Skip to main content
Top
Published in: Discover Oncology 1/2023

Open Access 01-12-2023 | Hepatocellular Carcinoma | Research

Machine learning and experiments identifies SPINK1 as a candidate diagnostic and prognostic biomarker for hepatocellular carcinoma

Authors: Shiming Yi, Chunlei Zhang, Ming Li, Tianyi Qu, Jiafeng Wang

Published in: Discover Oncology | Issue 1/2023

Login to get access

Abstract

Machine learning techniques have been widely used in predicting disease prognosis, including cancer prognosis. One of the major challenges in cancer prognosis is to accurately classify cancer types and stages to optimize early screening and detection, and machine learning techniques have proven to be very useful in this regard. In this study, we aimed at identifying critical genes for diagnosis and outcomes of hepatocellular carcinoma (HCC) patients using machine learning. The HCC expression dataset was downloaded from GSE65372 datasets and TCGA datasets. Differentially expressed genes (DEGs) were identified between 39 HCC and 15 normal samples. For the purpose of locating potential biomarkers, the LASSO and the SVM-RFE assays were performed. The ssGSEA method was used to analyze the TCGA to determine whether there was an association between SPINK1 and tumor immune infiltrates. RT-PCR was applied to examine the expression of SPINK1 in HCC specimens and cells. A series of functional assays were applied to examine the function of SPINK1 knockdown on the proliferation of HCC cells. In this study, 103 DEGs were obtained. Based on LASSO and SVM-RFE analysis, we identified nine critical diagnostic genes, including C10orf113, SPINK1, CNTLN, NRG3, HIST1H2AI, GPRIN3, SCTR, C2orf40 and PITX1. Importantly, we confirmed SPINK1 as a prognostic gene in HCC. Multivariate analysis confirmed that SPINK1 was an independent prognostic factor for overall survivals of HCC patients. We also found that SPINK1 level was positively associated with Macrophages, B cells, TFH, T cells, Th2 cells, iDC, NK CD56bright cells, Th1 cells, aDC, while negatively associated with Tcm and Eosinophils. Finally, we demonstrated that SPINK1 expression was distinctly increased in HCC specimens and cells. Functionally, silence of SPINK1 distinctly suppressed the proliferation of HCC cells via regulating Wnt/β-catenin pathway. The evidence provided suggested that SPINK1 may possess oncogenic properties by inducing dysregulated immune infiltration in HCC. Additionally, SPINK1 was identified as a novel biomarker and therapeutic target for HCC.
Literature
2.
go back to reference Lee TK, Guan XY, Ma S. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 2022;19(1):26–44.PubMedCrossRef Lee TK, Guan XY, Ma S. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 2022;19(1):26–44.PubMedCrossRef
3.
go back to reference Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv Cancer Res. 2021;149:1–61.PubMedCrossRef Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv Cancer Res. 2021;149:1–61.PubMedCrossRef
5.
go back to reference Liccioni A, Reig M, Bruix J. Treatment of hepatocellular carcinoma. Digest Dis. 2014;32(5):554–63.CrossRef Liccioni A, Reig M, Bruix J. Treatment of hepatocellular carcinoma. Digest Dis. 2014;32(5):554–63.CrossRef
6.
go back to reference Ganesan P, Kulik LM. Hepatocellular carcinoma: new developments. Clin Liver Dis. 2023;27(1):85–102.PubMedCrossRef Ganesan P, Kulik LM. Hepatocellular carcinoma: new developments. Clin Liver Dis. 2023;27(1):85–102.PubMedCrossRef
7.
go back to reference Cho E, Cho HA, Jun CH, Kim HJ, Cho SB, Choi SK. A review of hepatocellular carcinoma in elderly patients focused on management and outcomes. In vivo. 2019;33(5):1411–20.PubMedPubMedCentralCrossRef Cho E, Cho HA, Jun CH, Kim HJ, Cho SB, Choi SK. A review of hepatocellular carcinoma in elderly patients focused on management and outcomes. In vivo. 2019;33(5):1411–20.PubMedPubMedCentralCrossRef
8.
go back to reference Testino G, Leone S, Patussi V, Scafato E, Borro P. Hepatocellular carcinoma: diagnosis and proposal of treatment. Minerva Med. 2016;107(6):413–26.PubMed Testino G, Leone S, Patussi V, Scafato E, Borro P. Hepatocellular carcinoma: diagnosis and proposal of treatment. Minerva Med. 2016;107(6):413–26.PubMed
9.
go back to reference Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23(1):40–55.PubMedCrossRef Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23(1):40–55.PubMedCrossRef
10.
go back to reference Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Georgiou P, Lescure FX, Birgand G, Holmes AH. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect. 2020;26(5):584–95.PubMedCrossRef Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Georgiou P, Lescure FX, Birgand G, Holmes AH. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect. 2020;26(5):584–95.PubMedCrossRef
11.
go back to reference Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Diversity. 2021;25(3):1315–60.CrossRef Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Diversity. 2021;25(3):1315–60.CrossRef
12.
go back to reference Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vision Sci Technol. 2020;9(2):14. Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vision Sci Technol. 2020;9(2):14.
13.
go back to reference Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med. 2018;284(6):603–19.PubMedCrossRef Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med. 2018;284(6):603–19.PubMedCrossRef
14.
go back to reference Triantafyllidis AK, Tsanas A. Applications of machine learning in real-life digital health interventions: review of the literature. J Med Internet Res. 2019;21(4):e12286.PubMedPubMedCentralCrossRef Triantafyllidis AK, Tsanas A. Applications of machine learning in real-life digital health interventions: review of the literature. J Med Internet Res. 2019;21(4):e12286.PubMedPubMedCentralCrossRef
15.
go back to reference Silva GFS, Fagundes TP, Teixeira BC, Chiavegatto Filho ADP. Machine learning for hypertension prediction: a systematic review. Curr Hypertens Rep. 2022;24(11):523–33.PubMedCrossRef Silva GFS, Fagundes TP, Teixeira BC, Chiavegatto Filho ADP. Machine learning for hypertension prediction: a systematic review. Curr Hypertens Rep. 2022;24(11):523–33.PubMedCrossRef
16.
go back to reference Aafjes-van Doorn K, Kamsteeg C, Bate J, Aafjes M. A scoping review of machine learning in psychotherapy research. Psychother Res. 2021;31(1):92–116.PubMedCrossRef Aafjes-van Doorn K, Kamsteeg C, Bate J, Aafjes M. A scoping review of machine learning in psychotherapy research. Psychother Res. 2021;31(1):92–116.PubMedCrossRef
18.
go back to reference Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol. 2019;59:236–50.PubMedCrossRef Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol. 2019;59:236–50.PubMedCrossRef
19.
20.
go back to reference Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.PubMedCrossRef Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.PubMedCrossRef
22.
go back to reference Locy H, de Mey S, de Mey W, De Ridder M, Thielemans K, Maenhout SK. Immunomodulation of the tumor microenvironment: turn foe into friend. Front Immunol. 2018;9:2909.PubMedPubMedCentralCrossRef Locy H, de Mey S, de Mey W, De Ridder M, Thielemans K, Maenhout SK. Immunomodulation of the tumor microenvironment: turn foe into friend. Front Immunol. 2018;9:2909.PubMedPubMedCentralCrossRef
23.
go back to reference Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18(8):498–513.PubMedCrossRef Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18(8):498–513.PubMedCrossRef
24.
go back to reference Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, hypoxia, and metabolism-the ménage à trois of cancer: implications for immunotherapy. Physiol Rev. 2020;100(1):1–102.PubMedCrossRef Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, hypoxia, and metabolism-the ménage à trois of cancer: implications for immunotherapy. Physiol Rev. 2020;100(1):1–102.PubMedCrossRef
27.
go back to reference Kim DW, Talati C, Kim R. Hepatocellular carcinoma (HCC): beyond sorafenib-chemotherapy. J Gastrointestinal Oncol. 2017;8(2):256–65.CrossRef Kim DW, Talati C, Kim R. Hepatocellular carcinoma (HCC): beyond sorafenib-chemotherapy. J Gastrointestinal Oncol. 2017;8(2):256–65.CrossRef
30.
go back to reference Gentile D, Donadon M, Lleo A, Aghemo A, Roncalli M, di Tommaso L, Torzilli G. Surgical treatment of hepatocholangiocarcinoma: a systematic review. Liver Cancer. 2020;9(1):15–27.PubMedCrossRef Gentile D, Donadon M, Lleo A, Aghemo A, Roncalli M, di Tommaso L, Torzilli G. Surgical treatment of hepatocholangiocarcinoma: a systematic review. Liver Cancer. 2020;9(1):15–27.PubMedCrossRef
31.
go back to reference Mehta N, Bhangui P, Yao FY, Mazzaferro V, Toso C, Akamatsu N, Durand F, Ijzermans J, Polak W, Zheng S et al: Liver Transplantation for Hepatocellular Carcinoma. Working Group Report from the ILTS Transplant Oncology Consensus Conference. Transplantation. 2020, 104(6): 1136–1142. Mehta N, Bhangui P, Yao FY, Mazzaferro V, Toso C, Akamatsu N, Durand F, Ijzermans J, Polak W, Zheng S et al: Liver Transplantation for Hepatocellular Carcinoma. Working Group Report from the ILTS Transplant Oncology Consensus Conference. Transplantation. 2020, 104(6): 1136–1142.
32.
go back to reference De Stefano F, Chacon E, Turcios L, Marti F, Gedaly R. Novel biomarkers in hepatocellular carcinoma. Digest Liver Dis. 2018;50(11):1115–23.CrossRef De Stefano F, Chacon E, Turcios L, Marti F, Gedaly R. Novel biomarkers in hepatocellular carcinoma. Digest Liver Dis. 2018;50(11):1115–23.CrossRef
33.
go back to reference Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom Proteom. 2018;15(1):41–51. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom Proteom. 2018;15(1):41–51.
34.
go back to reference Kong J, Ha D, Lee J, Kim I, Park M, Im SH, Shin K, Kim S. Network-based machine learning approach to predict immunotherapy response in cancer patients. Nat Commun. 2022;13(1):3703.PubMedPubMedCentralCrossRef Kong J, Ha D, Lee J, Kim I, Park M, Im SH, Shin K, Kim S. Network-based machine learning approach to predict immunotherapy response in cancer patients. Nat Commun. 2022;13(1):3703.PubMedPubMedCentralCrossRef
35.
go back to reference Kazal LA, Spicer DS, Brahinsky RA. Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. J Am Chem Soc. 1948;70(9):3034–40.PubMedCrossRef Kazal LA, Spicer DS, Brahinsky RA. Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. J Am Chem Soc. 1948;70(9):3034–40.PubMedCrossRef
36.
go back to reference Mehner C, Miller E, Hockla A, Coban M, Weroha SJ, Radisky DC, Radisky ES. Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma. Oncogene. 2020;39(42):6606–18.PubMedPubMedCentralCrossRef Mehner C, Miller E, Hockla A, Coban M, Weroha SJ, Radisky DC, Radisky ES. Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma. Oncogene. 2020;39(42):6606–18.PubMedPubMedCentralCrossRef
37.
go back to reference Ru N, Wu SY, Wang L, Zhu JH, Xu XN, Guo JY, Hu LH, Li ZS, Zou WB, Liao Z. SPINK1 mutations and risk of pancreatic cancer in a Chinese cohort. Pancreatology. 2021;21(5):848–53.PubMedCrossRef Ru N, Wu SY, Wang L, Zhu JH, Xu XN, Guo JY, Hu LH, Li ZS, Zou WB, Liao Z. SPINK1 mutations and risk of pancreatic cancer in a Chinese cohort. Pancreatology. 2021;21(5):848–53.PubMedCrossRef
38.
go back to reference Li D, Zhang X, Ding Z, Ai R, Shi L, Wang Z, He Q, Dong Y, Zhu Y, Ouyang W, et al. Identification and exploration of serine peptidase inhibitor Kazal type I (SPINK1) as a potential biomarker correlated with the progression of non-small cell lung cancer. Cell Biochem Biophys. 2022;80(4):807–18.PubMedCrossRef Li D, Zhang X, Ding Z, Ai R, Shi L, Wang Z, He Q, Dong Y, Zhu Y, Ouyang W, et al. Identification and exploration of serine peptidase inhibitor Kazal type I (SPINK1) as a potential biomarker correlated with the progression of non-small cell lung cancer. Cell Biochem Biophys. 2022;80(4):807–18.PubMedCrossRef
39.
go back to reference Räsänen K, Itkonen O, Koistinen H, Stenman UH. Emerging roles of SPINK1 in cancer. Clin Chem. 2016;62(3):449–57.PubMedCrossRef Räsänen K, Itkonen O, Koistinen H, Stenman UH. Emerging roles of SPINK1 in cancer. Clin Chem. 2016;62(3):449–57.PubMedCrossRef
40.
go back to reference Flavin R, Pettersson A, Hendrickson WK, Fiorentino M, Finn S, Kunz L, Judson GL, Lis R, Bailey D, Fiore C, et al. SPINK1 protein expression and prostate cancer progression. Clin Cancer Res. 2014;20(18):4904–11.PubMedPubMedCentralCrossRef Flavin R, Pettersson A, Hendrickson WK, Fiorentino M, Finn S, Kunz L, Judson GL, Lis R, Bailey D, Fiore C, et al. SPINK1 protein expression and prostate cancer progression. Clin Cancer Res. 2014;20(18):4904–11.PubMedPubMedCentralCrossRef
41.
go back to reference Huang K, Xie W, Wang S, Li Q, Wei X, Chen B, Hua Y, Li S, Peng B, Shen S. High SPINK1 expression predicts poor prognosis and promotes cell proliferation and metastasis of hepatocellular carcinoma. J Invest Surg. 2021;34(9):1011–20.PubMedCrossRef Huang K, Xie W, Wang S, Li Q, Wei X, Chen B, Hua Y, Li S, Peng B, Shen S. High SPINK1 expression predicts poor prognosis and promotes cell proliferation and metastasis of hepatocellular carcinoma. J Invest Surg. 2021;34(9):1011–20.PubMedCrossRef
43.
go back to reference Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482–92.PubMedCrossRef Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482–92.PubMedCrossRef
44.
go back to reference Oura K, Morishita A, Tani J, Masaki T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. Int J Mol Sci. 2021;22(11):5801.PubMedPubMedCentralCrossRef Oura K, Morishita A, Tani J, Masaki T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. Int J Mol Sci. 2021;22(11):5801.PubMedPubMedCentralCrossRef
45.
go back to reference Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, Pikarsky E, Zhu AX, Finn RS. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19(3):151–72.PubMedCrossRef Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, Pikarsky E, Zhu AX, Finn RS. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19(3):151–72.PubMedCrossRef
46.
go back to reference Leslie J, Mackey JBG, Jamieson T, Ramon-Gil E, Drake TM, Fercoq F, Clark W, Gilroy K, Hedley A, Nixon C, et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut. 2022;71(10):2093–106.PubMedCrossRef Leslie J, Mackey JBG, Jamieson T, Ramon-Gil E, Drake TM, Fercoq F, Clark W, Gilroy K, Hedley A, Nixon C, et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut. 2022;71(10):2093–106.PubMedCrossRef
47.
48.
go back to reference He S, Tang S. WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother. 2020;132:110851.PubMedCrossRef He S, Tang S. WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother. 2020;132:110851.PubMedCrossRef
50.
go back to reference Kim W, Khan SK, Gvozdenovic-Jeremic J, Kim Y, Dahlman J, Kim H, Park O, Ishitani T, Jho EH, Gao B, et al. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Investig. 2017;127(1):137–52.PubMedCrossRef Kim W, Khan SK, Gvozdenovic-Jeremic J, Kim Y, Dahlman J, Kim H, Park O, Ishitani T, Jho EH, Gao B, et al. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Investig. 2017;127(1):137–52.PubMedCrossRef
51.
go back to reference Wei S, Dai M, Zhang C, Teng K, Wang F, Li H, Sun W, Feng Z, Kang T, Guan X, et al. KIF2C: a novel link between Wnt/β-catenin and mTORC1 signaling in the pathogenesis of hepatocellular carcinoma. Protein Cell. 2021;12(10):788–809.PubMedCrossRef Wei S, Dai M, Zhang C, Teng K, Wang F, Li H, Sun W, Feng Z, Kang T, Guan X, et al. KIF2C: a novel link between Wnt/β-catenin and mTORC1 signaling in the pathogenesis of hepatocellular carcinoma. Protein Cell. 2021;12(10):788–809.PubMedCrossRef
52.
go back to reference Katoh M. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med. 2018;42(2):713–25.PubMedPubMedCentral Katoh M. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med. 2018;42(2):713–25.PubMedPubMedCentral
53.
go back to reference Li Q, Sun M, Wang M, Feng M, Yang F, Li L, Zhao J, Chang C, Dong H, Xie T, et al. Dysregulation of Wnt/β-catenin signaling by protein kinases in hepatocellular carcinoma and its therapeutic application. Cancer Sci. 2021;112(5):1695–706.PubMedPubMedCentralCrossRef Li Q, Sun M, Wang M, Feng M, Yang F, Li L, Zhao J, Chang C, Dong H, Xie T, et al. Dysregulation of Wnt/β-catenin signaling by protein kinases in hepatocellular carcinoma and its therapeutic application. Cancer Sci. 2021;112(5):1695–706.PubMedPubMedCentralCrossRef
Metadata
Title
Machine learning and experiments identifies SPINK1 as a candidate diagnostic and prognostic biomarker for hepatocellular carcinoma
Authors
Shiming Yi
Chunlei Zhang
Ming Li
Tianyi Qu
Jiafeng Wang
Publication date
01-12-2023
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2023
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-023-00849-2

Other articles of this Issue 1/2023

Discover Oncology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine