Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2022

Open Access 01-12-2022 | Herpes Virus | Research

Rasmussen’s encephalitis is characterized by relatively lower production of IFN-β and activated cytotoxic T cell upon herpes viruses infection

Authors: Yi-Song Wang, Dong Liu, Xin Wang, Qiao-Li Luo, Ling Ding, Dong-Ying Fan, Qi-Liang Cai, Chong-Yang Tang, Wei Yang, Yu-Guang Guan, Tian-Fu Li, Pei-Gang Wang, Guo-Ming Luan, Jing An

Published in: Journal of Neuroinflammation | Issue 1/2022

Login to get access

Abstract

Background

The etiology of Rasmussen's encephalitis (RE), a rare chronic neurological disorder characterized by CD8+ T cell infiltration and unihemispheric brain atrophy, is still unknown. Various human herpes viruses (HHVs) have been detected in RE brain, but their contribution to RE pathogenesis is unclear.

Methods

HHVs infection and relevant immune response were compared among brain tissues from RE, temporal lobe epilepsy (TLE) and traumatic brain injury (TBI) patients. Viral antigen or genome, CD8+ T cells, microglia and innate immunity molecules were analyzed by immunohistochemical staining, DNA dot blot assay or immunofluorescence double staining. Cytokines were measured by multiplex flow cytometry. Cell apoptosis was visualized by TUNEL staining. Viral infection, immune response and the severity of unihemispheric atrophy were subjected to correlation analysis.

Results

Antigens of various HHVs were prevalent in RE and TLE brains, and the cumulative viral score of HHVs positively correlated with the unihemispheric atrophy in RE patients. CD8+ T cells infiltration were observed in both RE and TLE brains and showed co-localization with HHV antigens, but their activation, as revealed by Granzyme B (GZMB) release and apoptosis, was found only in RE. In comparison to TLE, RE brain tissues contained higher level of inflammatory cytokines, but the interferon-β level, which was negatively correlated with cumulative viral score, was relatively lower. In line with this, the DNA sensor STING and IFI16, rather than other innate immunity signaling molecules, were insufficiently activated in RE.

Conclusions

Compared with TBI, both RE and TLE had prevalently HHV infection and immune response in brain tissues. However, in comparison to TLE, RE showed insufficient activation of antiviral innate immunity but overactivation of cytotoxic T cells. Our results show the relatively lower level of antiviral innate immunity and overactivation of cytotoxic T cells in RE cases upon HHV infection, the overactivated T cells might be a compensate to the innate immunity but the causative evidence is lack in our study and need more investigation in the future.
Appendix
Available only for authorised users
Literature
1.
go back to reference Varadkar S, Bien CG, Kruse CA, Jensen FE, Bauer J, Pardo CA, Vincent A, Mathern GW, Cross JH. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 2014;13:195–205.CrossRef Varadkar S, Bien CG, Kruse CA, Jensen FE, Bauer J, Pardo CA, Vincent A, Mathern GW, Cross JH. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 2014;13:195–205.CrossRef
2.
go back to reference Pradeep K, Sinha S, Mahadevan A, Saini J, Arivazhagan A, Bharath RD, Bindu PS, Jamuna R, Rao MB, Govekar S, et al. Clinical, electrophysiological, imaging, pathological and therapeutic observations among 18 patients with Rasmussen’s encephalitis. J Clin Neurosci. 2016;25:96–104.CrossRef Pradeep K, Sinha S, Mahadevan A, Saini J, Arivazhagan A, Bharath RD, Bindu PS, Jamuna R, Rao MB, Govekar S, et al. Clinical, electrophysiological, imaging, pathological and therapeutic observations among 18 patients with Rasmussen’s encephalitis. J Clin Neurosci. 2016;25:96–104.CrossRef
3.
go back to reference Bien CG, Widman G, Urbach H, Sassen R, Kuczaty S, Wiestler OD, Schramm J, Elger CE. The natural history of Rasmussen’s encephalitis. Brain. 2002;125:1751–9.CrossRef Bien CG, Widman G, Urbach H, Sassen R, Kuczaty S, Wiestler OD, Schramm J, Elger CE. The natural history of Rasmussen’s encephalitis. Brain. 2002;125:1751–9.CrossRef
4.
go back to reference Wang DD, Benkli B, Auguste KI, Garcia PA, Sullivan J, Barkovich AJ, Chang EF, Tihan T. Unilateral holohemispheric central nervous system lesions associated with medically refractory epilepsy in the pediatric population: a retrospective series of hemimegalencephaly and Rasmussen’s encephalitis. J Neurosurg Pediatr. 2014;14:573–84.CrossRef Wang DD, Benkli B, Auguste KI, Garcia PA, Sullivan J, Barkovich AJ, Chang EF, Tihan T. Unilateral holohemispheric central nervous system lesions associated with medically refractory epilepsy in the pediatric population: a retrospective series of hemimegalencephaly and Rasmussen’s encephalitis. J Neurosurg Pediatr. 2014;14:573–84.CrossRef
5.
go back to reference Guan Y, Chen S, Liu C, Du X, Zhang Y, Wang J, Li T, Luan G. Timing and type of hemispherectomy for Rasmussen’s encephalitis: analysis of 45 patients. Epilepsy Res. 2017;132:109–15.CrossRef Guan Y, Chen S, Liu C, Du X, Zhang Y, Wang J, Li T, Luan G. Timing and type of hemispherectomy for Rasmussen’s encephalitis: analysis of 45 patients. Epilepsy Res. 2017;132:109–15.CrossRef
6.
go back to reference Vining EP, Freeman JM, Pillas DJ, Uematsu S, Carson BS, Brandt J, Boatman D, Pulsifer MB, Zuckerberg A. Why would you remove half a brain? The outcome of 58 children after hemispherectomy-the Johns Hopkins experience: 1968 to 1996. Pediatrics. 1997;100:163–71.CrossRef Vining EP, Freeman JM, Pillas DJ, Uematsu S, Carson BS, Brandt J, Boatman D, Pulsifer MB, Zuckerberg A. Why would you remove half a brain? The outcome of 58 children after hemispherectomy-the Johns Hopkins experience: 1968 to 1996. Pediatrics. 1997;100:163–71.CrossRef
7.
go back to reference Walter GF, Renella RR. Epstein-Barr virus in brain and Rasmussen’s encephalitis. Lancet. 1989;1:279–80.CrossRef Walter GF, Renella RR. Epstein-Barr virus in brain and Rasmussen’s encephalitis. Lancet. 1989;1:279–80.CrossRef
8.
go back to reference Farrell MA, Cheng L, Cornford ME, Grody WW, Vinters HV. Cytomegalovirus and Rasmussen’s encephalitis. Lancet. 1991;337:1551–2.CrossRef Farrell MA, Cheng L, Cornford ME, Grody WW, Vinters HV. Cytomegalovirus and Rasmussen’s encephalitis. Lancet. 1991;337:1551–2.CrossRef
9.
go back to reference Schneider-Hohendorf T, Mohan H, Bien CG, Breuer J, Becker A, Gorlich D, Kuhlmann T, Widman G, Herich S, Elpers C, et al. CD8(+) T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing. Nat Commun. 2016;7:11153.CrossRef Schneider-Hohendorf T, Mohan H, Bien CG, Breuer J, Becker A, Gorlich D, Kuhlmann T, Widman G, Herich S, Elpers C, et al. CD8(+) T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing. Nat Commun. 2016;7:11153.CrossRef
10.
go back to reference Kebir H, Carmant L, Fontaine F, Beland K, Bosoi CM, Sanon NT, Alvarez JI, Desgent S, Pittet CL, Hebert D, et al. Humanized mouse model of Rasmussen’s encephalitis supports the immune-mediated hypothesis. J Clin Invest. 2018;128:2000–9.CrossRef Kebir H, Carmant L, Fontaine F, Beland K, Bosoi CM, Sanon NT, Alvarez JI, Desgent S, Pittet CL, Hebert D, et al. Humanized mouse model of Rasmussen’s encephalitis supports the immune-mediated hypothesis. J Clin Invest. 2018;128:2000–9.CrossRef
11.
go back to reference Bauer J, Bien CG, Lassmann H. Rasmussen’s encephalitis: a role for autoimmune cytotoxic T lymphocytes. Curr Opin Neurol. 2002;15:197–200.CrossRef Bauer J, Bien CG, Lassmann H. Rasmussen’s encephalitis: a role for autoimmune cytotoxic T lymphocytes. Curr Opin Neurol. 2002;15:197–200.CrossRef
12.
go back to reference Rogers SW, Andrews PI, Gahring LC, Whisenand T, Cauley K, Crain B, Hughes TE, Heinemann SF, McNamara JO. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science. 1994;265:648–51.CrossRef Rogers SW, Andrews PI, Gahring LC, Whisenand T, Cauley K, Crain B, Hughes TE, Heinemann SF, McNamara JO. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science. 1994;265:648–51.CrossRef
13.
go back to reference Takahashi Y, Mori H, Mishina M, Watanabe M, Kondo N, Shimomura J, Kubota Y, Matsuda K, Fukushima K, Shiroma N, et al. Autoantibodies and cell-mediated autoimmunity to NMDA-type GluRepsilon2 in patients with Rasmussen’s encephalitis and chronic progressive epilepsia partialis continua. Epilepsia. 2005;46(Suppl 5):152–8.CrossRef Takahashi Y, Mori H, Mishina M, Watanabe M, Kondo N, Shimomura J, Kubota Y, Matsuda K, Fukushima K, Shiroma N, et al. Autoantibodies and cell-mediated autoimmunity to NMDA-type GluRepsilon2 in patients with Rasmussen’s encephalitis and chronic progressive epilepsia partialis continua. Epilepsia. 2005;46(Suppl 5):152–8.CrossRef
14.
go back to reference Samanci B, Tekturk P, Tuzun E, Erdag E, Kinay D, Yapici Z, Baykan B. Neuronal autoantibodies in patients with Rasmussen’s encephalitis. Epileptic Disord. 2016;18:204–10.CrossRef Samanci B, Tekturk P, Tuzun E, Erdag E, Kinay D, Yapici Z, Baykan B. Neuronal autoantibodies in patients with Rasmussen’s encephalitis. Epileptic Disord. 2016;18:204–10.CrossRef
15.
go back to reference Nibber A, Clover L, Pettingill P, Waters P, Elger CE, Bien CG, Vincent A, Lang B. Antibodies to AMPA receptors in Rasmussen’s encephalitis. Eur J Paediatr Neurol. 2016;20:222–7.CrossRef Nibber A, Clover L, Pettingill P, Waters P, Elger CE, Bien CG, Vincent A, Lang B. Antibodies to AMPA receptors in Rasmussen’s encephalitis. Eur J Paediatr Neurol. 2016;20:222–7.CrossRef
16.
go back to reference Troscher AR, Wimmer I, Quemada-Garrido L, Kock U, Gessl D, Verberk SGS, Martin B, Lassmann H, Bien CG, Bauer J. Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathol. 2019;137:619–35.CrossRef Troscher AR, Wimmer I, Quemada-Garrido L, Kock U, Gessl D, Verberk SGS, Martin B, Lassmann H, Bien CG, Bauer J. Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathol. 2019;137:619–35.CrossRef
17.
go back to reference Rechenchoski DZ, Faccin-Galhardi LC, Linhares REC, Nozawa C. Herpesvirus: an underestimated virus. Folia Microbiol (Praha). 2017;62:151–6.CrossRef Rechenchoski DZ, Faccin-Galhardi LC, Linhares REC, Nozawa C. Herpesvirus: an underestimated virus. Folia Microbiol (Praha). 2017;62:151–6.CrossRef
18.
go back to reference Adler B, Sattler C, Adler H. Herpesviruses and their host cells: a successful liaison. Trends Microbiol. 2017;25:229–41.CrossRef Adler B, Sattler C, Adler H. Herpesviruses and their host cells: a successful liaison. Trends Microbiol. 2017;25:229–41.CrossRef
19.
go back to reference Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol. 2008;6:211–21.CrossRef Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol. 2008;6:211–21.CrossRef
20.
go back to reference Zhang Y, Wang Y, Chen S, Guan Y, Liu C, Li T, Luan G, An J. Expression of human cytomegalovirus components in the brain tissues of patients with Rasmussen’s encephalitis. Virol Sin. 2017;32:115–21.CrossRef Zhang Y, Wang Y, Chen S, Guan Y, Liu C, Li T, Luan G, An J. Expression of human cytomegalovirus components in the brain tissues of patients with Rasmussen’s encephalitis. Virol Sin. 2017;32:115–21.CrossRef
21.
go back to reference Wang X, Wang Y, Liu D, Wang P, Fan D, Guan Y, Li T, Luan G, An J. Elevated expression of EBV and TLRs in the brain is associated with Rasmussen’s encephalitis. Virol Sin. 2017;32:423–30.CrossRef Wang X, Wang Y, Liu D, Wang P, Fan D, Guan Y, Li T, Luan G, An J. Elevated expression of EBV and TLRs in the brain is associated with Rasmussen’s encephalitis. Virol Sin. 2017;32:423–30.CrossRef
22.
go back to reference Kawamura Y, Nakayama A, Kato T, Miura H, Ishihara N, Ihira M, Takahashi Y, Matsuda K, Yoshikawa T. Pathogenic role of human herpesvirus 6B infection in mesial temporal lobe epilepsy. J Infect Dis. 2015;212:1014–21.CrossRef Kawamura Y, Nakayama A, Kato T, Miura H, Ishihara N, Ihira M, Takahashi Y, Matsuda K, Yoshikawa T. Pathogenic role of human herpesvirus 6B infection in mesial temporal lobe epilepsy. J Infect Dis. 2015;212:1014–21.CrossRef
23.
go back to reference Bien CG, Granata T, Antozzi C, Cross JH, Dulac O, Kurthen M, Lassmann H, Mantegazza R, Villemure JG, Spreafico R, Elger CE. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain. 2005;128:454–71.CrossRef Bien CG, Granata T, Antozzi C, Cross JH, Dulac O, Kurthen M, Lassmann H, Mantegazza R, Villemure JG, Spreafico R, Elger CE. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain. 2005;128:454–71.CrossRef
24.
go back to reference Wang YS, Luo QL, Guan YG, Fan DY, Luan GM, Jing A. HCMV infection and IFITM3 rs12252 are associated with Rasmussen’s encephalitis disease progression. Ann Clin Transl Neurol. 2021;8:558–70.CrossRef Wang YS, Luo QL, Guan YG, Fan DY, Luan GM, Jing A. HCMV infection and IFITM3 rs12252 are associated with Rasmussen’s encephalitis disease progression. Ann Clin Transl Neurol. 2021;8:558–70.CrossRef
25.
go back to reference Ding L, Mo X, Zhang L, Zhou F, Zhu C, Wang Y, Cai C, Liu Y, Wei F, Cai Q. High prevalence and correlates of human herpesvirus-6A in nevocytic nevus and seborrheic diseases: Implication from a pilot study of skin patient tissues in Shanghai. J Med Virol. 2018;90:1532–40.CrossRef Ding L, Mo X, Zhang L, Zhou F, Zhu C, Wang Y, Cai C, Liu Y, Wei F, Cai Q. High prevalence and correlates of human herpesvirus-6A in nevocytic nevus and seborrheic diseases: Implication from a pilot study of skin patient tissues in Shanghai. J Med Virol. 2018;90:1532–40.CrossRef
26.
go back to reference Pantry SN, Medveczky PG. Latency, integration, and reactivation of human herpesvirus-6. Viruses. 2017;9:194.CrossRef Pantry SN, Medveczky PG. Latency, integration, and reactivation of human herpesvirus-6. Viruses. 2017;9:194.CrossRef
27.
go back to reference Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.CrossRef Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.CrossRef
28.
go back to reference Di Paolo NC, Shayakhmetov DM. Interleukin 1alpha and the inflammatory process. Nat Immunol. 2016;17:906–13.CrossRef Di Paolo NC, Shayakhmetov DM. Interleukin 1alpha and the inflammatory process. Nat Immunol. 2016;17:906–13.CrossRef
29.
go back to reference Srivastava R, Khan AA, Chilukuri S, Syed SA, Tran TT, Furness J, Bahraoui E, BenMohamed L. CXCL10/CXCR3-dependent mobilization of herpes simplex virus-specific CD8(+) TEM and CD8(+) TRM cells within infected tissues allows efficient protection against recurrent herpesvirus infection and disease. J Virol. 2017;91:e00278–00217. Srivastava R, Khan AA, Chilukuri S, Syed SA, Tran TT, Furness J, Bahraoui E, BenMohamed L. CXCL10/CXCR3-dependent mobilization of herpes simplex virus-specific CD8(+) TEM and CD8(+) TRM cells within infected tissues allows efficient protection against recurrent herpesvirus infection and disease. J Virol. 2017;91:e00278–00217.
30.
go back to reference Sandalova E, Laccabue D, Boni C, Tan AT, Fink K, Ooi EE, Chua R, Shafaeddin Schreve B, Ferrari C, Bertoletti A. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans. PLoS Pathog. 2010;6:e1001051.CrossRef Sandalova E, Laccabue D, Boni C, Tan AT, Fink K, Ooi EE, Chua R, Shafaeddin Schreve B, Ferrari C, Bertoletti A. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans. PLoS Pathog. 2010;6:e1001051.CrossRef
31.
go back to reference Luecke S, Paludan SR. Innate recognition of alphaherpesvirus DNA. Adv Virus Res. 2015;92:63–100.CrossRef Luecke S, Paludan SR. Innate recognition of alphaherpesvirus DNA. Adv Virus Res. 2015;92:63–100.CrossRef
32.
go back to reference Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity. 2003;18:593–603.CrossRef Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity. 2003;18:593–603.CrossRef
33.
go back to reference Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL. CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med. 2000;191:1459–66.CrossRef Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL. CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med. 2000;191:1459–66.CrossRef
34.
go back to reference Wirenfeldt M, Clare R, Tung S, Bottini A, Mathern GW, Vinters HV. Increased activation of Iba1+ microglia in pediatric epilepsy patients with Rasmussen’s encephalitis compared with cortical dysplasia and tuberous sclerosis complex. Neurobiol Dis. 2009;34:432–40.CrossRef Wirenfeldt M, Clare R, Tung S, Bottini A, Mathern GW, Vinters HV. Increased activation of Iba1+ microglia in pediatric epilepsy patients with Rasmussen’s encephalitis compared with cortical dysplasia and tuberous sclerosis complex. Neurobiol Dis. 2009;34:432–40.CrossRef
35.
go back to reference Orzalli MH, DeLuca NA, Knipe DM. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci U S A. 2012;109:E3008-3017.CrossRef Orzalli MH, DeLuca NA, Knipe DM. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci U S A. 2012;109:E3008-3017.CrossRef
36.
go back to reference Pisano G, Roy A, Ahmed Ansari M, Kumar B, Chikoti L, Chandran B. Interferon-gamma-inducible protein 16 (IFI16) is required for the maintenance of Epstein-Barr virus latency. Virol J. 2017;14:221.CrossRef Pisano G, Roy A, Ahmed Ansari M, Kumar B, Chikoti L, Chandran B. Interferon-gamma-inducible protein 16 (IFI16) is required for the maintenance of Epstein-Barr virus latency. Virol J. 2017;14:221.CrossRef
Metadata
Title
Rasmussen’s encephalitis is characterized by relatively lower production of IFN-β and activated cytotoxic T cell upon herpes viruses infection
Authors
Yi-Song Wang
Dong Liu
Xin Wang
Qiao-Li Luo
Ling Ding
Dong-Ying Fan
Qi-Liang Cai
Chong-Yang Tang
Wei Yang
Yu-Guang Guan
Tian-Fu Li
Pei-Gang Wang
Guo-Ming Luan
Jing An
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2022
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-022-02379-0

Other articles of this Issue 1/2022

Journal of Neuroinflammation 1/2022 Go to the issue