Skip to main content
Top
Published in: Discover Oncology 1/2023

Open Access 01-12-2023 | Ovarian Cancer | Research

LncRNA GAS5-hnRNPK axis inhibited ovarian cancer progression via inhibition of AKT signaling in ovarian cancer cells

Authors: Te Zhang, Yahui Leng, Mengjing Duan, Zihang Li, Yongqing Ma, Chengyang Huang, Qin Shi, Yi Wang, Chengcheng Wang, Dandan Liu, Xuan Zhao, Shuang Cheng, Ao Liu, Yang Zhou, Jiaqi Liu, Zhongqiu Pan, Huimei Zhang, Li Shen, Hongyan Zhao

Published in: Discover Oncology | Issue 1/2023

Login to get access

Abstract

Background

The incidence of ovarian cancer ranks third among gynecologic malignancies, but the mortality rate ranks first.

Methods

The expression of GAS5 is low in ovarian cancer and is associated with the low survival of ovarian cancer patients according to public ovarian cancer databases. GAS5 overexpression inhibited ovarian malignancy by affecting the proliferation and migratory abilities in OVCAR3 and A2780 cells. GAS5 overexpression increased the rate of cell apoptosis, and the cells were blocked in the G1 phase as assessed by flow cytometry.

Results

We found that hnRNPK was a potential target gene, which was regulated negatively by GAS5 based on RNA-pulldown and mass spectrometry analysis. Mechanistically, GAS5 affected the inhibition of the PI3K/AKT/mTOR pathways and bound the protein of hnRNPK, which influenced hnRNPK stability. Furthermore, rescue assays demonstrated hnRNPK was significantly involved in the progression of ovarian cancer.

Conclusions

Our study showed one of the mechanisms that GAS5 inhibited ovarian cancer metastasis by down-regulating hnRNPK expression, and GAS5 can be used to predict the prognosis of ovarian cancer patients.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135(05):584–90.CrossRefPubMedPubMedCentral Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135(05):584–90.CrossRefPubMedPubMedCentral
2.
3.
go back to reference Miller KD, Ortiz AP, Pinheiro PS, Bandi P, Minihan A, Fuchs HE, Martinez Tyson D, Tortolero-Luna G, Fedewa SA, Jemal AM. Cancer statistics for the US Hispanic/Latino population. CA Cancer J Clin. 2021;71(6):466–87.CrossRefPubMed Miller KD, Ortiz AP, Pinheiro PS, Bandi P, Minihan A, Fuchs HE, Martinez Tyson D, Tortolero-Luna G, Fedewa SA, Jemal AM. Cancer statistics for the US Hispanic/Latino population. CA Cancer J Clin. 2021;71(6):466–87.CrossRefPubMed
4.
go back to reference Grammatikakis I, Lal A. Significance of lncRNA abundance to function. Mamm Genome. 2022;33(2):271–80.CrossRefPubMed Grammatikakis I, Lal A. Significance of lncRNA abundance to function. Mamm Genome. 2022;33(2):271–80.CrossRefPubMed
5.
go back to reference Alessio E, Bonadio RS, Buson L, Chemello F, Cagnin S. A single cell but many different transcripts: a journey into the world of long non-coding RNAs. Int J Mol Sci. 2020;21(1):302.CrossRefPubMedPubMedCentral Alessio E, Bonadio RS, Buson L, Chemello F, Cagnin S. A single cell but many different transcripts: a journey into the world of long non-coding RNAs. Int J Mol Sci. 2020;21(1):302.CrossRefPubMedPubMedCentral
6.
go back to reference Li C, Ni Y-Q, Xu H, Xiang Q-Y, Zhao Y, Zhan J-K, He J-Y, Li S, Liu Y-S. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther. 2021;6(1):383.CrossRefPubMedPubMedCentral Li C, Ni Y-Q, Xu H, Xiang Q-Y, Zhao Y, Zhan J-K, He J-Y, Li S, Liu Y-S. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther. 2021;6(1):383.CrossRefPubMedPubMedCentral
7.
go back to reference Ganguly N, Chakrabarti S. Role of long non-coding RNAs and related epigenetic mechanisms in liver fibrosis. Int J Mol Med. 2021;47(3):1–1.CrossRef Ganguly N, Chakrabarti S. Role of long non-coding RNAs and related epigenetic mechanisms in liver fibrosis. Int J Mol Med. 2021;47(3):1–1.CrossRef
9.
go back to reference Agostini M, Mancini M, Candi E. Long non-coding RNAs affecting cell metabolism in cancer. Biol Direct. 2022;17(1):1–12.CrossRef Agostini M, Mancini M, Candi E. Long non-coding RNAs affecting cell metabolism in cancer. Biol Direct. 2022;17(1):1–12.CrossRef
11.
go back to reference Goustin AS, Thepsuwan P, Kosir MA, Lipovich L. The growth-arrest-specific (GAS)-5 long non-coding RNA: a fascinating lncRNA widely expressed in cancers. Non-Coding RNA. 2019;5(3):46.CrossRefPubMedPubMedCentral Goustin AS, Thepsuwan P, Kosir MA, Lipovich L. The growth-arrest-specific (GAS)-5 long non-coding RNA: a fascinating lncRNA widely expressed in cancers. Non-Coding RNA. 2019;5(3):46.CrossRefPubMedPubMedCentral
12.
go back to reference Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell. 1988;54(6):787–93.CrossRefPubMed Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell. 1988;54(6):787–93.CrossRefPubMed
15.
go back to reference Liu Y, Yin L, Chen C, Zhang X, Wang S. Long non-coding RNA GAS5 inhibits migration and invasion in gastric cancer via interacting with p53 protein. Dig Liver Dis. 2020;52(3):331–8.CrossRefPubMed Liu Y, Yin L, Chen C, Zhang X, Wang S. Long non-coding RNA GAS5 inhibits migration and invasion in gastric cancer via interacting with p53 protein. Dig Liver Dis. 2020;52(3):331–8.CrossRefPubMed
17.
18.
go back to reference Wang Z, Chen J, Sun F, Zhao X, Dong Y, Yu S, Li J, Liang H. LncRNA CRLM1 inhibits apoptosis and promotes metastasis through transcriptional regulation cooperated with hnRNPK in colorectal cancer. Cell Biosci. 2022;12(1):1–21.CrossRef Wang Z, Chen J, Sun F, Zhao X, Dong Y, Yu S, Li J, Liang H. LncRNA CRLM1 inhibits apoptosis and promotes metastasis through transcriptional regulation cooperated with hnRNPK in colorectal cancer. Cell Biosci. 2022;12(1):1–21.CrossRef
20.
go back to reference Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, Jia L, Li S, Caesar-Johnson SJ, Demchok JA. lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer cell. 2018;33(4):706-720. e709.CrossRefPubMedPubMedCentral Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, Jia L, Li S, Caesar-Johnson SJ, Demchok JA. lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer cell. 2018;33(4):706-720. e709.CrossRefPubMedPubMedCentral
21.
go back to reference Hu WL, Jin L, Xu A, Wang YF, Thorne RF, Zhang XD, Wu M. GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol. 2018;20(4):492–502.CrossRefPubMed Hu WL, Jin L, Xu A, Wang YF, Thorne RF, Zhang XD, Wu M. GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol. 2018;20(4):492–502.CrossRefPubMed
22.
go back to reference Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, Liu J, Che L, Li J. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer. 2019;18(1):1–20.CrossRef Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, Liu J, Che L, Li J. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer. 2019;18(1):1–20.CrossRef
24.
go back to reference Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS, Li B. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun. 2022;42(2):117–40.CrossRef Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS, Li B. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun. 2022;42(2):117–40.CrossRef
25.
go back to reference Sun X, Haider Ali MSS, Moran M. The role of interactions of long non-coding RNAs and heterogeneous nuclear ribonucleoproteins in regulating cellular functions. Biochem J. 2017;474(17):2925–35.CrossRefPubMed Sun X, Haider Ali MSS, Moran M. The role of interactions of long non-coding RNAs and heterogeneous nuclear ribonucleoproteins in regulating cellular functions. Biochem J. 2017;474(17):2925–35.CrossRefPubMed
26.
go back to reference Li H, Liu JW, Shen SX, Dai D, Cheng ST, Dong XL, Sun LP, Guo XL. Pan-cancer analysis of alternative splicing regulator heterogeneous nuclear ribonucleoproteins (hnRNPs) family and their prognostic potential. J Cell Mol Med. 2020;24(19):11111–9.CrossRefPubMedCentral Li H, Liu JW, Shen SX, Dai D, Cheng ST, Dong XL, Sun LP, Guo XL. Pan-cancer analysis of alternative splicing regulator heterogeneous nuclear ribonucleoproteins (hnRNPs) family and their prognostic potential. J Cell Mol Med. 2020;24(19):11111–9.CrossRefPubMedCentral
29.
go back to reference Moran-Jones K, Grindlay J, Jones M, Smith R, Norman JC. hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration. Cancer Res. 2009;69(24):9219–27.CrossRefPubMedPubMedCentral Moran-Jones K, Grindlay J, Jones M, Smith R, Norman JC. hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration. Cancer Res. 2009;69(24):9219–27.CrossRefPubMedPubMedCentral
30.
go back to reference Patry C, Bouchard L, Labrecque P, Gendron D, Lemieux B, Toutant J, Lapointe E, Wellinger R, Chabot B. Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res. 2003;63(22):7679–88.PubMed Patry C, Bouchard L, Labrecque P, Gendron D, Lemieux B, Toutant J, Lapointe E, Wellinger R, Chabot B. Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res. 2003;63(22):7679–88.PubMed
31.
go back to reference Yang Y, Wei Q, Tang Y, Yuanyuan W, Luo Q, Zhao H, He M, Wang H, Zeng Q, Lu W, et al. Loss of hnRNPA2B1 inhibits malignant capability and promotes apoptosis via down-regulating Lin28B expression in ovarian cancer. Cancer Lett. 2020;475:43–52.CrossRefPubMed Yang Y, Wei Q, Tang Y, Yuanyuan W, Luo Q, Zhao H, He M, Wang H, Zeng Q, Lu W, et al. Loss of hnRNPA2B1 inhibits malignant capability and promotes apoptosis via down-regulating Lin28B expression in ovarian cancer. Cancer Lett. 2020;475:43–52.CrossRefPubMed
32.
go back to reference Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, Zheng L. RNA-binding proteins in tumor progression. J Hematol Oncol. 2020;13(1):1–23.CrossRef Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, Zheng L. RNA-binding proteins in tumor progression. J Hematol Oncol. 2020;13(1):1–23.CrossRef
33.
go back to reference Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19(5):327–41.CrossRefPubMed Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 2018;19(5):327–41.CrossRefPubMed
34.
go back to reference Wang Z, Qiu H, He J, Liu L, Xue W, Fox A, Tickner J, Xu J. The emerging roles of hnRNPK. J Cell Physiol. 2020;235(3):1995–2008.CrossRefPubMed Wang Z, Qiu H, He J, Liu L, Xue W, Fox A, Tickner J, Xu J. The emerging roles of hnRNPK. J Cell Physiol. 2020;235(3):1995–2008.CrossRefPubMed
35.
go back to reference Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H. Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol. 2019;9(3):180239.CrossRefPubMedPubMedCentral Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H. Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol. 2019;9(3):180239.CrossRefPubMedPubMedCentral
36.
go back to reference Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H. New insights into the interplay between non-coding RNAs and RNA-binding protein HnRNPK in regulating cellular functions. Cells. 2019;8(1):62.CrossRefPubMedPubMedCentral Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H. New insights into the interplay between non-coding RNAs and RNA-binding protein HnRNPK in regulating cellular functions. Cells. 2019;8(1):62.CrossRefPubMedPubMedCentral
Metadata
Title
LncRNA GAS5-hnRNPK axis inhibited ovarian cancer progression via inhibition of AKT signaling in ovarian cancer cells
Authors
Te Zhang
Yahui Leng
Mengjing Duan
Zihang Li
Yongqing Ma
Chengyang Huang
Qin Shi
Yi Wang
Chengcheng Wang
Dandan Liu
Xuan Zhao
Shuang Cheng
Ao Liu
Yang Zhou
Jiaqi Liu
Zhongqiu Pan
Huimei Zhang
Li Shen
Hongyan Zhao
Publication date
01-12-2023
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2023
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-023-00764-6

Other articles of this Issue 1/2023

Discover Oncology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine