Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Herpes Simplex Encephalitis | Research

Herpes simplex virus infection induces necroptosis of neurons and astrocytes in human fetal organotypic brain slice cultures

Authors: Ahmad S. Rashidi, Diana N. Tran, Caithlin R. Peelen, Michiel van Gent, Werner J. D. Ouwendijk, Georges M. G. M. Verjans

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Herpes simplex virus (HSV) encephalitis (HSE) is a serious and potentially life-threatening disease, affecting both adults and newborns. Progress in understanding the virus and host factors involved in neonatal HSE has been hampered by the limitations of current brain models that do not fully recapitulate the tissue structure and cell composition of the developing human brain in health and disease. Here, we developed a human fetal organotypic brain slice culture (hfOBSC) model and determined its value in mimicking the HSE neuropathology in vitro.

Methods

Cell viability and tissues integrity were determined by lactate dehydrogenase release in supernatant and immunohistological (IHC) analyses. Brain slices were infected with green fluorescent protein (GFP-) expressing HSV-1 and HSV-2. Virus replication and spread were determined by confocal microscopy, PCR and virus culture. Expression of pro-inflammatory cytokines and chemokines were detected by PCR. Cell tropism and HSV-induced neuropathology were determined by IHC analysis. Finally, the in situ data of HSV-infected hfOBSC were compared to the neuropathology detected in human HSE brain sections.

Results

Slicing and serum-free culture conditions were optimized to maintain the viability and tissue architecture of ex vivo human fetal brain slices for at least 14 days at 37 °C in a CO2 incubator. The hfOBSC supported productive HSV-1 and HSV-2 infection, involving predominantly infection of neurons and astrocytes, leading to expression of pro-inflammatory cytokines and chemokines. Both viruses induced programmed cell death—especially necroptosis—in infected brain slices at later time points after infection. The virus spread, cell tropism and role of programmed cell death in HSV-induced cell death resembled the neuropathology of HSE.

Conclusions

We developed a novel human brain culture model in which the viability of the major brain-resident cells—including neurons, microglia, astrocytes and oligodendrocytes—and the tissue architecture is maintained for at least 2 weeks in vitro under serum-free culture conditions. The close resemblance of cell tropism, spread and neurovirulence of HSV-1 and HSV-2 in the hfOBSC model with the neuropathological features of human HSE cases underscores its potential to detail the pathophysiology of other neurotropic viruses and as preclinical model to test novel therapeutic interventions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol. 2022;20(2):67–82.PubMedCrossRef Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol. 2022;20(2):67–82.PubMedCrossRef
2.
go back to reference Looker KJ, Magaret AS, May MT, Turner KME, Vickerman P, Newman LM, et al. First estimates of the global and regional incidence of neonatal herpes infection. Lancet Glob Heal. 2017;5(3):e300–9.CrossRef Looker KJ, Magaret AS, May MT, Turner KME, Vickerman P, Newman LM, et al. First estimates of the global and regional incidence of neonatal herpes infection. Lancet Glob Heal. 2017;5(3):e300–9.CrossRef
3.
go back to reference Melvin AJ, Mohan KM, Vora SB, Selke S, Sullivan E, Wald A. Neonatal herpes simplex virus infection: epidemiology and outcomes in the modern era. J Pediatric Infect Dis Soc. 2022;11(3):94–101.PubMedCrossRef Melvin AJ, Mohan KM, Vora SB, Selke S, Sullivan E, Wald A. Neonatal herpes simplex virus infection: epidemiology and outcomes in the modern era. J Pediatric Infect Dis Soc. 2022;11(3):94–101.PubMedCrossRef
4.
go back to reference Fa F, Laup L, Mandelbrot L, Sibiude J, Picone O. Fetal and neonatal abnormalities due to congenital herpes simplex virus infection: a literature review. Prenat Diagn. 2020;40(4):408–14.PubMedCrossRef Fa F, Laup L, Mandelbrot L, Sibiude J, Picone O. Fetal and neonatal abnormalities due to congenital herpes simplex virus infection: a literature review. Prenat Diagn. 2020;40(4):408–14.PubMedCrossRef
5.
go back to reference Price NB, Wood KE. Distinguishing features common to dual fatal herpes simplex virus infections that occur in both a pregnant woman and her newborn infant. Viruses. 2021;13(12):2542.PubMedPubMedCentralCrossRef Price NB, Wood KE. Distinguishing features common to dual fatal herpes simplex virus infections that occur in both a pregnant woman and her newborn infant. Viruses. 2021;13(12):2542.PubMedPubMedCentralCrossRef
6.
go back to reference Samies NL, James SH. Prevention and treatment of neonatal herpes simplex virus infection. Antiviral Res. 2020;1:176. Samies NL, James SH. Prevention and treatment of neonatal herpes simplex virus infection. Antiviral Res. 2020;1:176.
7.
go back to reference Depla JA, Mulder LA, de Sá RV, Wartel M, Sridhar A, Evers MM, et al. Human brain organoids as models for central nervous system viral infection. Viruses. 2022;14(3):634.PubMedPubMedCentralCrossRef Depla JA, Mulder LA, de Sá RV, Wartel M, Sridhar A, Evers MM, et al. Human brain organoids as models for central nervous system viral infection. Viruses. 2022;14(3):634.PubMedPubMedCentralCrossRef
8.
go back to reference Marcocci ME, Napoletani G, Protto V, Kolesova O, Piacentini R, Li Puma DD, et al. Herpes simplex virus-1 in the brain: the dark side of a sneaky infection. Trends Microbiol. 2020;28(10):808–20.PubMedCrossRef Marcocci ME, Napoletani G, Protto V, Kolesova O, Piacentini R, Li Puma DD, et al. Herpes simplex virus-1 in the brain: the dark side of a sneaky infection. Trends Microbiol. 2020;28(10):808–20.PubMedCrossRef
9.
go back to reference D’Aiuto L, Caldwell JK, Wallace CT, Grams TR, Wesesky MA, Wood JA, et al. The impaired neurodevelopment of human neural rosettes in HSV-1-infected early brain organoids. Cells. 2022;11(22):3539.PubMedPubMedCentralCrossRef D’Aiuto L, Caldwell JK, Wallace CT, Grams TR, Wesesky MA, Wood JA, et al. The impaired neurodevelopment of human neural rosettes in HSV-1-infected early brain organoids. Cells. 2022;11(22):3539.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Pacitti D, Privolizzi R, Bax BE. Organs to cells and cells to organoids: the evolution of in vitro central nervous system modelling. Front Cell Neurosci. 2019;29:13. Pacitti D, Privolizzi R, Bax BE. Organs to cells and cells to organoids: the evolution of in vitro central nervous system modelling. Front Cell Neurosci. 2019;29:13.
12.
go back to reference Nogueira GO, Garcez PP, Bardy C, Cunningham MO, Sebollela A. Modeling the human brain with ex vivo slices and in vitro organoids for translational neuroscience. Front Neurosci. 2022;24:16. Nogueira GO, Garcez PP, Bardy C, Cunningham MO, Sebollela A. Modeling the human brain with ex vivo slices and in vitro organoids for translational neuroscience. Front Neurosci. 2022;24:16.
13.
go back to reference Croft CL, Futch HS, Moore BD, Golde TE. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Mol Neurodegener. 2019;14(1). Croft CL, Futch HS, Moore BD, Golde TE. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Mol Neurodegener. 2019;14(1).
14.
go back to reference Gorter RP, Dijksman NS, Baron W, Colognato H. Investigating demyelination, efficient remyelination and remyelination failure in organotypic cerebellar slice cultures: workflow and practical tips. Methods Cell Biol. 2022;1(168):103–23.CrossRef Gorter RP, Dijksman NS, Baron W, Colognato H. Investigating demyelination, efficient remyelination and remyelination failure in organotypic cerebellar slice cultures: workflow and practical tips. Methods Cell Biol. 2022;1(168):103–23.CrossRef
15.
go back to reference Tan GA, Furber KL, Thangaraj MP, Sobchishin LR, Doucette JR, Nazarali AJ. Organotypic cultures from the adult CNS: a novel model to study demyelination and remyelination ex vivo. Cell Mol Neurobiol. 2018;38(1):317–28.PubMedCrossRef Tan GA, Furber KL, Thangaraj MP, Sobchishin LR, Doucette JR, Nazarali AJ. Organotypic cultures from the adult CNS: a novel model to study demyelination and remyelination ex vivo. Cell Mol Neurobiol. 2018;38(1):317–28.PubMedCrossRef
16.
go back to reference Qi XR, Verwer RWH, Bao AM, Balesar RA, Luchetti S, Zhou JN, et al. Human brain slice culture: a useful tool to study brain disorders and potential therapeutic compounds. Neurosci Bull. 2019;35(2):244–52.PubMedPubMedCentralCrossRef Qi XR, Verwer RWH, Bao AM, Balesar RA, Luchetti S, Zhou JN, et al. Human brain slice culture: a useful tool to study brain disorders and potential therapeutic compounds. Neurosci Bull. 2019;35(2):244–52.PubMedPubMedCentralCrossRef
17.
go back to reference Backstrom JR, Sheng J, Fischer RA, Sappington RM, Rex TS. Phenotypes of primary retinal macroglia: implications for purification and culture conditions. Exp Eye Res. 2019;1(182):85.CrossRef Backstrom JR, Sheng J, Fischer RA, Sappington RM, Rex TS. Phenotypes of primary retinal macroglia: implications for purification and culture conditions. Exp Eye Res. 2019;1(182):85.CrossRef
18.
go back to reference Watson PMD, Kavanagh E, Allenby G, Vassey M. Bioengineered 3D glial cell culture systems and applications for neurodegeneration and neuroinflammation. SLAS Discov. 2017;22(5):583–601.PubMedCrossRef Watson PMD, Kavanagh E, Allenby G, Vassey M. Bioengineered 3D glial cell culture systems and applications for neurodegeneration and neuroinflammation. SLAS Discov. 2017;22(5):583–601.PubMedCrossRef
19.
go back to reference Prah J, Winters A, Chaudhari K, Hersh J, Liu R, Yang SH. A novel serum free primary astrocyte culture method that mimic quiescent astrocyte phenotype. J Neurosci Methods. 2019;15(320):50–63.CrossRef Prah J, Winters A, Chaudhari K, Hersh J, Liu R, Yang SH. A novel serum free primary astrocyte culture method that mimic quiescent astrocyte phenotype. J Neurosci Methods. 2019;15(320):50–63.CrossRef
20.
go back to reference Schäfer CB, Gao Z, De Zeeuw CI, Hoebeek FE. Temporal dynamics of the cerebello-cortical convergence in ventro-lateral motor thalamus. J Physiol. 2021;599(7):2055–73.PubMedCrossRef Schäfer CB, Gao Z, De Zeeuw CI, Hoebeek FE. Temporal dynamics of the cerebello-cortical convergence in ventro-lateral motor thalamus. J Physiol. 2021;599(7):2055–73.PubMedCrossRef
21.
go back to reference Muller D, Toni N, Buchs PA, Parisi L, Stoppini L. Interface organotypic hippocampal slice cultures. Protoc Neural Cell Cult. 2001;15:13–27.CrossRef Muller D, Toni N, Buchs PA, Parisi L, Stoppini L. Interface organotypic hippocampal slice cultures. Protoc Neural Cell Cult. 2001;15:13–27.CrossRef
22.
go back to reference Humpel C. Organotypic brain slice cultures: a review. Neuroscience. 2015;1(305):86–98.CrossRef Humpel C. Organotypic brain slice cultures: a review. Neuroscience. 2015;1(305):86–98.CrossRef
23.
go back to reference La Boissière S, Izeta A, Malcomber S, O’Hare P. Compartmentalization of VP16 in cells infected with recombinant herpes simplex virus expressing VP16-green fluorescent protein fusion proteins. J Virol. 2004;78(15):8002–14.PubMedPubMedCentralCrossRef La Boissière S, Izeta A, Malcomber S, O’Hare P. Compartmentalization of VP16 in cells infected with recombinant herpes simplex virus expressing VP16-green fluorescent protein fusion proteins. J Virol. 2004;78(15):8002–14.PubMedPubMedCentralCrossRef
24.
go back to reference Nixon B, Stefanidou M, Mesquita PMM, Fakioglu E, Segarra T, Rohan L, et al. Griffithsin protects mice from genital herpes by preventing cell-to-cell spread. J Virol. 2013;87(11):6257–69.PubMedPubMedCentralCrossRef Nixon B, Stefanidou M, Mesquita PMM, Fakioglu E, Segarra T, Rohan L, et al. Griffithsin protects mice from genital herpes by preventing cell-to-cell spread. J Virol. 2013;87(11):6257–69.PubMedPubMedCentralCrossRef
25.
go back to reference Bsibsi M, Peferoen LAN, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, et al. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol. 2014;128(2):215–29.PubMedCrossRef Bsibsi M, Peferoen LAN, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, et al. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol. 2014;128(2):215–29.PubMedCrossRef
26.
go back to reference van Velzen M, Jing L, Osterhaus ADME, Sette A, Koelle DM, Verjans GMGM. Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia. PLOS Pathog. 2013;9(8): e1003547.PubMedPubMedCentralCrossRef van Velzen M, Jing L, Osterhaus ADME, Sette A, Koelle DM, Verjans GMGM. Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia. PLOS Pathog. 2013;9(8): e1003547.PubMedPubMedCentralCrossRef
27.
go back to reference Van Nierop GP, Hintzen RQ, Verjans GMGM. Prevalence of human Herpesviridae in cerebrospinal fluid of patients with multiple sclerosis and noninfectious neurological disease in the Netherlands. J Neurovirol. 2014;20(4):412–8.PubMed Van Nierop GP, Hintzen RQ, Verjans GMGM. Prevalence of human Herpesviridae in cerebrospinal fluid of patients with multiple sclerosis and noninfectious neurological disease in the Netherlands. J Neurovirol. 2014;20(4):412–8.PubMed
28.
go back to reference Van Doornum GJJ, Guldemeester J, Osterhaus ADME, Niesters HGM. Diagnosing herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol. 2003;41(2):576–80.PubMedPubMedCentralCrossRef Van Doornum GJJ, Guldemeester J, Osterhaus ADME, Niesters HGM. Diagnosing herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol. 2003;41(2):576–80.PubMedPubMedCentralCrossRef
29.
go back to reference Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1). Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1).
30.
go back to reference Hájos N, Ellender TJ, Zemankovics R, Mann EO, Exley R, Cragg SJ, et al. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur J Neurosci. 2009;29(2):319–27.PubMedPubMedCentralCrossRef Hájos N, Ellender TJ, Zemankovics R, Mann EO, Exley R, Cragg SJ, et al. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur J Neurosci. 2009;29(2):319–27.PubMedPubMedCentralCrossRef
31.
go back to reference Ivanov A, Zilberter Y. Critical state of energy metabolism in brain slices: the principal role of oxygen delivery and energy substrates in shaping neuronal activity. Front Neuroenergetics. 2011;3. Ivanov A, Zilberter Y. Critical state of energy metabolism in brain slices: the principal role of oxygen delivery and energy substrates in shaping neuronal activity. Front Neuroenergetics. 2011;3.
32.
go back to reference Welsch JC, Lionnet C, Terzian C, Horvat B, Gerlier D, Mathieu C. Organotypic brain cultures: a framework for studying CNS infection by neurotropic viruses and screening antiviral drugs. Bio-protocol. 2017;7(22). Welsch JC, Lionnet C, Terzian C, Horvat B, Gerlier D, Mathieu C. Organotypic brain cultures: a framework for studying CNS infection by neurotropic viruses and screening antiviral drugs. Bio-protocol. 2017;7(22).
33.
go back to reference Ferren M, Favède V, Decimo D, Iampietro M, Lieberman NAP, Weickert JL, et al. Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nat Commun. 2021;12(1). Ferren M, Favède V, Decimo D, Iampietro M, Lieberman NAP, Weickert JL, et al. Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nat Commun. 2021;12(1).
34.
go back to reference Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–41.PubMedCrossRef Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–41.PubMedCrossRef
35.
go back to reference von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016;524(18):3865.CrossRef von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016;524(18):3865.CrossRef
36.
go back to reference DeBiasi RL, Kleinschmidt-DeMasters BK, Richardson-Burns S, Tyler KL. Central nervous system apoptosis in human herpes simplex virus and cytomegalovirus encephalitis. J Infect Dis. 2002;186(11):1547–57.PubMedCrossRef DeBiasi RL, Kleinschmidt-DeMasters BK, Richardson-Burns S, Tyler KL. Central nervous system apoptosis in human herpes simplex virus and cytomegalovirus encephalitis. J Infect Dis. 2002;186(11):1547–57.PubMedCrossRef
37.
go back to reference Wnęk M, Ressel L, Ricci E, Rodriguez-Martinez C, Guerrero JCV, Ismail Z, et al. Herpes simplex encephalitis is linked with selective mitochondrial damage; a post-mortem and in vitro study. Acta Neuropathol. 2016;132(3):433–51.PubMedPubMedCentralCrossRef Wnęk M, Ressel L, Ricci E, Rodriguez-Martinez C, Guerrero JCV, Ismail Z, et al. Herpes simplex encephalitis is linked with selective mitochondrial damage; a post-mortem and in vitro study. Acta Neuropathol. 2016;132(3):433–51.PubMedPubMedCentralCrossRef
38.
go back to reference Baumann RJ, Walsh JW, Gilmore RL, Lee C, Wong P, Wilson HD, et al. Brain biopsy in cases of neonatal herpes simplex encephalitis. Neurosurgery. 1985;16(5):619–24.PubMedCrossRef Baumann RJ, Walsh JW, Gilmore RL, Lee C, Wong P, Wilson HD, et al. Brain biopsy in cases of neonatal herpes simplex encephalitis. Neurosurgery. 1985;16(5):619–24.PubMedCrossRef
39.
go back to reference Hutto C, Arvin A, Jacobs R, Steele R, Stagno S, Lyrene R, et al. Intrauterine herpes simplex virus infections. J Pediatr. 1987;110(1):97–101.PubMedCrossRef Hutto C, Arvin A, Jacobs R, Steele R, Stagno S, Lyrene R, et al. Intrauterine herpes simplex virus infections. J Pediatr. 1987;110(1):97–101.PubMedCrossRef
40.
go back to reference Zuelzer WW, Stulberg CS. Herpes simplex virus as the cause of fulminating visceral disease and hepatitis in infancy: report of Eight Cases and Isolation of the Virus in One Case. AMA Am J Dis Child. 1952;83(4):421–39.PubMed Zuelzer WW, Stulberg CS. Herpes simplex virus as the cause of fulminating visceral disease and hepatitis in infancy: report of Eight Cases and Isolation of the Virus in One Case. AMA Am J Dis Child. 1952;83(4):421–39.PubMed
41.
go back to reference Paludan SR, Mogensen TH. Constitutive and latent immune mechanisms exert “silent” control of virus infections in the central nervous system. Curr Opin Immunol. 2021;1(72):158–66.CrossRef Paludan SR, Mogensen TH. Constitutive and latent immune mechanisms exert “silent” control of virus infections in the central nervous system. Curr Opin Immunol. 2021;1(72):158–66.CrossRef
42.
go back to reference Zhang SY, Harschnitz O, Studer L, Casanova JL. Neuron-intrinsic immunity to viruses in mice and humans. Curr Opin Immunol. 2021;1(72):309–17.CrossRef Zhang SY, Harschnitz O, Studer L, Casanova JL. Neuron-intrinsic immunity to viruses in mice and humans. Curr Opin Immunol. 2021;1(72):309–17.CrossRef
43.
go back to reference Reinert LS, Rashidi AS, Tran DN, Katzilieris-Petras G, Hvidt AK, Gohr M, et al. Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production. J Clin Invest. 2021;131(1). Reinert LS, Rashidi AS, Tran DN, Katzilieris-Petras G, Hvidt AK, Gohr M, et al. Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production. J Clin Invest. 2021;131(1).
44.
go back to reference Wuest TR, Carr DJJ. Dysregulation of CXCR3 signaling due to CXCL10 deficiency impairs the anti-viral response to HSV-1 infection. J Immunol. 2008;181(11):7985.PubMedCrossRef Wuest TR, Carr DJJ. Dysregulation of CXCR3 signaling due to CXCL10 deficiency impairs the anti-viral response to HSV-1 infection. J Immunol. 2008;181(11):7985.PubMedCrossRef
45.
go back to reference Sergerie Y, Rivest S, Boivin G. Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis. 2007;196(6):853–60.PubMedCrossRef Sergerie Y, Rivest S, Boivin G. Tumor necrosis factor-alpha and interleukin-1 beta play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis. 2007;196(6):853–60.PubMedCrossRef
46.
go back to reference LeBlanc RA, Pesnicak L, Cabral ES, Godleski M, Straus SE. Lack of interleukin-6 (IL-6) enhances susceptibility to infection but does not alter latency or reactivation of herpes simplex virus type 1 in IL-6 knockout mice. J Virol. 1999;73(10):8145.PubMedPubMedCentralCrossRef LeBlanc RA, Pesnicak L, Cabral ES, Godleski M, Straus SE. Lack of interleukin-6 (IL-6) enhances susceptibility to infection but does not alter latency or reactivation of herpes simplex virus type 1 in IL-6 knockout mice. J Virol. 1999;73(10):8145.PubMedPubMedCentralCrossRef
47.
go back to reference Pinninti SG, Kimberlin DW. Neonatal herpes simplex virus infections. Semin Perinatol. 2018;42(3):168–75.PubMedCrossRef Pinninti SG, Kimberlin DW. Neonatal herpes simplex virus infections. Semin Perinatol. 2018;42(3):168–75.PubMedCrossRef
48.
go back to reference Shives KD, Tyler KL, Beckham JD. Molecular mechanisms of neuroinflammation and injury during acute viral encephalitis. J Neuroimmunol. 2017;15(308):102–11.CrossRef Shives KD, Tyler KL, Beckham JD. Molecular mechanisms of neuroinflammation and injury during acute viral encephalitis. J Neuroimmunol. 2017;15(308):102–11.CrossRef
49.
go back to reference Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting neurons and glial cells oneness in the brain-the possible causal role of herpes simplex virus type 1 (HSV-1) in Alzheimer’s disease. Int J Mol Sci. 2021;23(1):242.PubMedPubMedCentralCrossRef Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting neurons and glial cells oneness in the brain-the possible causal role of herpes simplex virus type 1 (HSV-1) in Alzheimer’s disease. Int J Mol Sci. 2021;23(1):242.PubMedPubMedCentralCrossRef
50.
go back to reference Paludan SR, Reinert LS, Hornung V. DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nat Rev Immunol. 2019;19(3):141–53.PubMedPubMedCentralCrossRef Paludan SR, Reinert LS, Hornung V. DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nat Rev Immunol. 2019;19(3):141–53.PubMedPubMedCentralCrossRef
51.
go back to reference Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119(3):493–501.PubMedCrossRef Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119(3):493–501.PubMedCrossRef
52.
go back to reference Young GF, Knox DL, Dodge PR. Necrotizing encephalitis and chorioretinitis in a young infant: report of a case with rising herpes simplex antibody titers. Arch Neurol. 1965;13(1):15–24.PubMedCrossRef Young GF, Knox DL, Dodge PR. Necrotizing encephalitis and chorioretinitis in a young infant: report of a case with rising herpes simplex antibody titers. Arch Neurol. 1965;13(1):15–24.PubMedCrossRef
53.
go back to reference Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678–95.PubMedCrossRef Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678–95.PubMedCrossRef
54.
go back to reference Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog. 2022;18(8):e1010718.PubMedPubMedCentralCrossRef Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog. 2022;18(8):e1010718.PubMedPubMedCentralCrossRef
55.
go back to reference Skoldenberg B, Forsgren M. Acyclovir versus vidarabine in herpes simplex encephalitis. Scand J Infect Dis. 1985;17(SUPPL. 47):89–96. Skoldenberg B, Forsgren M. Acyclovir versus vidarabine in herpes simplex encephalitis. Scand J Infect Dis. 1985;17(SUPPL. 47):89–96.
56.
go back to reference James C, Harfouche M, Welton NJ, Turner KME, Abu-Raddad LJ, Gottlieb SL, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020;98(5):315–29.PubMedPubMedCentralCrossRef James C, Harfouche M, Welton NJ, Turner KME, Abu-Raddad LJ, Gottlieb SL, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020;98(5):315–29.PubMedPubMedCentralCrossRef
57.
go back to reference Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;6(7): 513823. Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;6(7): 513823.
58.
go back to reference Walczak PA, Perez-Esteban P, Bassett DC, Hill EJ. Modelling the central nervous system: tissue engineering of the cellular microenvironment. Emerg Top Life Sci. 2021;5(4):507–17.PubMedPubMedCentralCrossRef Walczak PA, Perez-Esteban P, Bassett DC, Hill EJ. Modelling the central nervous system: tissue engineering of the cellular microenvironment. Emerg Top Life Sci. 2021;5(4):507–17.PubMedPubMedCentralCrossRef
59.
go back to reference Kollias CM, Huneke RB, Wigdahl B, Jennings SR. Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol. 2015;21(1):8–23.PubMedCrossRef Kollias CM, Huneke RB, Wigdahl B, Jennings SR. Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol. 2015;21(1):8–23.PubMedCrossRef
60.
go back to reference Setia H, Muotri AR. Brain organoids as a model system for human neurodevelopment and disease. Semin Cell Dev Biol. 2019;1(95):93–7.CrossRef Setia H, Muotri AR. Brain organoids as a model system for human neurodevelopment and disease. Semin Cell Dev Biol. 2019;1(95):93–7.CrossRef
61.
go back to reference Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med. 2010;16(11):1210–4.PubMedCrossRef Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med. 2010;16(11):1210–4.PubMedCrossRef
62.
go back to reference Cakir B, Park IH. Getting the right cells. Elife. 2022;1:11. Cakir B, Park IH. Getting the right cells. Elife. 2022;1:11.
63.
go back to reference Andrews MG, Kriegstein AR. Challenges of organoid research. Annu Rev Neurosci. 2022;1(45):23–39.CrossRef Andrews MG, Kriegstein AR. Challenges of organoid research. Annu Rev Neurosci. 2022;1(45):23–39.CrossRef
64.
go back to reference Bhaduri A, Andrews MG, Mancia Leon W, Jung D, Shin D, Allen D, et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature. 2020;578(7793):142.PubMedPubMedCentralCrossRef Bhaduri A, Andrews MG, Mancia Leon W, Jung D, Shin D, Allen D, et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature. 2020;578(7793):142.PubMedPubMedCentralCrossRef
65.
go back to reference Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci. 2021;24(4):584–94.PubMedPubMedCentralCrossRef Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci. 2021;24(4):584–94.PubMedPubMedCentralCrossRef
66.
go back to reference Lawrence JM, Schardien K, Wigdahl B, Nonnemacher MR. Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol Commun. 2023;11(1):1–28.CrossRef Lawrence JM, Schardien K, Wigdahl B, Nonnemacher MR. Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol Commun. 2023;11(1):1–28.CrossRef
67.
68.
go back to reference Koyama Y. Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues. Neurochem Int. 2014;78:35–42.PubMedCrossRef Koyama Y. Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues. Neurochem Int. 2014;78:35–42.PubMedCrossRef
69.
go back to reference Kakooza-Mwesige A, Mohammed AH, Kristensson K, Juliano SL, Lutwama JJ. Emerging viral infections in sub-Saharan Africa and the developing nervous system: a mini review. Front Neurol. 2018;9(FEB). Kakooza-Mwesige A, Mohammed AH, Kristensson K, Juliano SL, Lutwama JJ. Emerging viral infections in sub-Saharan Africa and the developing nervous system: a mini review. Front Neurol. 2018;9(FEB).
70.
go back to reference Athmanathan S, Vydehi BV, Sundaram C, Vemuganti G, Murthy J. Neuronal apoptosis in herpes simplex virus—1 encephalitis (HSE). Indian J Med Microbiol. 2001; Athmanathan S, Vydehi BV, Sundaram C, Vemuganti G, Murthy J. Neuronal apoptosis in herpes simplex virus—1 encephalitis (HSE). Indian J Med Microbiol. 2001;
71.
72.
go back to reference Perkins D, Gyure KA, Pereira EFR, Aurelian L. Herpes simplex virus type 1-induced encephalitis has an apoptotic component associated with activation of c-Jun N-terminal kinase. J Neurovirol. 2003;9(1):101–11.PubMedCrossRef Perkins D, Gyure KA, Pereira EFR, Aurelian L. Herpes simplex virus type 1-induced encephalitis has an apoptotic component associated with activation of c-Jun N-terminal kinase. J Neurovirol. 2003;9(1):101–11.PubMedCrossRef
73.
go back to reference Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V. Role of Apoptosis in disease. Aging (Albany NY). 2012;4(5):330.PubMedCrossRef Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V. Role of Apoptosis in disease. Aging (Albany NY). 2012;4(5):330.PubMedCrossRef
74.
go back to reference Aden K, Tran F, Ito G, Sheibani-Tezerji R, Lipinski S, Kuiper JW, et al. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS–STING. J Exp Med. 2018;215(11):2868.PubMedPubMedCentralCrossRef Aden K, Tran F, Ito G, Sheibani-Tezerji R, Lipinski S, Kuiper JW, et al. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS–STING. J Exp Med. 2018;215(11):2868.PubMedPubMedCentralCrossRef
75.
76.
go back to reference Liu Z, Garcia Reino EJ, Harschnitz O, Guo H, Chan YH, Khobrekar NV, et al. Encephalitis and poor neuronal death-mediated control of herpes simplex virus in human inherited RIPK3 deficiency. Sci Immunol. 2023;8(82): eade2860.PubMedPubMedCentralCrossRef Liu Z, Garcia Reino EJ, Harschnitz O, Guo H, Chan YH, Khobrekar NV, et al. Encephalitis and poor neuronal death-mediated control of herpes simplex virus in human inherited RIPK3 deficiency. Sci Immunol. 2023;8(82): eade2860.PubMedPubMedCentralCrossRef
Metadata
Title
Herpes simplex virus infection induces necroptosis of neurons and astrocytes in human fetal organotypic brain slice cultures
Authors
Ahmad S. Rashidi
Diana N. Tran
Caithlin R. Peelen
Michiel van Gent
Werner J. D. Ouwendijk
Georges M. G. M. Verjans
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03027-5

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue