Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Hepatocellular Carcinoma | Review

Dysregulated cholesterol regulatory genes in hepatocellular carcinoma

Authors: Dan Cao, Huan Liu

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Cholesterol is an indispensable component in mammalian cells, and cholesterol metabolism performs important roles in various biological activities. In addition to the Warburg effect, dysregulated cholesterol metabolism is one of the metabolic hallmarks of several cancers. It has reported that reprogrammed cholesterol metabolism facilitates carcinogenesis, metastasis, and drug-resistant in various tumors, including hepatocellular carcinoma (HCC). Some literatures have reported that increased cholesterol level leads to lipotoxicity, inflammation, and fibrosis, ultimately promoting the development and progression of HCC. Contrarily, other clinical investigations have demonstrated a link between higher cholesterol level and lower risk of HCC. These incongruent findings suggest that the connection between cholesterol and HCC is much complicated. In this report, we summarize the roles of key cholesterol regulatory genes including cholesterol biosynthesis, uptake, efflux, trafficking and esterification in HCC. In addition, we discuss promising related therapeutic targets for HCC.
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.PubMedCrossRef
2.
go back to reference Luo J, Yang H, Song B-L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21:225–45.PubMedCrossRef Luo J, Yang H, Song B-L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21:225–45.PubMedCrossRef
3.
4.
go back to reference Javitt NB. Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J. 1994;8:1308–11.PubMedCrossRef Javitt NB. Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J. 1994;8:1308–11.PubMedCrossRef
5.
go back to reference Göbel A, Rauner M, Hofbauer LC, Rachner TD. Cholesterol and beyond: the role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer. 2020;1873: 188351.PubMedCrossRef Göbel A, Rauner M, Hofbauer LC, Rachner TD. Cholesterol and beyond: the role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer. 2020;1873: 188351.PubMedCrossRef
6.
go back to reference Xu H, Zhou S, Tang Q, Xia H, Bi F. Cholesterol metabolism: new functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 2020;1874: 188394.PubMedCrossRef Xu H, Zhou S, Tang Q, Xia H, Bi F. Cholesterol metabolism: new functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 2020;1874: 188394.PubMedCrossRef
7.
go back to reference Bhattacharjee P, Rutland N, Iyer MR. Targeting sterol O-acyltransferase/Acyl-CoA: cholesterol acyltransferase (ACAT): a perspective on small-molecule inhibitors and their therapeutic potential. J Med Chem. 2022;65:16062–98.PubMedCrossRef Bhattacharjee P, Rutland N, Iyer MR. Targeting sterol O-acyltransferase/Acyl-CoA: cholesterol acyltransferase (ACAT): a perspective on small-molecule inhibitors and their therapeutic potential. J Med Chem. 2022;65:16062–98.PubMedCrossRef
8.
go back to reference Wang L-J, Song B-L. Niemann-Pick C1-like 1 and cholesterol uptake. Biochim Biophys Acta. 2012;1821:964–72.PubMedCrossRef Wang L-J, Song B-L. Niemann-Pick C1-like 1 and cholesterol uptake. Biochim Biophys Acta. 2012;1821:964–72.PubMedCrossRef
9.
go back to reference Kober DL, Xu S, Li S, Bajaj B, Liang G, Rosenbaum DM, et al. Identification of a degradation signal at the carboxy terminus of SREBP2: a new role for this domain in cholesterol homeostasis. Proc Natl Acad Sci USA. 2020;117:28080–91.PubMedPubMedCentralCrossRef Kober DL, Xu S, Li S, Bajaj B, Liang G, Rosenbaum DM, et al. Identification of a degradation signal at the carboxy terminus of SREBP2: a new role for this domain in cholesterol homeostasis. Proc Natl Acad Sci USA. 2020;117:28080–91.PubMedPubMedCentralCrossRef
10.
go back to reference Kuzu OF, Gowda R, Noory MA, Robertson GP. Modulating cancer cell survival by targeting intracellular cholesterol transport. Br J Cancer. 2017;117:513–24.PubMedPubMedCentralCrossRef Kuzu OF, Gowda R, Noory MA, Robertson GP. Modulating cancer cell survival by targeting intracellular cholesterol transport. Br J Cancer. 2017;117:513–24.PubMedPubMedCentralCrossRef
11.
go back to reference He J, Siu MKY, Ngan HYS, Chan KKL. Aberrant cholesterol metabolism in ovarian cancer: identification of novel therapeutic targets. Front Oncol. 2021;11: 738177.PubMedPubMedCentralCrossRef He J, Siu MKY, Ngan HYS, Chan KKL. Aberrant cholesterol metabolism in ovarian cancer: identification of novel therapeutic targets. Front Oncol. 2021;11: 738177.PubMedPubMedCentralCrossRef
12.
go back to reference Alannan M, Trézéguet V, Amoêdo ND, Rossignol R, Mahfouf W, Rezvani HR, et al. Rewiring lipid metabolism by targeting PCSK9 and HMGCR to treat liver cancer. Cancers. 2022;15:3.PubMedPubMedCentralCrossRef Alannan M, Trézéguet V, Amoêdo ND, Rossignol R, Mahfouf W, Rezvani HR, et al. Rewiring lipid metabolism by targeting PCSK9 and HMGCR to treat liver cancer. Cancers. 2022;15:3.PubMedPubMedCentralCrossRef
13.
go back to reference Liang B, Chen R, Song S, Wang H, Sun G, Yang H, et al. ASPP2 inhibits tumor growth by repressing the mevalonate pathway in hepatocellular carcinoma. Cell Death Dis. 2019;10:830.PubMedPubMedCentralCrossRef Liang B, Chen R, Song S, Wang H, Sun G, Yang H, et al. ASPP2 inhibits tumor growth by repressing the mevalonate pathway in hepatocellular carcinoma. Cell Death Dis. 2019;10:830.PubMedPubMedCentralCrossRef
14.
go back to reference Cao Z, Fan-Minogue H, Bellovin DI, Yevtodiyenko A, Arzeno J, Yang Q, et al. MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase. Can Res. 2011;71:2286–97.CrossRef Cao Z, Fan-Minogue H, Bellovin DI, Yevtodiyenko A, Arzeno J, Yang Q, et al. MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase. Can Res. 2011;71:2286–97.CrossRef
15.
go back to reference Dong L, Xue L, Zhang C, Li H, Cai Z, Guo R. HSP90 interacts with HMGCR and promotes the progression of hepatocellular carcinoma. Mol Med Rep. 2018;19:524–32.PubMed Dong L, Xue L, Zhang C, Li H, Cai Z, Guo R. HSP90 interacts with HMGCR and promotes the progression of hepatocellular carcinoma. Mol Med Rep. 2018;19:524–32.PubMed
16.
go back to reference Ogura S, Yoshida Y, Kurahashi T, Egawa M, Furuta K, Kiso S, et al. Targeting the mevalonate pathway is a novel therapeutic approach to inhibit oncogenic FoxM1 transcription factor in human hepatocellular carcinoma. Oncotarget. 2018;9:21022–35.PubMedPubMedCentralCrossRef Ogura S, Yoshida Y, Kurahashi T, Egawa M, Furuta K, Kiso S, et al. Targeting the mevalonate pathway is a novel therapeutic approach to inhibit oncogenic FoxM1 transcription factor in human hepatocellular carcinoma. Oncotarget. 2018;9:21022–35.PubMedPubMedCentralCrossRef
17.
go back to reference Cheng J, Ohsaki Y, Tauchi-Sato K, Fujita A, Fujimoto T. Cholesterol depletion induces autophagy. Biochem Biophys Res Commun. 2006;351:246–52.PubMedCrossRef Cheng J, Ohsaki Y, Tauchi-Sato K, Fujita A, Fujimoto T. Cholesterol depletion induces autophagy. Biochem Biophys Res Commun. 2006;351:246–52.PubMedCrossRef
18.
go back to reference Cirmena G, Franceschelli P, Isnaldi E, Ferrando L, De Mariano M, Ballestrero A, et al. Squalene epoxidase as a promising metabolic target in cancer treatment. Cancer Lett. 2018;425:13–20.PubMedCrossRef Cirmena G, Franceschelli P, Isnaldi E, Ferrando L, De Mariano M, Ballestrero A, et al. Squalene epoxidase as a promising metabolic target in cancer treatment. Cancer Lett. 2018;425:13–20.PubMedCrossRef
19.
go back to reference Liu D, Wong CC, Fu L, Chen H, Zhao L, Li C, et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target. Sci Transl Med. 2018;10:eaap9840.PubMedCrossRef Liu D, Wong CC, Fu L, Chen H, Zhao L, Li C, et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target. Sci Transl Med. 2018;10:eaap9840.PubMedCrossRef
20.
go back to reference Shen T, Lu Y, Zhang Q. High squalene epoxidase in tumors predicts worse survival in patients with hepatocellular carcinoma: integrated bioinformatic analysis on NAFLD and HCC. Cancer Control. 2020;27:107327482091466.CrossRef Shen T, Lu Y, Zhang Q. High squalene epoxidase in tumors predicts worse survival in patients with hepatocellular carcinoma: integrated bioinformatic analysis on NAFLD and HCC. Cancer Control. 2020;27:107327482091466.CrossRef
21.
go back to reference Zhao K, Zhao Y, Zhu J, Dong H, Cong W, Yu Y, et al. A panel of genes identified as targets for 8q24.13–24.3 gain contributing to unfavorable overall survival in patients with hepatocellular carcinoma. Curr Med Sci. 2018;38:590–6.PubMedCrossRef Zhao K, Zhao Y, Zhu J, Dong H, Cong W, Yu Y, et al. A panel of genes identified as targets for 8q24.13–24.3 gain contributing to unfavorable overall survival in patients with hepatocellular carcinoma. Curr Med Sci. 2018;38:590–6.PubMedCrossRef
22.
go back to reference Sun H, Li L, Li W, Yang F, Zhang Z, Liu Z, et al. p53 transcriptionally regulates SQLE to repress cholesterol synthesis and tumor growth. EMBO Rep. 2021;22:525–37.CrossRef Sun H, Li L, Li W, Yang F, Zhang Z, Liu Z, et al. p53 transcriptionally regulates SQLE to repress cholesterol synthesis and tumor growth. EMBO Rep. 2021;22:525–37.CrossRef
23.
go back to reference Zhang Z, Wu W, Jiao H, Chen Y, Ji X, Cao J, et al. Squalene epoxidase promotes hepatocellular carcinoma development by activating STRAP transcription and TGF-β/SMAD signalling. Br J Pharmacol. 2023;180:1562–81.PubMedCrossRef Zhang Z, Wu W, Jiao H, Chen Y, Ji X, Cao J, et al. Squalene epoxidase promotes hepatocellular carcinoma development by activating STRAP transcription and TGF-β/SMAD signalling. Br J Pharmacol. 2023;180:1562–81.PubMedCrossRef
24.
go back to reference Moon S-H, Huang C-H, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP, et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell. 2019;176:564–80.PubMedCrossRef Moon S-H, Huang C-H, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP, et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell. 2019;176:564–80.PubMedCrossRef
25.
go back to reference Che L, Chi W, Qiao Y, Zhang J, Song X, Liu Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut. 2020;69:177–86.PubMedCrossRef Che L, Chi W, Qiao Y, Zhang J, Song X, Liu Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut. 2020;69:177–86.PubMedCrossRef
26.
go back to reference Zhang F, Gao J, Liu X, Sun Y, Liu L, Hu B, et al. LATS-regulated nuclear-cytoplasmic translocation of SREBP2 inhibits hepatocellular carcinoma cell migration and invasion via Epithelial–mesenchymal transition. Mol Carcinog. 2023;62:963–74.PubMedCrossRef Zhang F, Gao J, Liu X, Sun Y, Liu L, Hu B, et al. LATS-regulated nuclear-cytoplasmic translocation of SREBP2 inhibits hepatocellular carcinoma cell migration and invasion via Epithelial–mesenchymal transition. Mol Carcinog. 2023;62:963–74.PubMedCrossRef
27.
go back to reference Wei M, Nurjanah U, Herkilini A, Huang C, Li Y, Miyagishi M, et al. Unspliced XBP1 contributes to cholesterol biosynthesis and tumorigenesis by stabilizing SREBP2 in hepatocellular carcinoma. Cell Mol Life Sci. 2022;79:472.PubMedCrossRef Wei M, Nurjanah U, Herkilini A, Huang C, Li Y, Miyagishi M, et al. Unspliced XBP1 contributes to cholesterol biosynthesis and tumorigenesis by stabilizing SREBP2 in hepatocellular carcinoma. Cell Mol Life Sci. 2022;79:472.PubMedCrossRef
28.
go back to reference Chen K-J, Jin R-M, Shi C-C, Ge R-L, Hu L, Zou Q-F, et al. The prognostic value of Niemann-Pick C1-like protein 1 and Niemann-Pick disease type C2 in hepatocellular carcinoma. J Cancer. 2018;9:556–63.PubMedPubMedCentralCrossRef Chen K-J, Jin R-M, Shi C-C, Ge R-L, Hu L, Zou Q-F, et al. The prognostic value of Niemann-Pick C1-like protein 1 and Niemann-Pick disease type C2 in hepatocellular carcinoma. J Cancer. 2018;9:556–63.PubMedPubMedCentralCrossRef
29.
go back to reference Barretto N, Sainz B, Hussain S, Uprichard SL. Determining the involvement and therapeutic implications of host cellular factors in hepatitis C virus cell-to-cell spread. J Virol. 2014;88:5050–61.PubMedPubMedCentralCrossRef Barretto N, Sainz B, Hussain S, Uprichard SL. Determining the involvement and therapeutic implications of host cellular factors in hepatitis C virus cell-to-cell spread. J Virol. 2014;88:5050–61.PubMedPubMedCentralCrossRef
30.
go back to reference Zhang Z, Qin S, Chen Y, Zhou L, Yang M, Tang Y, et al. Inhibition of NPC1L1 disrupts adaptive responses of drug-tolerant persister cells to chemotherapy. EMBO Mol Med. 2022;14: e14903.PubMedPubMedCentralCrossRef Zhang Z, Qin S, Chen Y, Zhou L, Yang M, Tang Y, et al. Inhibition of NPC1L1 disrupts adaptive responses of drug-tolerant persister cells to chemotherapy. EMBO Mol Med. 2022;14: e14903.PubMedPubMedCentralCrossRef
31.
go back to reference Criscuolo D, Avolio R, Calice G, Laezza C, Paladino S, Navarra G, et al. Cholesterol homeostasis modulates platinum sensitivity in human ovarian cancer. Cells. 2020;9:828.PubMedPubMedCentralCrossRef Criscuolo D, Avolio R, Calice G, Laezza C, Paladino S, Navarra G, et al. Cholesterol homeostasis modulates platinum sensitivity in human ovarian cancer. Cells. 2020;9:828.PubMedPubMedCentralCrossRef
32.
go back to reference Zhang G-M, Chen W, Yao Y, Luo L, Sun L-J. LDLR promotes growth and invasion in renal cell carcinoma and activates the EGFR pathway. Neoplasma. 2022;69:113–22.PubMedCrossRef Zhang G-M, Chen W, Yao Y, Luo L, Sun L-J. LDLR promotes growth and invasion in renal cell carcinoma and activates the EGFR pathway. Neoplasma. 2022;69:113–22.PubMedCrossRef
33.
go back to reference Zeng J, Wu Y, Liao Q, Li L, Chen X, Chen X. Liver X receptors agonists impede hepatitis C virus infection in an Idol-dependent manner. Antiviral Res. 2012;95:245–56.PubMedCrossRef Zeng J, Wu Y, Liao Q, Li L, Chen X, Chen X. Liver X receptors agonists impede hepatitis C virus infection in an Idol-dependent manner. Antiviral Res. 2012;95:245–56.PubMedCrossRef
34.
go back to reference Zhao L-J, Wang L, Ren H, Cao J, Li L, Ke J-S, et al. Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors. Exp Cell Res. 2005;305:23–32.PubMedCrossRef Zhao L-J, Wang L, Ren H, Cao J, Li L, Ke J-S, et al. Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors. Exp Cell Res. 2005;305:23–32.PubMedCrossRef
35.
go back to reference Bhat M, Skill N, Marcus V, Deschenes M, Tan X, Bouteaud J, et al. Decreased PCSK9 expression in human hepatocellular carcinoma. BMC Gastroenterol. 2015;15:176.PubMedPubMedCentralCrossRef Bhat M, Skill N, Marcus V, Deschenes M, Tan X, Bouteaud J, et al. Decreased PCSK9 expression in human hepatocellular carcinoma. BMC Gastroenterol. 2015;15:176.PubMedPubMedCentralCrossRef
36.
go back to reference Chen Z, Chen L, Sun B, Liu D, He Y, Qi L, et al. LDLR inhibition promotes hepatocellular carcinoma proliferation and metastasis by elevating intracellular cholesterol synthesis through the MEK/ERK signaling pathway. Mol Metab. 2021;51: 101230.PubMedPubMedCentralCrossRef Chen Z, Chen L, Sun B, Liu D, He Y, Qi L, et al. LDLR inhibition promotes hepatocellular carcinoma proliferation and metastasis by elevating intracellular cholesterol synthesis through the MEK/ERK signaling pathway. Mol Metab. 2021;51: 101230.PubMedPubMedCentralCrossRef
37.
go back to reference Shen S, Wang R, Qiu H, Li C, Wang J, Xue J, et al. Development of an autophagy-based and stemness-correlated prognostic model for hepatocellular carcinoma using bulk and single-cell RNA-sequencing. Front Cell Dev Biol. 2021;9: 743910.PubMedPubMedCentralCrossRef Shen S, Wang R, Qiu H, Li C, Wang J, Xue J, et al. Development of an autophagy-based and stemness-correlated prognostic model for hepatocellular carcinoma using bulk and single-cell RNA-sequencing. Front Cell Dev Biol. 2021;9: 743910.PubMedPubMedCentralCrossRef
38.
go back to reference Wang G, Guan J, Yang Q, Wu F, Shao J, Zhou Q, et al. Development of a bile acid-related gene signature for predicting survival in patients with hepatocellular carcinoma. Comput Math Methods Med. 2022;2022:1–14. Wang G, Guan J, Yang Q, Wu F, Shao J, Zhou Q, et al. Development of a bile acid-related gene signature for predicting survival in patients with hepatocellular carcinoma. Comput Math Methods Med. 2022;2022:1–14.
39.
go back to reference Du X, Zhang Y, Jo SR, Liu X, Qi Y, Osborne B, et al. Akt activation increases cellular cholesterol by promoting the proteasomal degradation of Niemann-Pick C1. Biochem J. 2015;471:243–53.PubMedCrossRef Du X, Zhang Y, Jo SR, Liu X, Qi Y, Osborne B, et al. Akt activation increases cellular cholesterol by promoting the proteasomal degradation of Niemann-Pick C1. Biochem J. 2015;471:243–53.PubMedCrossRef
40.
go back to reference Liao Y-J, Fang C-C, Yen C-H, Hsu S-M, Wang C-K, Huang S-F, et al. Niemann-Pick type C2 protein regulates liver cancer progression via modulating ERK1/2 pathway: clinicopathological correlations and therapeutical implications—identification of antitumoral protein NPC2 in liver cancer. Int J Cancer. 2015;137:1341–51.PubMedCrossRef Liao Y-J, Fang C-C, Yen C-H, Hsu S-M, Wang C-K, Huang S-F, et al. Niemann-Pick type C2 protein regulates liver cancer progression via modulating ERK1/2 pathway: clinicopathological correlations and therapeutical implications—identification of antitumoral protein NPC2 in liver cancer. Int J Cancer. 2015;137:1341–51.PubMedCrossRef
41.
go back to reference Suk F-M, Wang Y-H, Chiu W-C, Liu C-F, Wu C-Y, Chen T-L, et al. Secretory NPC2 protein-mediated free cholesterol levels were correlated with the sorafenib response in hepatocellular carcinoma. IJMS. 2021;22:8567.PubMedPubMedCentralCrossRef Suk F-M, Wang Y-H, Chiu W-C, Liu C-F, Wu C-Y, Chen T-L, et al. Secretory NPC2 protein-mediated free cholesterol levels were correlated with the sorafenib response in hepatocellular carcinoma. IJMS. 2021;22:8567.PubMedPubMedCentralCrossRef
42.
go back to reference Liao Y-J, Chen T-L, Lee T-S, Wang H-A, Wang C-K, Liao L-Y, et al. Glycine N-methyltransferase deficiency affects Niemann-Pick type C2 protein stability and regulates hepatic cholesterol homeostasis. Mol Med. 2012;18:412–22.PubMedCrossRef Liao Y-J, Chen T-L, Lee T-S, Wang H-A, Wang C-K, Liao L-Y, et al. Glycine N-methyltransferase deficiency affects Niemann-Pick type C2 protein stability and regulates hepatic cholesterol homeostasis. Mol Med. 2012;18:412–22.PubMedCrossRef
43.
go back to reference Fu B, Meng W, Zhao H, Zhang B, Tang H, Zou Y, et al. GRAM domain-containing protein 1A (GRAMD1A) promotes the expansion of hepatocellular carcinoma stem cell and hepatocellular carcinoma growth through STAT5. Sci Rep. 2016;6:31963.PubMedPubMedCentralCrossRef Fu B, Meng W, Zhao H, Zhang B, Tang H, Zou Y, et al. GRAM domain-containing protein 1A (GRAMD1A) promotes the expansion of hepatocellular carcinoma stem cell and hepatocellular carcinoma growth through STAT5. Sci Rep. 2016;6:31963.PubMedPubMedCentralCrossRef
44.
go back to reference Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9:1033–45.PubMedCrossRef Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9:1033–45.PubMedCrossRef
45.
go back to reference Na T-Y, Shin YK, Roh KJ, Kang S-A, Hong I, Oh SJ, et al. Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 2009;49:1122–31.PubMedCrossRef Na T-Y, Shin YK, Roh KJ, Kang S-A, Hong I, Oh SJ, et al. Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 2009;49:1122–31.PubMedCrossRef
46.
go back to reference Kim K, Kim KH, Kim HH, Cheong J. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha. Biochem J. 2008;416:219–30.PubMedCrossRef Kim K, Kim KH, Kim HH, Cheong J. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha. Biochem J. 2008;416:219–30.PubMedCrossRef
47.
go back to reference García-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL, Jorquera F, et al. Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Lab Invest. 2012;92:1191–202.PubMedCrossRef García-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL, Jorquera F, et al. Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Lab Invest. 2012;92:1191–202.PubMedCrossRef
48.
go back to reference Moriishi K, Mochizuki R, Moriya K, Miyamoto H, Mori Y, Abe T, et al. Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci USA. 2007;104:1661–6.PubMedPubMedCentralCrossRef Moriishi K, Mochizuki R, Moriya K, Miyamoto H, Mori Y, Abe T, et al. Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci USA. 2007;104:1661–6.PubMedPubMedCentralCrossRef
49.
go back to reference Bakiri L, Hamacher R, Graña O, Guío-Carrión A, Campos-Olivas R, Martinez L, et al. Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation. J Exp Med. 2017;214:1387–409.PubMedPubMedCentralCrossRef Bakiri L, Hamacher R, Graña O, Guío-Carrión A, Campos-Olivas R, Martinez L, et al. Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation. J Exp Med. 2017;214:1387–409.PubMedPubMedCentralCrossRef
50.
go back to reference Hu C, Liu D, Zhang Y, Lou G, Huang G, Chen B, et al. LXRα-mediated downregulation of FOXM1 suppresses the proliferation of hepatocellular carcinoma cells. Oncogene. 2014;33:2888–97.PubMedCrossRef Hu C, Liu D, Zhang Y, Lou G, Huang G, Chen B, et al. LXRα-mediated downregulation of FOXM1 suppresses the proliferation of hepatocellular carcinoma cells. Oncogene. 2014;33:2888–97.PubMedCrossRef
51.
go back to reference He J, Yang T, He W, Jiang S, Zhong D, Xu Z, et al. Liver X receptor inhibits the growth of hepatocellular carcinoma cells via regulating HULC/miR-134-5p/FOXM1 axis. Cell Signal. 2020;74: 109720.PubMedCrossRef He J, Yang T, He W, Jiang S, Zhong D, Xu Z, et al. Liver X receptor inhibits the growth of hepatocellular carcinoma cells via regulating HULC/miR-134-5p/FOXM1 axis. Cell Signal. 2020;74: 109720.PubMedCrossRef
52.
go back to reference Xiong H, Zhang Y, Chen S, Ni Z, He J, Li X, et al. Induction of SOCS3 by liver X receptor suppresses the proliferation of hepatocellular carcinoma cells. Oncotarget. 2017;8:64083–94.PubMedPubMedCentralCrossRef Xiong H, Zhang Y, Chen S, Ni Z, He J, Li X, et al. Induction of SOCS3 by liver X receptor suppresses the proliferation of hepatocellular carcinoma cells. Oncotarget. 2017;8:64083–94.PubMedPubMedCentralCrossRef
53.
go back to reference Bellomo C, Caja L, Fabregat I, Mikulits W, Kardassis D, Heldin C-H, et al. Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma. Cell Death Differ. 2018;25:885–903.PubMed Bellomo C, Caja L, Fabregat I, Mikulits W, Kardassis D, Heldin C-H, et al. Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma. Cell Death Differ. 2018;25:885–903.PubMed
54.
go back to reference Morén A, Bellomo C, Tsubakihara Y, Kardassis D, Mikulits W, Heldin C-H, et al. LXRα limits TGFβ-dependent hepatocellular carcinoma associated fibroblast differentiation. Oncogenesis. 2019;8:36.PubMedPubMedCentralCrossRef Morén A, Bellomo C, Tsubakihara Y, Kardassis D, Mikulits W, Heldin C-H, et al. LXRα limits TGFβ-dependent hepatocellular carcinoma associated fibroblast differentiation. Oncogenesis. 2019;8:36.PubMedPubMedCentralCrossRef
55.
go back to reference Lin Z, Xia S, Liang Y, Ji L, Pan Y, Jiang S, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription. Theranostics. 2020;10:8834–50.PubMedPubMedCentralCrossRef Lin Z, Xia S, Liang Y, Ji L, Pan Y, Jiang S, et al. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription. Theranostics. 2020;10:8834–50.PubMedPubMedCentralCrossRef
56.
go back to reference Rudalska R, Harbig J, Snaebjornsson MT, Klotz S, Zwirner S, Taranets L, et al. LXRα activation and Raf inhibition trigger lethal lipotoxicity in liver cancer. Nat Cancer. 2021;2:201–17.PubMedCrossRef Rudalska R, Harbig J, Snaebjornsson MT, Klotz S, Zwirner S, Taranets L, et al. LXRα activation and Raf inhibition trigger lethal lipotoxicity in liver cancer. Nat Cancer. 2021;2:201–17.PubMedCrossRef
57.
go back to reference Long H, Guo X, Qiao S, Huang Q. Tumor LXR expression is a prognostic marker for patients with hepatocellular carcinoma. Pathol Oncol Res. 2018;24:339–44.PubMedCrossRef Long H, Guo X, Qiao S, Huang Q. Tumor LXR expression is a prognostic marker for patients with hepatocellular carcinoma. Pathol Oncol Res. 2018;24:339–44.PubMedCrossRef
58.
go back to reference Li Z, Wang Y, Xing R, Zeng H, Yu X-J, Zhang Y-J, et al. Cholesterol efflux drives the generation of immunosuppressive macrophages to promote the progression of human hepatocellular carcinoma. Cancer Immunol Res. 2023;11:1400–13.PubMedCrossRef Li Z, Wang Y, Xing R, Zeng H, Yu X-J, Zhang Y-J, et al. Cholesterol efflux drives the generation of immunosuppressive macrophages to promote the progression of human hepatocellular carcinoma. Cancer Immunol Res. 2023;11:1400–13.PubMedCrossRef
59.
go back to reference Hou H, Kang Y, Li Y, Zeng Y, Ding G, Shang J. miR-33a expression sensitizes Lgr5+ HCC-CSCs to doxorubicin via ABCA1. Neo. 2017;64:81–91.CrossRef Hou H, Kang Y, Li Y, Zeng Y, Ding G, Shang J. miR-33a expression sensitizes Lgr5+ HCC-CSCs to doxorubicin via ABCA1. Neo. 2017;64:81–91.CrossRef
60.
go back to reference Xi B, Luo F-Z, He B, Wang F, Li Z-K, Lai M-C, et al. High nuclear ABCG1 expression is a poor predictor for hepatocellular carcinoma patient survival. Hepatobiliary Pancreat Dis Int. 2022;21:370–7.PubMedCrossRef Xi B, Luo F-Z, He B, Wang F, Li Z-K, Lai M-C, et al. High nuclear ABCG1 expression is a poor predictor for hepatocellular carcinoma patient survival. Hepatobiliary Pancreat Dis Int. 2022;21:370–7.PubMedCrossRef
61.
go back to reference Liao X, Song G, Xu Z, Bu Y, Chang F, Jia F, et al. Oxaliplatin resistance is enhanced by saracatinib via upregulation Wnt-ABCG1 signaling in hepatocellular carcinoma. BMC Cancer. 2020;20:31.PubMedPubMedCentralCrossRef Liao X, Song G, Xu Z, Bu Y, Chang F, Jia F, et al. Oxaliplatin resistance is enhanced by saracatinib via upregulation Wnt-ABCG1 signaling in hepatocellular carcinoma. BMC Cancer. 2020;20:31.PubMedPubMedCentralCrossRef
62.
go back to reference Liao X, Zhang Y, Xu B, Ali A, Liu X, Jia Q. Inositol hexaphosphate sensitizes hepatocellular carcinoma to oxaliplatin relating inhibition of CCN2-LRP6-β-catenin-ABCG1 signaling pathway. J Cancer. 2021;12:6071–80.PubMedPubMedCentralCrossRef Liao X, Zhang Y, Xu B, Ali A, Liu X, Jia Q. Inositol hexaphosphate sensitizes hepatocellular carcinoma to oxaliplatin relating inhibition of CCN2-LRP6-β-catenin-ABCG1 signaling pathway. J Cancer. 2021;12:6071–80.PubMedPubMedCentralCrossRef
63.
go back to reference Zhao Z, Zhao Z, Wang J, Zhang H, Xi Z, Xia Q. ABCC6 knockdown fuels cell proliferation by regulating PPARα in hepatocellular carcinoma. Front Oncol. 2022;12: 840287.PubMedPubMedCentralCrossRef Zhao Z, Zhao Z, Wang J, Zhang H, Xi Z, Xia Q. ABCC6 knockdown fuels cell proliferation by regulating PPARα in hepatocellular carcinoma. Front Oncol. 2022;12: 840287.PubMedPubMedCentralCrossRef
64.
go back to reference Cui Y, Liang S, Zhang S, Zhang C, Zhao Y, Wu D, et al. ABCA8 is regulated by miR-374b-5p and inhibits proliferation and metastasis of hepatocellular carcinoma through the ERK/ZEB1 pathway. J Exp Clin Cancer Res. 2020;39:90.PubMedPubMedCentralCrossRef Cui Y, Liang S, Zhang S, Zhang C, Zhao Y, Wu D, et al. ABCA8 is regulated by miR-374b-5p and inhibits proliferation and metastasis of hepatocellular carcinoma through the ERK/ZEB1 pathway. J Exp Clin Cancer Res. 2020;39:90.PubMedPubMedCentralCrossRef
65.
go back to reference Kinslechner K, Schörghofer D, Schütz B, Vallianou M, Wingelhofer B, Mikulits W, et al. Malignant phenotypes in metastatic melanoma are governed by SR-BI and its association with glycosylation and STAT5 activation. Mol Cancer Res. 2018;16:135–46.PubMedCrossRef Kinslechner K, Schörghofer D, Schütz B, Vallianou M, Wingelhofer B, Mikulits W, et al. Malignant phenotypes in metastatic melanoma are governed by SR-BI and its association with glycosylation and STAT5 activation. Mol Cancer Res. 2018;16:135–46.PubMedCrossRef
66.
go back to reference Feng H, Wang M, Wu C, Yu J, Wang D, Ma J, et al. High scavenger receptor class B type I expression is related to tumor aggressiveness and poor prognosis in lung adenocarcinoma: a STROBE compliant article. Medicine. 2018;97: e0203.PubMedPubMedCentralCrossRef Feng H, Wang M, Wu C, Yu J, Wang D, Ma J, et al. High scavenger receptor class B type I expression is related to tumor aggressiveness and poor prognosis in lung adenocarcinoma: a STROBE compliant article. Medicine. 2018;97: e0203.PubMedPubMedCentralCrossRef
67.
go back to reference Catanese MT, Ansuini H, Graziani R, Huby T, Moreau M, Ball JK, et al. Role of scavenger receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants. J Virol. 2010;84:34–43.PubMedCrossRef Catanese MT, Ansuini H, Graziani R, Huby T, Moreau M, Ball JK, et al. Role of scavenger receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants. J Virol. 2010;84:34–43.PubMedCrossRef
68.
go back to reference Geng F, Cheng X, Wu X, Yoo JY, Cheng C, Guo JY, et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1–mediated lipogenesis. Clin Cancer Res. 2016;22:5337–48.PubMedPubMedCentralCrossRef Geng F, Cheng X, Wu X, Yoo JY, Cheng C, Guo JY, et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1–mediated lipogenesis. Clin Cancer Res. 2016;22:5337–48.PubMedPubMedCentralCrossRef
69.
go back to reference Li J, Gu D, Lee SS-Y, Song B, Bandyopadhyay S, Chen S, et al. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene. 2016;35:6378–88.PubMedPubMedCentralCrossRef Li J, Gu D, Lee SS-Y, Song B, Bandyopadhyay S, Chen S, et al. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene. 2016;35:6378–88.PubMedPubMedCentralCrossRef
70.
go back to reference Yue S, Li J, Lee S-Y, Lee HJ, Shao T, Song B, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19:393–406.PubMedPubMedCentralCrossRef Yue S, Li J, Lee S-Y, Lee HJ, Shao T, Song B, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19:393–406.PubMedPubMedCentralCrossRef
71.
go back to reference Khatib SA, Wang XW. Proteomic heterogeneity reveals SOAT1 as a potential biomarker for hepatocellular carcinoma. Transl Gastroenterol Hepatol. 2019;4:37.PubMedPubMedCentralCrossRef Khatib SA, Wang XW. Proteomic heterogeneity reveals SOAT1 as a potential biomarker for hepatocellular carcinoma. Transl Gastroenterol Hepatol. 2019;4:37.PubMedPubMedCentralCrossRef
72.
go back to reference Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567:257–61.PubMedCrossRef Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567:257–61.PubMedCrossRef
73.
74.
go back to reference Wang Z, Wang M, Zhang M, Xu K, Zhang X, Xie Y, et al. High-affinity SOAT1 ligands remodeled cholesterol metabolism program to inhibit tumor growth. BMC Med. 2022;20:292.PubMedPubMedCentralCrossRef Wang Z, Wang M, Zhang M, Xu K, Zhang X, Xie Y, et al. High-affinity SOAT1 ligands remodeled cholesterol metabolism program to inhibit tumor growth. BMC Med. 2022;20:292.PubMedPubMedCentralCrossRef
75.
go back to reference Zhu Y, Gu L, Lin X, Zhou X, Lu B, Liu C, et al. P53 deficiency affects cholesterol esterification to exacerbate hepatocarcinogenesis. Hepatology. 2023;77:1499–511.PubMedCrossRef Zhu Y, Gu L, Lin X, Zhou X, Lu B, Liu C, et al. P53 deficiency affects cholesterol esterification to exacerbate hepatocarcinogenesis. Hepatology. 2023;77:1499–511.PubMedCrossRef
76.
go back to reference Chen Y, Yang X, Chen Y, Chen G, Winkler CA, An P, et al. Impacts of the SOAT1 genetic variants and protein expression on HBV-related hepatocellular carcinoma. BMC Cancer. 2021;21:615.PubMedPubMedCentralCrossRef Chen Y, Yang X, Chen Y, Chen G, Winkler CA, An P, et al. Impacts of the SOAT1 genetic variants and protein expression on HBV-related hepatocellular carcinoma. BMC Cancer. 2021;21:615.PubMedPubMedCentralCrossRef
77.
go back to reference Lu M, Hu X-H, Li Q, Xiong Y, Hu G-J, Xu J-J, et al. A specific cholesterol metabolic pathway is established in a subset of HCCs for tumor growth. J Mol Cell Biol. 2013;5:404–15.PubMedPubMedCentralCrossRef Lu M, Hu X-H, Li Q, Xiong Y, Hu G-J, Xu J-J, et al. A specific cholesterol metabolic pathway is established in a subset of HCCs for tumor growth. J Mol Cell Biol. 2013;5:404–15.PubMedPubMedCentralCrossRef
78.
go back to reference Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, Wang Y-X, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut. 2021;70:761–74.PubMedCrossRef Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, Wang Y-X, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut. 2021;70:761–74.PubMedCrossRef
79.
go back to reference Kim M-H, Kim M-Y, Salloum S, Qian T, Wong LP, Xu M, et al. Atorvastatin favorably modulates a clinical hepatocellular carcinoma risk gene signature. Hepatol Commun. 2022;6:2581–93.PubMedPubMedCentralCrossRef Kim M-H, Kim M-Y, Salloum S, Qian T, Wong LP, Xu M, et al. Atorvastatin favorably modulates a clinical hepatocellular carcinoma risk gene signature. Hepatol Commun. 2022;6:2581–93.PubMedPubMedCentralCrossRef
80.
go back to reference Ghalali A, Martin-Renedo J, Högberg J, Stenius U. Atorvastatin decreases HBx-induced phospho-Akt in hepatocytes via P2X receptors. Mol Cancer Res. 2017;15:714–22.PubMedCrossRef Ghalali A, Martin-Renedo J, Högberg J, Stenius U. Atorvastatin decreases HBx-induced phospho-Akt in hepatocytes via P2X receptors. Mol Cancer Res. 2017;15:714–22.PubMedCrossRef
81.
go back to reference Wang S-T, Huang S-W, Liu K-T, Lee T-Y, Shieh J-J, Wu C-Y. Atorvastatin-induced senescence of hepatocellular carcinoma is mediated by downregulation of hTERT through the suppression of the IL-6/STAT3 pathway. Cell Death Discov. 2020;6:17.PubMedPubMedCentralCrossRef Wang S-T, Huang S-W, Liu K-T, Lee T-Y, Shieh J-J, Wu C-Y. Atorvastatin-induced senescence of hepatocellular carcinoma is mediated by downregulation of hTERT through the suppression of the IL-6/STAT3 pathway. Cell Death Discov. 2020;6:17.PubMedPubMedCentralCrossRef
82.
go back to reference Deza Z, Caimi GR, Noelia M, Coli L, Ridruejo E, Alvarez L. Atorvastatin shows antitumor effect in hepatocellular carcinoma development by inhibiting angiogenesis via TGF-β1/pERK signaling pathway. Mol Carcinog. 2023;62:398–407.PubMedCrossRef Deza Z, Caimi GR, Noelia M, Coli L, Ridruejo E, Alvarez L. Atorvastatin shows antitumor effect in hepatocellular carcinoma development by inhibiting angiogenesis via TGF-β1/pERK signaling pathway. Mol Carcinog. 2023;62:398–407.PubMedCrossRef
83.
go back to reference Yang P-M, Liu Y-L, Lin Y-C, Shun C-T, Wu M-S, Chen C-C. Inhibition of autophagy enhances anticancer effects of atorvastatin in digestive malignancies. Cancer Res. 2010;70:7699–709.PubMedCrossRef Yang P-M, Liu Y-L, Lin Y-C, Shun C-T, Wu M-S, Chen C-C. Inhibition of autophagy enhances anticancer effects of atorvastatin in digestive malignancies. Cancer Res. 2010;70:7699–709.PubMedCrossRef
84.
go back to reference Relja B, Meder F, Wilhelm K, Henrich D, Marzi I, Lehnert M. Simvastatin inhibits cell growth and induces apoptosis and G0/G1 cell cycle arrest in hepatic cancer cells. Int J Mol Med. 2010;26:735–41.PubMedCrossRef Relja B, Meder F, Wilhelm K, Henrich D, Marzi I, Lehnert M. Simvastatin inhibits cell growth and induces apoptosis and G0/G1 cell cycle arrest in hepatic cancer cells. Int J Mol Med. 2010;26:735–41.PubMedCrossRef
85.
go back to reference Wang S-T, Ho HJ, Lin J-T, Shieh J-J, Wu C-Y. Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells. Cell Death Dis. 2017;8: e2626.PubMedPubMedCentralCrossRef Wang S-T, Ho HJ, Lin J-T, Shieh J-J, Wu C-Y. Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells. Cell Death Dis. 2017;8: e2626.PubMedPubMedCentralCrossRef
86.
go back to reference Elleithi YA, El-Gayar AM, Amin MN. Simvastatin induces apoptosis and suppresses hepatocellular carcinoma induced in rats. Appl Biochem Biotechnol. 2023;195:1656–74.PubMedCrossRef Elleithi YA, El-Gayar AM, Amin MN. Simvastatin induces apoptosis and suppresses hepatocellular carcinoma induced in rats. Appl Biochem Biotechnol. 2023;195:1656–74.PubMedCrossRef
87.
go back to reference Huang X, Ma J, Xu J, Su Q, Zhao J. Simvastatin induces growth inhibition and apoptosis in HepG2 and Huh7 hepatocellular carcinoma cells via upregulation of Notch1 expression. Mol Med Rep. 2015;11:2334–40.PubMedCrossRef Huang X, Ma J, Xu J, Su Q, Zhao J. Simvastatin induces growth inhibition and apoptosis in HepG2 and Huh7 hepatocellular carcinoma cells via upregulation of Notch1 expression. Mol Med Rep. 2015;11:2334–40.PubMedCrossRef
88.
go back to reference Feng J, Dai W, Mao Y, Wu L, Li J, Chen K, et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res. 2020;39:24.PubMedPubMedCentralCrossRef Feng J, Dai W, Mao Y, Wu L, Li J, Chen K, et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res. 2020;39:24.PubMedPubMedCentralCrossRef
89.
go back to reference Horie M, Tsuchiya Y, Hayashi M, Iida Y, Iwasawa Y, Nagata Y, et al. NB-598: a potent competitive inhibitor of squalene epoxidase. J Biol Chem. 1990;265:18075–8.PubMedCrossRef Horie M, Tsuchiya Y, Hayashi M, Iida Y, Iwasawa Y, Nagata Y, et al. NB-598: a potent competitive inhibitor of squalene epoxidase. J Biol Chem. 1990;265:18075–8.PubMedCrossRef
90.
go back to reference Yin F, Feng F, Wang L, Wang X, Li Z, Cao Y. SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity. Cell Death Dis. 2019;10:672.PubMedPubMedCentralCrossRef Yin F, Feng F, Wang L, Wang X, Li Z, Cao Y. SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity. Cell Death Dis. 2019;10:672.PubMedPubMedCentralCrossRef
92.
go back to reference Ren M, Xu H, Xia H, Tang Q, Bi F. Simultaneously targeting SOAT1 and CPT1A ameliorates hepatocellular carcinoma by disrupting lipid homeostasis. Cell Death Discov. 2021;7:125.PubMedPubMedCentralCrossRef Ren M, Xu H, Xia H, Tang Q, Bi F. Simultaneously targeting SOAT1 and CPT1A ameliorates hepatocellular carcinoma by disrupting lipid homeostasis. Cell Death Discov. 2021;7:125.PubMedPubMedCentralCrossRef
93.
go back to reference Hu L, Li J, Cai H, Yao W, Xiao J, Li Y-P, et al. Avasimibe: a novel hepatitis C virus inhibitor that targets the assembly of infectious viral particles. Antiviral Res. 2017;148:5–14.PubMedCrossRef Hu L, Li J, Cai H, Yao W, Xiao J, Li Y-P, et al. Avasimibe: a novel hepatitis C virus inhibitor that targets the assembly of infectious viral particles. Antiviral Res. 2017;148:5–14.PubMedCrossRef
94.
go back to reference Ma S, Lv M, Chen X, Zang G, Tang Z, Zhang Y, et al. Avasimibe can cooperate with a DC-targeting and integration-deficient lentivector to induce stronger HBV specific T cytotoxic response by regulating cholesterol metabolism. Antiviral Res. 2023;216: 105662.PubMedCrossRef Ma S, Lv M, Chen X, Zang G, Tang Z, Zhang Y, et al. Avasimibe can cooperate with a DC-targeting and integration-deficient lentivector to induce stronger HBV specific T cytotoxic response by regulating cholesterol metabolism. Antiviral Res. 2023;216: 105662.PubMedCrossRef
95.
go back to reference Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature. 2016;531:651–5.PubMedPubMedCentralCrossRef Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature. 2016;531:651–5.PubMedPubMedCentralCrossRef
96.
go back to reference Zhao L, Li J, Liu Y, Kang L, Chen H, Jin Y, et al. Cholesterol esterification enzyme inhibition enhances antitumor effects of human chimeric antigen receptors modified T cells. J Immunother. 2018;41:45–52.PubMedCrossRef Zhao L, Li J, Liu Y, Kang L, Chen H, Jin Y, et al. Cholesterol esterification enzyme inhibition enhances antitumor effects of human chimeric antigen receptors modified T cells. J Immunother. 2018;41:45–52.PubMedCrossRef
97.
go back to reference Pal P, Gandhi H, Giridhar R, Yadav MR. ACAT inhibitors: the search for novel cholesterol lowering agents. Mini Rev Med Chem. 2013;13:1195–219.PubMedCrossRef Pal P, Gandhi H, Giridhar R, Yadav MR. ACAT inhibitors: the search for novel cholesterol lowering agents. Mini Rev Med Chem. 2013;13:1195–219.PubMedCrossRef
98.
go back to reference He X, Zhu M, Zheng J, Wang C, Zhao X, Zhang B, et al. Liver X receptor agonists exert antitumor effects against hepatocellular carcinoma via inducing REPS2 expression. Acta Pharmacol Sin. 2022;44:635–46.PubMedCrossRef He X, Zhu M, Zheng J, Wang C, Zhao X, Zhang B, et al. Liver X receptor agonists exert antitumor effects against hepatocellular carcinoma via inducing REPS2 expression. Acta Pharmacol Sin. 2022;44:635–46.PubMedCrossRef
99.
go back to reference Shao W, Zhu W, Lin J, Luo M, Lin Z, Lu L, et al. Liver X receptor agonism sensitizes a subset of hepatocellular carcinoma to sorafenib by dual-inhibiting MET and EGFR. Neoplasia. 2020;22:1–9.PubMedCrossRef Shao W, Zhu W, Lin J, Luo M, Lin Z, Lu L, et al. Liver X receptor agonism sensitizes a subset of hepatocellular carcinoma to sorafenib by dual-inhibiting MET and EGFR. Neoplasia. 2020;22:1–9.PubMedCrossRef
100.
go back to reference Shiragannavar VD, Gowda NGS, Kumar DP, Mirshahi F, Santhekadur PK. Withaferin A acts as a novel regulator of liver X receptor-α in HCC. Front Oncol. 2020;10: 628506.PubMedCrossRef Shiragannavar VD, Gowda NGS, Kumar DP, Mirshahi F, Santhekadur PK. Withaferin A acts as a novel regulator of liver X receptor-α in HCC. Front Oncol. 2020;10: 628506.PubMedCrossRef
101.
go back to reference Shiragannavar VD, Gowda NGS, Santhekadur PK. Discovery of eukaryotic cellular receptor for Withaferin A, a multifaceted drug from Withania somnifera plant. Med Drug Discov. 2022;14: 100127.CrossRef Shiragannavar VD, Gowda NGS, Santhekadur PK. Discovery of eukaryotic cellular receptor for Withaferin A, a multifaceted drug from Withania somnifera plant. Med Drug Discov. 2022;14: 100127.CrossRef
102.
go back to reference Zhang Y, Tan Y, Liu S, Yin H, Duan J, Fan L, et al. Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis. Toxicol Mech Methods. 2023;33:47–55.PubMedCrossRef Zhang Y, Tan Y, Liu S, Yin H, Duan J, Fan L, et al. Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis. Toxicol Mech Methods. 2023;33:47–55.PubMedCrossRef
Metadata
Title
Dysregulated cholesterol regulatory genes in hepatocellular carcinoma
Authors
Dan Cao
Huan Liu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01547-z

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue