goeyvaerts N, Hens N, Aerts M, Beutels P. Model structure analysis to estimate basic immunological processes and maternal risk for parvovirus B19. Biostatistics. 2010;12(2):283–302.CrossRef Goeyvaerts N, Hens N, Aerts M, Beutels P. Model structure analysis to estimate basic immunological processes and maternal risk for parvovirus B19. Biostatistics. 2010;12(2):283–302.CrossRef
33.
go back to reference Goeyvaerts N, Willem L, Van Kerckhove K, Vandendijck Y, Hanquet G, Beutels P, Hens N. Estimating dynamic transmission model parameters for seasonal influenza by fitting to age and season-specific influenza-like illness incidence. Epidemics. 2015;13:1–9.CrossRef Goeyvaerts N, Willem L, Van Kerckhove K, Vandendijck Y, Hanquet G, Beutels P, Hens N. Estimating dynamic transmission model parameters for seasonal influenza by fitting to age and season-specific influenza-like illness incidence. Epidemics. 2015;13:1–9.CrossRef
34.
go back to reference Eames KT, Tilston NL, Brooks-Pollock E, Edmunds WJ. Measured dynamic social contact patterns explain the spread of h1n1v influenza. PLoS Comput Biol. 2012;8(3):1002425.CrossRef Eames KT, Tilston NL, Brooks-Pollock E, Edmunds WJ. Measured dynamic social contact patterns explain the spread of h1n1v influenza. PLoS Comput Biol. 2012;8(3):1002425.CrossRef
35.
go back to reference Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput. 1995;16(5):1190–208.CrossRef Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput. 1995;16(5):1190–208.CrossRef
36.
go back to reference Vynnycky E, Pitman R, Siddiqui R, Gay N, Edmunds WJ. Estimating the impact of childhood influenza vaccination programmes in England and Wales. Vaccine. 2008;26(41):5321–30.CrossRef Vynnycky E, Pitman R, Siddiqui R, Gay N, Edmunds WJ. Estimating the impact of childhood influenza vaccination programmes in England and Wales. Vaccine. 2008;26(41):5321–30.CrossRef
37.
go back to reference Iozzi F, Trusiano F, Chinazzi M, Billari FC, Zagheni E, Merler S, Ajelli M, Del Fava E, Manfredi P. Little Italy: an agent-based approach to the estimation of contact patterns-fitting predicted matrices to serological data. PLoS Comput Biol. 2010;6(12):1001021.CrossRef Iozzi F, Trusiano F, Chinazzi M, Billari FC, Zagheni E, Merler S, Ajelli M, Del Fava E, Manfredi P. Little Italy: an agent-based approach to the estimation of contact patterns-fitting predicted matrices to serological data. PLoS Comput Biol. 2010;6(12):1001021.CrossRef
38.
go back to reference Melegaro A, Del Fava E, Poletti P, Merler S, Nyamukapa C, Williams J, Gregson S, Manfredi P. Social contact structures and time use patterns in the Manicaland province of Zimbabwe. PLoS ONE. 2017;12(1):0170459.CrossRef Melegaro A, Del Fava E, Poletti P, Merler S, Nyamukapa C, Williams J, Gregson S, Manfredi P. Social contact structures and time use patterns in the Manicaland province of Zimbabwe. PLoS ONE. 2017;12(1):0170459.CrossRef
39.
go back to reference Glorieux I, Minnen J, Tienoven TPv, Deyaert J, Mészáros E. Evolutions in time-use and division of labour of men and women. Revue Interventions économiques. Papers in Political Economy 2015;53. Glorieux I, Minnen J, Tienoven TPv, Deyaert J, Mészáros E. Evolutions in time-use and division of labour of men and women. Revue Interventions économiques. Papers in Political Economy 2015;53.
40.
go back to reference Minnen J, Glorieux I, Pieter van Tienoven T. Who works when? Towards a typology of weekly work patterns in Belgium. Time Soc. 2016;25(3):652–75.CrossRef Minnen J, Glorieux I, Pieter van Tienoven T. Who works when? Towards a typology of weekly work patterns in Belgium. Time Soc. 2016;25(3):652–75.CrossRef
41.
go back to reference Fu Y-C, Wang D-W, Chuang J-H. Representative contact diaries for modeling the spread of infectious diseases in Taiwan. PLoS ONE. 2012;7(10):45113.CrossRef Fu Y-C, Wang D-W, Chuang J-H. Representative contact diaries for modeling the spread of infectious diseases in Taiwan. PLoS ONE. 2012;7(10):45113.CrossRef
42.
go back to reference Read JM, Lessler J, Riley S, Wang S, Tan LJ, Kwok KO, Guan Y, Jiang CQ, Cummings DA. Social mixing patterns in rural and urban areas of southern China. Proc Royal Soc London B Biol Sci. 2014;281(1785):20140268. Read JM, Lessler J, Riley S, Wang S, Tan LJ, Kwok KO, Guan Y, Jiang CQ, Cummings DA. Social mixing patterns in rural and urban areas of southern China. Proc Royal Soc London B Biol Sci. 2014;281(1785):20140268.
43.
go back to reference van Hoek AJ, Andrews N, Campbell H, Amirthalingam G, Edmunds WJ, Miller E. The social life of infants in the context of infectious disease transmission; social contacts and mixing patterns of the very young. PLoS ONE. 2013;8(10):76180.CrossRef van Hoek AJ, Andrews N, Campbell H, Amirthalingam G, Edmunds WJ, Miller E. The social life of infants in the context of infectious disease transmission; social contacts and mixing patterns of the very young. PLoS ONE. 2013;8(10):76180.CrossRef
44.
go back to reference Willem L, Verelst F, Bilcke J, Hens N, Beutels P. Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006–2015). BMC Infect Dis. 2017;17(1):612.CrossRef Willem L, Verelst F, Bilcke J, Hens N, Beutels P. Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006–2015). BMC Infect Dis. 2017;17(1):612.CrossRef
45.
go back to reference Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. 2014;14(1):1–20.CrossRef Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. 2014;14(1):1–20.CrossRef
Metadata
Title
Exploring human mixing patterns based on time use and social contact data and their implications for infectious disease transmission models
Authors
Thang Van Hoang
Lander Willem
Pietro Coletti
Kim Van Kerckhove
Joeri Minnen
Philippe Beutels
Niel Hens
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07917-y

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.