Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Mumps | Research

Immunogenicity after outbreak response immunization activities among young healthcare workers with secondary vaccine failure during the measles epidemic in Korea, 2019

Authors: Hyeri Seok, Erica Españo, Jooyun Kim, Ji Hoon Jeon, Won Suk Choi, Yun-Kyung Kim, Jeong-Ki Kim, Dae Won Park

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

Despite high vaccination coverage, measles outbreaks have been reported in measles elimination countries, especially among healthcare workers in their 20 and 30 s. This study was designed to identify measles-susceptible individuals and to evaluate whether primary or secondary vaccine failure occurred during measles outbreak response immunization (ORI) activities.

Methods

The study population was divided into three groups as follows: natural immunity group (Group 1), vaccine-induced immunity group (Group 2), and vaccine failure group (Group 3). We evaluated the immunogenicity of measles among healthcare workers using three methods—enzyme-linked immunoassays, plaque reduction neutralization tests, and avidity assays. The results were assessed at baseline, 4 weeks after, and 6 months after the completion of measles-mumps-rubella (MMR) vaccination.

Results

In total, 120 subjects were enrolled, with 40 subjects in each group. The median age of Group 3 was 29 years, which was significantly lower than that of the other groups. The baseline negative measles virus (MeV) IgG in Group 3 increased to a median value of 165 AU/mL at 4 weeks after ORI and was lower than that in Groups 1 and 2. The median neutralizing antibody titer was highest in Group 1, and this was significantly different from that in Group 2 or Group 3 at 4 weeks (944 vs. 405 vs. 482 mIU/mL, P = 0.001) and 6 months (826 vs. 401 vs. 470, P = 0.011) after ORI. The rates of high MeV avidity IgG were highest in Group 2, and these were significantly different from those in Groups 1 or 3 at 4 weeks (77.5 vs. 90% vs. 88.6%, P = 0.03) and 6 months (81 vs. 94.8 vs. 82.1%, P = 0.01) after ORI.

Conclusions

Considering the MeV-neutralizing antibodies and IgG avidity after MMR vaccination in measles-susceptible group, vaccine failure is inferred as secondary vaccine failure, and further data regarding the maintenance of immunogenicity are needed based on long-term data. The MeV-neutralizing antibody levels were highest in the natural immunity group, and the primary vaccine-induced immunity group showed the highest rates of high MeV IgG avidity.
Literature
1.
go back to reference Moss WJ, Griffin DE. Global measles elimination. Nat Rev Microbiol. 2006;4(12):900–8.CrossRef Moss WJ, Griffin DE. Global measles elimination. Nat Rev Microbiol. 2006;4(12):900–8.CrossRef
5.
go back to reference Kang JH. Review of Measles in Korea: quarantine and elimination. Infect Chemother. 2020;52(1):113–22.CrossRef Kang JH. Review of Measles in Korea: quarantine and elimination. Infect Chemother. 2020;52(1):113–22.CrossRef
7.
go back to reference Seok H, Park DW, Kim KN, Kim MJ, Kim SH, Kim JY, et al. Report of the Korean Society of Infectious Diseases Roundtable Discussion on Responses to the Measles Outbreaks in Korea in 2019. Infect Chemother. 2021;53(3):405–20.CrossRef Seok H, Park DW, Kim KN, Kim MJ, Kim SH, Kim JY, et al. Report of the Korean Society of Infectious Diseases Roundtable Discussion on Responses to the Measles Outbreaks in Korea in 2019. Infect Chemother. 2021;53(3):405–20.CrossRef
8.
go back to reference Choi SW, Cho EH, Shin NR. Analysis of the occurence of measles in Korea, 2019. In: The Korea Centers for Disease Control and Prevention; 2020. p.2445–58. Choi SW, Cho EH, Shin NR. Analysis of the occurence of measles in Korea, 2019. In: The Korea Centers for Disease Control and Prevention; 2020. p.2445–58.
9.
go back to reference Park JW, Yu SN, Park E, Lee Y, Park SM, Jeon MH. Modified measles in an anti-measles immunoglobulin G-negative healthcare worker who had received two doses of measles-containing vaccine. Infect Chemother. 2019;51(3):305–9.CrossRef Park JW, Yu SN, Park E, Lee Y, Park SM, Jeon MH. Modified measles in an anti-measles immunoglobulin G-negative healthcare worker who had received two doses of measles-containing vaccine. Infect Chemother. 2019;51(3):305–9.CrossRef
10.
go back to reference Chang HH, Kim SW, Kwon KT, Kim HI, Kim MJ, Ryu SY, et al. Preliminary report of seroprevalence of anti-measles immunoglobulin G among healthcare workers of 6 teaching hospitals of Daegu, Korea in 2019. Infect Chemother. 2019;51(1):54–7.CrossRef Chang HH, Kim SW, Kwon KT, Kim HI, Kim MJ, Ryu SY, et al. Preliminary report of seroprevalence of anti-measles immunoglobulin G among healthcare workers of 6 teaching hospitals of Daegu, Korea in 2019. Infect Chemother. 2019;51(1):54–7.CrossRef
11.
go back to reference Sundell N, Dotevall L, Sansone M, Andersson M, Lindh M, Wahlberg T, et al. Measles outbreak in Gothenburg urban area, Sweden, 2017 to 2018: low viral load in breakthrough infections. Euro Surveill. 2019;24(17). Sundell N, Dotevall L, Sansone M, Andersson M, Lindh M, Wahlberg T, et al. Measles outbreak in Gothenburg urban area, Sweden, 2017 to 2018: low viral load in breakthrough infections. Euro Surveill. 2019;24(17).
12.
go back to reference Cherry JD, Zahn M. Clinical characteristics of measles in previously vaccinated and unvaccinated patients in California. Clin Infect Dis. 2018;67(9):1315–9.CrossRef Cherry JD, Zahn M. Clinical characteristics of measles in previously vaccinated and unvaccinated patients in California. Clin Infect Dis. 2018;67(9):1315–9.CrossRef
13.
go back to reference Hahné SJ, Nic Lochlainn LM, van Burgel ND, Kerkhof J, Sane J, Yap KB, et al. Measles outbreak among previously immunized healthcare workers, the Netherlands, 2014. J Infect Dis. 2016;214(12):1980–6.CrossRef Hahné SJ, Nic Lochlainn LM, van Burgel ND, Kerkhof J, Sane J, Yap KB, et al. Measles outbreak among previously immunized healthcare workers, the Netherlands, 2014. J Infect Dis. 2016;214(12):1980–6.CrossRef
14.
go back to reference Risco-Risco C, Masa-Calles J, López-Perea N, Echevarría JE, Rodríguez-Caravaca G. Epidemiology of measles in vaccinated people, Spain 2003–2014. Enferm Infecc Microbiol Clin. 2017;35(9):569–73.CrossRef Risco-Risco C, Masa-Calles J, López-Perea N, Echevarría JE, Rodríguez-Caravaca G. Epidemiology of measles in vaccinated people, Spain 2003–2014. Enferm Infecc Microbiol Clin. 2017;35(9):569–73.CrossRef
15.
go back to reference Minetti A, Bopp C, Fermon F, François G, Grais RF, Grout L, et al. Measles outbreak response immunization is context-specific: insight from the recent experience of Médecins Sans Frontières. PLoS Med. 2013;10(11):e1001544.CrossRef Minetti A, Bopp C, Fermon F, François G, Grais RF, Grout L, et al. Measles outbreak response immunization is context-specific: insight from the recent experience of Médecins Sans Frontières. PLoS Med. 2013;10(11):e1001544.CrossRef
16.
go back to reference Minetti A, Hurtado N, Grais RF, Ferrari M. Reaching hard-to-reach individuals: nonselective versus targeted outbreak response vaccination for measles. Am J Epidemiol. 2014;179(2):245–51.CrossRef Minetti A, Hurtado N, Grais RF, Ferrari M. Reaching hard-to-reach individuals: nonselective versus targeted outbreak response vaccination for measles. Am J Epidemiol. 2014;179(2):245–51.CrossRef
17.
go back to reference Gastañaduy PA, Banerjee E, DeBolt C, Bravo-Alcántara P, Samad SA, Pastor D, et al. Public health responses during measles outbreaks in elimination settings: strategies and challenges. Hum Vaccin Immunother. 2018;14(9):2222–38.CrossRef Gastañaduy PA, Banerjee E, DeBolt C, Bravo-Alcántara P, Samad SA, Pastor D, et al. Public health responses during measles outbreaks in elimination settings: strategies and challenges. Hum Vaccin Immunother. 2018;14(9):2222–38.CrossRef
18.
go back to reference Albrecht P, Herrmann K, Burns GR. Role of virus strain in conventional and enhanced measles plaque neutralization test. J Virol Methods. 1981;3(5):251–60.CrossRef Albrecht P, Herrmann K, Burns GR. Role of virus strain in conventional and enhanced measles plaque neutralization test. J Virol Methods. 1981;3(5):251–60.CrossRef
19.
go back to reference Griffin DE. Measles virus in fields virology. Philadelphia: Lippincott, Williams & Wilkins; 2020. Griffin DE. Measles virus in fields virology. Philadelphia: Lippincott, Williams & Wilkins; 2020.
20.
go back to reference Cohen BJ, Audet S, Andrews N, Beeler J. Plaque reduction neutralization test for measles antibodies: description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. Vaccine. 2007;26(1):59–66.CrossRef Cohen BJ, Audet S, Andrews N, Beeler J. Plaque reduction neutralization test for measles antibodies: description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. Vaccine. 2007;26(1):59–66.CrossRef
21.
go back to reference Mercader S, Garcia P, Bellini WJ. Measles virus IgG avidity assay for use in classification of measles vaccine failure in measles elimination settings. Clin Vaccine Immunol. 2012;19(11):1810–7.CrossRef Mercader S, Garcia P, Bellini WJ. Measles virus IgG avidity assay for use in classification of measles vaccine failure in measles elimination settings. Clin Vaccine Immunol. 2012;19(11):1810–7.CrossRef
22.
go back to reference Sowers SB, Rota JS, Hickman CJ, Mercader S, Redd S, McNall RJ, et al. High concentrations of measles neutralizing antibodies and high-avidity measles IgG accurately identify measles reinfection cases. Clin Vaccine Immunol. 2016;23(8):707–16.CrossRef Sowers SB, Rota JS, Hickman CJ, Mercader S, Redd S, McNall RJ, et al. High concentrations of measles neutralizing antibodies and high-avidity measles IgG accurately identify measles reinfection cases. Clin Vaccine Immunol. 2016;23(8):707–16.CrossRef
23.
go back to reference Iwamoto M, Hickman CJ, Colley H, Arciuolo RJ, Mahle CE, Deocharan B, et al. Measles infection in persons with secondary vaccine failure, New York City, 2018–19. Vaccine. 2021;39(38):5346–50.CrossRef Iwamoto M, Hickman CJ, Colley H, Arciuolo RJ, Mahle CE, Deocharan B, et al. Measles infection in persons with secondary vaccine failure, New York City, 2018–19. Vaccine. 2021;39(38):5346–50.CrossRef
24.
go back to reference Kurata T, Kanbayashi D, Egawa K, Kinoshita M, Yoshida H, Miyazono M, et al. A measles outbreak from an index case with immunologically confirmed secondary vaccine failure. Vaccine. 2020;38(6):1467–75.CrossRef Kurata T, Kanbayashi D, Egawa K, Kinoshita M, Yoshida H, Miyazono M, et al. A measles outbreak from an index case with immunologically confirmed secondary vaccine failure. Vaccine. 2020;38(6):1467–75.CrossRef
25.
go back to reference Zhang Z, Chen M, Ma R, Pan J, Suo L, Lu L. Outbreak of measles among persons with secondary vaccine failure, China, 2018. Hum Vaccin Immunother. 2020;16(2):358–62.CrossRef Zhang Z, Chen M, Ma R, Pan J, Suo L, Lu L. Outbreak of measles among persons with secondary vaccine failure, China, 2018. Hum Vaccin Immunother. 2020;16(2):358–62.CrossRef
26.
go back to reference Cheng VCC, Wong SC, Wong SCY, Sridhar S, Chen JHK, Yip CCY, et al. Measles outbreak from Hong Kong International Airport to the hospital due to secondary vaccine failure in healthcare workers. Infect Control Hosp Epidemiol. 2019;40(12):1407–15.CrossRef Cheng VCC, Wong SC, Wong SCY, Sridhar S, Chen JHK, Yip CCY, et al. Measles outbreak from Hong Kong International Airport to the hospital due to secondary vaccine failure in healthcare workers. Infect Control Hosp Epidemiol. 2019;40(12):1407–15.CrossRef
27.
go back to reference Kang HJ, Han YW, Kim SJ, Kim YJ, Kim AR, Kim JA, et al. An increasing, potentially measles-susceptible population over time after vaccination in Korea. Vaccine. 2017;35(33):4126–32.CrossRef Kang HJ, Han YW, Kim SJ, Kim YJ, Kim AR, Kim JA, et al. An increasing, potentially measles-susceptible population over time after vaccination in Korea. Vaccine. 2017;35(33):4126–32.CrossRef
28.
go back to reference Jung J, Kim SK, Kwak SH, Hong MJ, Kim SH. Seroprevalence of measles in healthcare workers in South Korea. Infect Chemother. 2019;51(1):58–61.CrossRef Jung J, Kim SK, Kwak SH, Hong MJ, Kim SH. Seroprevalence of measles in healthcare workers in South Korea. Infect Chemother. 2019;51(1):58–61.CrossRef
29.
go back to reference Anichini G, Gandolfo C, Fabrizi S, Miceli GB, Terrosi C, Gori Savellini G, et al. Seroprevalence to measles virus after vaccination or natural infection in an adult population, in Italy. Vaccines (Basel). 2020;8(1). Anichini G, Gandolfo C, Fabrizi S, Miceli GB, Terrosi C, Gori Savellini G, et al. Seroprevalence to measles virus after vaccination or natural infection in an adult population, in Italy. Vaccines (Basel). 2020;8(1).
30.
go back to reference Christenson B, Böttiger M. Measles antibody: comparison of long-term vaccination titres, early vaccination titres and naturally acquired immunity to and booster effects on the measles virus. Vaccine. 1994;12(2):129–33.CrossRef Christenson B, Böttiger M. Measles antibody: comparison of long-term vaccination titres, early vaccination titres and naturally acquired immunity to and booster effects on the measles virus. Vaccine. 1994;12(2):129–33.CrossRef
31.
go back to reference Fiebelkorn AP, Coleman LA, Belongia EA, Freeman SK, York D, Bi D, et al. Measles virus neutralizing antibody response, cell-mediated immunity, and immunoglobulin G antibody avidity before and after receipt of a third dose of measles, mumps, and rubella vaccine in young adults. J Infect Dis. 2016;213(7):1115–23.CrossRef Fiebelkorn AP, Coleman LA, Belongia EA, Freeman SK, York D, Bi D, et al. Measles virus neutralizing antibody response, cell-mediated immunity, and immunoglobulin G antibody avidity before and after receipt of a third dose of measles, mumps, and rubella vaccine in young adults. J Infect Dis. 2016;213(7):1115–23.CrossRef
32.
go back to reference Lin WH, Vilalta A, Adams RJ, Rolland A, Sullivan SM, Griffin DE. Vaxfectin adjuvant improves antibody responses of juvenile rhesus macaques to a DNA vaccine encoding the measles virus hemagglutinin and fusion proteins. J Virol. 2013;87(12):6560–8.CrossRef Lin WH, Vilalta A, Adams RJ, Rolland A, Sullivan SM, Griffin DE. Vaxfectin adjuvant improves antibody responses of juvenile rhesus macaques to a DNA vaccine encoding the measles virus hemagglutinin and fusion proteins. J Virol. 2013;87(12):6560–8.CrossRef
33.
go back to reference Kaaijk P, Wijmenga-Monsuur AJ, van Houten MA, Veldhuijzen IK, Ten Hulscher HI, Kerkhof J, et al. A third dose of measles-mumps-rubella vaccine to improve immunity against mumps in young adults. J Infect Dis. 2020;221(6):902–9.PubMed Kaaijk P, Wijmenga-Monsuur AJ, van Houten MA, Veldhuijzen IK, Ten Hulscher HI, Kerkhof J, et al. A third dose of measles-mumps-rubella vaccine to improve immunity against mumps in young adults. J Infect Dis. 2020;221(6):902–9.PubMed
34.
go back to reference Marlow MA, Marin M, Moore K, Patel M. CDC guidance for use of a third dose of MMR vaccine during mumps outbreaks. J Public Health Manag Pract. 2020;26(2):109–15.CrossRef Marlow MA, Marin M, Moore K, Patel M. CDC guidance for use of a third dose of MMR vaccine during mumps outbreaks. J Public Health Manag Pract. 2020;26(2):109–15.CrossRef
35.
go back to reference Nair N, Moss WJ, Scott S, Mugala N, Ndhlovu ZM, Lilo K, et al. HIV-1 infection in Zambian children impairs the development and avidity maturation of measles virus-specific immunoglobulin G after vaccination and infection. J Infect Dis. 2009;200(7):1031–8.CrossRef Nair N, Moss WJ, Scott S, Mugala N, Ndhlovu ZM, Lilo K, et al. HIV-1 infection in Zambian children impairs the development and avidity maturation of measles virus-specific immunoglobulin G after vaccination and infection. J Infect Dis. 2009;200(7):1031–8.CrossRef
36.
go back to reference Kontio M, Jokinen S, Paunio M, Peltola H, Davidkin I. Waning antibody levels and avidity: implications for MMR vaccine-induced protection. J Infect Dis. 2012;206(10):1542–8.CrossRef Kontio M, Jokinen S, Paunio M, Peltola H, Davidkin I. Waning antibody levels and avidity: implications for MMR vaccine-induced protection. J Infect Dis. 2012;206(10):1542–8.CrossRef
37.
go back to reference Iankov ID, Penheiter AR, Griesmann GE, Carlson SK, Federspiel MJ, Galanis E. Neutralization capacity of measles virus H protein specific IgG determines the balance between antibody-enhanced infectivity and protection in microglial cells. Virus Res. 2013;172(1–2):15–23.CrossRef Iankov ID, Penheiter AR, Griesmann GE, Carlson SK, Federspiel MJ, Galanis E. Neutralization capacity of measles virus H protein specific IgG determines the balance between antibody-enhanced infectivity and protection in microglial cells. Virus Res. 2013;172(1–2):15–23.CrossRef
38.
go back to reference Isa MB, Martínez L, Giordano M, Passeggi C, de Wolff MC, Nates S. Comparison of immunoglobulin G subclass profiles induced by measles virus in vaccinated and naturally infected individuals. Clin Diagn Lab Immunol. 2002;9(3):693–7.PubMedPubMedCentral Isa MB, Martínez L, Giordano M, Passeggi C, de Wolff MC, Nates S. Comparison of immunoglobulin G subclass profiles induced by measles virus in vaccinated and naturally infected individuals. Clin Diagn Lab Immunol. 2002;9(3):693–7.PubMedPubMedCentral
39.
go back to reference Toptygina AP, Pukhalsky AL, Alioshkin VA. Immunoglobulin G subclass profile of antimeasles response in vaccinated children and in adults with measles history. Clin Diagn Lab Immunol. 2005;12(7):845–7.PubMedPubMedCentral Toptygina AP, Pukhalsky AL, Alioshkin VA. Immunoglobulin G subclass profile of antimeasles response in vaccinated children and in adults with measles history. Clin Diagn Lab Immunol. 2005;12(7):845–7.PubMedPubMedCentral
40.
go back to reference Correa VA, Rodrigues TS, Portilho AI, Trzewikoswki de Lima G, De Gaspari E. Modified ELISA for antibody avidity evaluation: the need for standardization. Biomed J. 2021;44(4):433–8.CrossRef Correa VA, Rodrigues TS, Portilho AI, Trzewikoswki de Lima G, De Gaspari E. Modified ELISA for antibody avidity evaluation: the need for standardization. Biomed J. 2021;44(4):433–8.CrossRef
Metadata
Title
Immunogenicity after outbreak response immunization activities among young healthcare workers with secondary vaccine failure during the measles epidemic in Korea, 2019
Authors
Hyeri Seok
Erica Españo
Jooyun Kim
Ji Hoon Jeon
Won Suk Choi
Yun-Kyung Kim
Jeong-Ki Kim
Dae Won Park
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07511-2

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.