Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Central Nervous System Trauma | Research

Acute subdural haematoma exacerbates cerebral blood flow disorder and promotes the development of intraoperative brain bulge in patients with severe traumatic brain injury

Authors: Shangming Zhang, Qizuan Chen, Liang Xian, Yehuang Chen, Liangfeng Wei, Shousen Wang

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

Decompressive craniectomy (DC) is a routine procedure used for the treatment of severe traumatic brain injury (TBI) with concomitant acute subdural haematoma (SDH). However, certain patients are prone to developing malignant brain bulge during DC, which prolongs the operative time and worsens patient outcomes. Previous studies have shown that malignant intraoperative brain bulge (IOBB) may be associated with excessive arterial hyperaemia caused by cerebrovascular system disorders. Through a clinical retrospective analysis and prospective observations, we found that the cerebral blood flow of patients who possessed risk factors manifested high resistance and low flow velocity, which severely affected brain tissue perfusion and resulted in the occurrence of malignant IOBB. In the current literature, rat models of severe brain injury-associated brain bulge have rarely been reported.

Methods

To gain an in-depth understanding of cerebrovascular changes and the cascade of responses related to brain bulge, we introduced acute SDH into the Marmarou model for the preparation of a rat model of high intracranial pressure (ICP) to simulate the pathological conditions experienced by patients with severe brain injury.

Results

With the introduction of a 400-µL haematoma, significant dynamic changes occurred in ICP, mean arterial pressure, and relative blood perfusion rate of the cerebral cortical vessels. ICP increased to 56.9 ± 2.3 mmHg, mean arterial pressure showed reactive decrease, and the blood flow of cerebral cortical arteries and veins on the non-SDH-affected side decreased to < 10%. These changes could not fully recover even after DC. This resulted in generalised damage to the neurovascular unit and a lag effect to the venous blood reflux, which triggered malignant IOBB formation during DC.

Conclusion

An excessive increase in ICP causes cerebrovascular dysfunction and brings about a cascade of damage to brain tissue, which forms the basis for the development of diffuse brain swelling. The subsequent heterogeneous responses of the cerebral arteries and veins during craniotomy may be the main cause of primary IOBB. Clinicians should pay particular attention to the redistribution of CBF to various vessels when performing DC in patients with severe TBI.
Literature
1.
go back to reference Whiting MD, Dengler BA, Rodriguez CL, Blodgett D, Cohen AB, Januszkiewicz AJ, et al. Prehospital detection of life-threatening intracranial pathology: an unmet need for severe TBI in austere, rural, and remote areas. Front Neurol. 2020;11:599268.CrossRefPubMedPubMedCentral Whiting MD, Dengler BA, Rodriguez CL, Blodgett D, Cohen AB, Januszkiewicz AJ, et al. Prehospital detection of life-threatening intracranial pathology: an unmet need for severe TBI in austere, rural, and remote areas. Front Neurol. 2020;11:599268.CrossRefPubMedPubMedCentral
2.
go back to reference Sahuquillo J, Dennis JA. Decompressive craniectomy for the treatment of high intracranial pressure in closed traumatic brain injury. Cochrane Database Syst Rev. 2019;12(12):CD003983.PubMed Sahuquillo J, Dennis JA. Decompressive craniectomy for the treatment of high intracranial pressure in closed traumatic brain injury. Cochrane Database Syst Rev. 2019;12(12):CD003983.PubMed
3.
go back to reference Shousen W, Liang X. Effect of venous circulation disorder on acute encephalocele during craniocerebral trauma. Chin J Neurotrauma Surg (Electron Ed). 2020;6(06):321–4. Shousen W, Liang X. Effect of venous circulation disorder on acute encephalocele during craniocerebral trauma. Chin J Neurotrauma Surg (Electron Ed). 2020;6(06):321–4.
4.
go back to reference Phan K, Moore JM, Griessenauer C, Dmytriw AA, Scherman DB, Sheik-Ali S, et al. Craniotomy versus decompressive craniectomy for acute subdural hematoma: systematic review and meta-analysis. World Neurosurg. 2017;101:677–85.CrossRefPubMed Phan K, Moore JM, Griessenauer C, Dmytriw AA, Scherman DB, Sheik-Ali S, et al. Craniotomy versus decompressive craniectomy for acute subdural hematoma: systematic review and meta-analysis. World Neurosurg. 2017;101:677–85.CrossRefPubMed
5.
go back to reference Lahner D, Fritsch G. Pathophysiologie intrakranieller Verletzungen [Pathophysiology of intracranial injuries]. Unfallchirurg. 2017;120(9):728–33.CrossRefPubMed Lahner D, Fritsch G. Pathophysiologie intrakranieller Verletzungen [Pathophysiology of intracranial injuries]. Unfallchirurg. 2017;120(9):728–33.CrossRefPubMed
6.
go back to reference Xian L, Wang C, Wei L, Wang S. Cerebral blood flow disorder in acute subdural hematoma and acute intraoperative brain bulge. Front Neurol. 2022;13:815226.CrossRefPubMedPubMedCentral Xian L, Wang C, Wei L, Wang S. Cerebral blood flow disorder in acute subdural hematoma and acute intraoperative brain bulge. Front Neurol. 2022;13:815226.CrossRefPubMedPubMedCentral
7.
go back to reference Chen W, Sheng J, Peng G, Yang J, Wang S, Li K. Early stage alterations of catecholamine and adrenocorticotropic hormone levels in posttraumatic acute diffuse brain swelling. Brain Res Bull. 2017;130:47–52.CrossRefPubMed Chen W, Sheng J, Peng G, Yang J, Wang S, Li K. Early stage alterations of catecholamine and adrenocorticotropic hormone levels in posttraumatic acute diffuse brain swelling. Brain Res Bull. 2017;130:47–52.CrossRefPubMed
8.
go back to reference Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, et al. Experimental models of traumatic brain injury: Do we really need to build a better mousetrap? Neuroscience. 2005;136(4):971–89.CrossRefPubMed Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, et al. Experimental models of traumatic brain injury: Do we really need to build a better mousetrap? Neuroscience. 2005;136(4):971–89.CrossRefPubMed
9.
go back to reference Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291–300. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291–300.
10.
go back to reference Xian L, Wang C, Wang W, Wei L, Zhang Y, Chen W, et al. The construction of an improved model of acute subdural hematoma in rats. J Neurosci Methods. 2021;351:109075.CrossRefPubMed Xian L, Wang C, Wang W, Wei L, Zhang Y, Chen W, et al. The construction of an improved model of acute subdural hematoma in rats. J Neurosci Methods. 2021;351:109075.CrossRefPubMed
11.
go back to reference Wang C, Xian L, Chen X, Li Z, Fang Y, Xu W, et al. Visualization of cortical cerebral blood flow dynamics during craniotomy in acute subdural hematoma using laser speckle imaging in a rat model. Brain Res. 2020;1742:146901.CrossRefPubMed Wang C, Xian L, Chen X, Li Z, Fang Y, Xu W, et al. Visualization of cortical cerebral blood flow dynamics during craniotomy in acute subdural hematoma using laser speckle imaging in a rat model. Brain Res. 2020;1742:146901.CrossRefPubMed
12.
go back to reference Friesenecker BE, Tsai AG, Martini J, Ulmer H, Wenzel V, Hasibeder WR, et al. Arteriolar vasoconstrictive response: comparing the effects of arginine vasopressin and norepinephrine. Crit Care. 2006;10(3):R75.CrossRefPubMedPubMedCentral Friesenecker BE, Tsai AG, Martini J, Ulmer H, Wenzel V, Hasibeder WR, et al. Arteriolar vasoconstrictive response: comparing the effects of arginine vasopressin and norepinephrine. Crit Care. 2006;10(3):R75.CrossRefPubMedPubMedCentral
13.
go back to reference Bragin DE, Statom GL, Nemoto EM. Induced dynamic intracranial pressure and cerebrovascular reactivity assessment of cerebrovascular autoregulation after traumatic brain injury with high intracranial pressure in rats. Acta Neurochir Suppl. 2018;126:309–12.CrossRefPubMedPubMedCentral Bragin DE, Statom GL, Nemoto EM. Induced dynamic intracranial pressure and cerebrovascular reactivity assessment of cerebrovascular autoregulation after traumatic brain injury with high intracranial pressure in rats. Acta Neurochir Suppl. 2018;126:309–12.CrossRefPubMedPubMedCentral
14.
go back to reference Shi L, Sun G, Qian C, Pan T, Li X, Zhang S, et al. Technique of stepwise intracranial decompression combined with external ventricular drainage catheters improves the prognosis of acute post-traumatic cerebral hemispheric brain swelling patients. Front Hum Neurosci. 2015;9:535.CrossRefPubMedPubMedCentral Shi L, Sun G, Qian C, Pan T, Li X, Zhang S, et al. Technique of stepwise intracranial decompression combined with external ventricular drainage catheters improves the prognosis of acute post-traumatic cerebral hemispheric brain swelling patients. Front Hum Neurosci. 2015;9:535.CrossRefPubMedPubMedCentral
15.
go back to reference Bigler ED. Neuroinflammation and the dynamic lesion in traumatic brain injury. Brain. 2013;136(Pt 1):9–11.CrossRefPubMed Bigler ED. Neuroinflammation and the dynamic lesion in traumatic brain injury. Brain. 2013;136(Pt 1):9–11.CrossRefPubMed
16.
go back to reference Pittella JE, Gusmão SN. Diffuse vascular injury in fatal road traffic accident victims: its relationship to diffuse axonal injury. J Forensic Sci. 2003;48(3):626–30.CrossRefPubMed Pittella JE, Gusmão SN. Diffuse vascular injury in fatal road traffic accident victims: its relationship to diffuse axonal injury. J Forensic Sci. 2003;48(3):626–30.CrossRefPubMed
17.
go back to reference Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part II: morphological characterization. J Neurosurg. 1994;80(2):301–13.CrossRefPubMed Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part II: morphological characterization. J Neurosurg. 1994;80(2):301–13.CrossRefPubMed
18.
go back to reference Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transpl. 2017;26(7):1118–30.CrossRef Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transpl. 2017;26(7):1118–30.CrossRef
19.
go back to reference Wang W, Mu S, Xue L, Liang S, Li Z, Wang S. Wide-area measurement-based supervision of the cerebral venous hemodynamic in a novel rat model. J Neurosci Methods. 2019;328:108448.CrossRefPubMed Wang W, Mu S, Xue L, Liang S, Li Z, Wang S. Wide-area measurement-based supervision of the cerebral venous hemodynamic in a novel rat model. J Neurosci Methods. 2019;328:108448.CrossRefPubMed
21.
go back to reference Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019;145(Pt B):230–46.CrossRefPubMed Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019;145(Pt B):230–46.CrossRefPubMed
22.
go back to reference Sawauchi S, Beaumont A, Signoretti S, Tomita Y, Marmarou C, Marmarou A. Diffuse brain injury complicated by acute subdural hematoma in the rodents: the effect of early or delayed surgical evacuation. Acta Neurochir Suppl. 2002;81:243–4.PubMed Sawauchi S, Beaumont A, Signoretti S, Tomita Y, Marmarou C, Marmarou A. Diffuse brain injury complicated by acute subdural hematoma in the rodents: the effect of early or delayed surgical evacuation. Acta Neurochir Suppl. 2002;81:243–4.PubMed
23.
go back to reference Hawryluk GWJ, Rubiano AM, Totten AM, O’Reilly C, Ullman JS, Bratton SL, et al. Guidelines for the management of severe traumatic brain injury: 2020 update of the decompressive craniectomy recommendations. Neurosurgery. 2020;87(3):427–34.CrossRefPubMedPubMedCentral Hawryluk GWJ, Rubiano AM, Totten AM, O’Reilly C, Ullman JS, Bratton SL, et al. Guidelines for the management of severe traumatic brain injury: 2020 update of the decompressive craniectomy recommendations. Neurosurgery. 2020;87(3):427–34.CrossRefPubMedPubMedCentral
24.
go back to reference Wilson MH. Monro–Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–50. Wilson MH. Monro–Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–50.
25.
go back to reference Chen SH, Chen Y, Fang WK, Huang DW, Huang KC, Tseng SH. Comparison of craniotomy and decompressive craniectomy in severely head-injured patients with acute subdural hematoma. J Trauma. 2011;71(6):1632–6.PubMed Chen SH, Chen Y, Fang WK, Huang DW, Huang KC, Tseng SH. Comparison of craniotomy and decompressive craniectomy in severely head-injured patients with acute subdural hematoma. J Trauma. 2011;71(6):1632–6.PubMed
26.
go back to reference Sawauchi S, Marmarou A, Beaumont A, Tomita Y, Fukui S. A new rat model of diffuse brain injury associated with acute subdural hematoma: assessment of varying hematoma volume, insult severity, and the presence of hypoxemia. J Neurotrauma. 2003;20(7):613–22.CrossRefPubMed Sawauchi S, Marmarou A, Beaumont A, Tomita Y, Fukui S. A new rat model of diffuse brain injury associated with acute subdural hematoma: assessment of varying hematoma volume, insult severity, and the presence of hypoxemia. J Neurotrauma. 2003;20(7):613–22.CrossRefPubMed
27.
go back to reference Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral microvascular injury: a potentially treatable endophenotype of traumatic brain injury-induced neurodegeneration. Neuron. 2019;103(3):367–79.CrossRefPubMedPubMedCentral Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral microvascular injury: a potentially treatable endophenotype of traumatic brain injury-induced neurodegeneration. Neuron. 2019;103(3):367–79.CrossRefPubMedPubMedCentral
28.
29.
go back to reference Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of microvascular disruption in brain damage from traumatic brain injury. Compr Physiol. 2015;5(3):1147–60.CrossRefPubMedPubMedCentral Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of microvascular disruption in brain damage from traumatic brain injury. Compr Physiol. 2015;5(3):1147–60.CrossRefPubMedPubMedCentral
30.
go back to reference Yokobori S, Nakae R, Yokota H, Spurlock MS, Mondello S, Gajavelli S, et al. Subdural hematoma decompression model: a model of traumatic brain injury with ischemic-reperfusional pathophysiology: a review of the literature. Behav Brain Res. 2018;340:23–8.CrossRefPubMed Yokobori S, Nakae R, Yokota H, Spurlock MS, Mondello S, Gajavelli S, et al. Subdural hematoma decompression model: a model of traumatic brain injury with ischemic-reperfusional pathophysiology: a review of the literature. Behav Brain Res. 2018;340:23–8.CrossRefPubMed
31.
go back to reference Schwarzmaier SM, de Chaumont C, Balbi M, Terpolilli NA, Kleinschnitz C, Gruber A, et al. The formation of microthrombi in parenchymal microvessels after traumatic brain injury is independent of coagulation factor XI. J Neurotrauma. 2016;33(17):1634–44.CrossRefPubMedPubMedCentral Schwarzmaier SM, de Chaumont C, Balbi M, Terpolilli NA, Kleinschnitz C, Gruber A, et al. The formation of microthrombi in parenchymal microvessels after traumatic brain injury is independent of coagulation factor XI. J Neurotrauma. 2016;33(17):1634–44.CrossRefPubMedPubMedCentral
32.
go back to reference Schwarzmaier SM, Knarr MRO, Hu S, Ertürk A, Hellal F, Plesnila N. Perfusion pressure determines vascular integrity and histomorphological quality following perfusion fixation of the brain. J Neurosci Methods. 2022;372:109493.CrossRefPubMed Schwarzmaier SM, Knarr MRO, Hu S, Ertürk A, Hellal F, Plesnila N. Perfusion pressure determines vascular integrity and histomorphological quality following perfusion fixation of the brain. J Neurosci Methods. 2022;372:109493.CrossRefPubMed
33.
go back to reference Van Essen TA, Volovici V, Cnossen MC, Kolias A, Ceyisakar I, Nieboer D, et al. Comparative effectiveness of surgery in traumatic acute subdural and intracerebral haematoma: study protocol for a prospective observational study within CENTER-TBI and Net-QuRe. BMJ Open. 2019;9(10):e033513.CrossRefPubMedPubMedCentral Van Essen TA, Volovici V, Cnossen MC, Kolias A, Ceyisakar I, Nieboer D, et al. Comparative effectiveness of surgery in traumatic acute subdural and intracerebral haematoma: study protocol for a prospective observational study within CENTER-TBI and Net-QuRe. BMJ Open. 2019;9(10):e033513.CrossRefPubMedPubMedCentral
34.
go back to reference Unnerbäck M, Ottesen JT, Reinstrup P. Increased intracranial pressure attenuates the pulsating component of cerebral venous outflow. Neurocrit Care. 2019;31(2):273–9.CrossRefPubMedPubMedCentral Unnerbäck M, Ottesen JT, Reinstrup P. Increased intracranial pressure attenuates the pulsating component of cerebral venous outflow. Neurocrit Care. 2019;31(2):273–9.CrossRefPubMedPubMedCentral
35.
go back to reference Toro EF. Brain venous haemodynamics, neurological diseases and mathematical modelling. A review. Appl Math Comput. 2016;272:S0096300315008474. Toro EF. Brain venous haemodynamics, neurological diseases and mathematical modelling. A review. Appl Math Comput. 2016;272:S0096300315008474.
36.
go back to reference Baechli H, Behzad M, Schreckenberger M, Buchholz HG, Heimann A, Kempski O, et al. Blood constituents trigger brain swelling, tissue death, and reduction of glucose metabolism early after acute subdural hematoma in rats. J Cereb Blood Flow Metab. 2010;30(3):576–85.CrossRefPubMed Baechli H, Behzad M, Schreckenberger M, Buchholz HG, Heimann A, Kempski O, et al. Blood constituents trigger brain swelling, tissue death, and reduction of glucose metabolism early after acute subdural hematoma in rats. J Cereb Blood Flow Metab. 2010;30(3):576–85.CrossRefPubMed
37.
go back to reference Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15(9):1031–7.CrossRefPubMed Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15(9):1031–7.CrossRefPubMed
38.
go back to reference Amki ME, Glück C, Binder N, Middleham W, Wyss MT, Weiss T, et al. Neutrophils obstructing brain capillaries are a major cause of no-reflow in ischemic stroke. Cell Rep. 2020;33(2):108260. Amki ME, Glück C, Binder N, Middleham W, Wyss MT, Weiss T, et al. Neutrophils obstructing brain capillaries are a major cause of no-reflow in ischemic stroke. Cell Rep. 2020;33(2):108260.
39.
go back to reference Erdener ŞE, Tang J, Kılıç K, Postnov D, Giblin JT, Kura S, et al. Dynamic capillary stalls in reperfused ischemic penumbra contribute to injury: a hyperacute role for neutrophils in persistent traffic jams. J Cereb Blood Flow Metab. 2021;41(2):236–52.CrossRefPubMed Erdener ŞE, Tang J, Kılıç K, Postnov D, Giblin JT, Kura S, et al. Dynamic capillary stalls in reperfused ischemic penumbra contribute to injury: a hyperacute role for neutrophils in persistent traffic jams. J Cereb Blood Flow Metab. 2021;41(2):236–52.CrossRefPubMed
40.
go back to reference Wang Y, Wang C, Yang L, Cai S, Cai X, Dong J, et al. Controlled decompression for the treatment of severe head injury: a preliminary study. Turk Neurosurg. 2014;24(2):214–20.PubMed Wang Y, Wang C, Yang L, Cai S, Cai X, Dong J, et al. Controlled decompression for the treatment of severe head injury: a preliminary study. Turk Neurosurg. 2014;24(2):214–20.PubMed
41.
go back to reference Iaccarino C, Lippa L, Munari M, Castioni CA, Robba C, Caricato A, et al. Management of intracranial hypertension following traumatic brain injury: a best clinical practice adoption proposal for intracranial pressure monitoring and decompressive craniectomy. J Neurosurg Sci. 2021;65(3):219–38.CrossRefPubMed Iaccarino C, Lippa L, Munari M, Castioni CA, Robba C, Caricato A, et al. Management of intracranial hypertension following traumatic brain injury: a best clinical practice adoption proposal for intracranial pressure monitoring and decompressive craniectomy. J Neurosurg Sci. 2021;65(3):219–38.CrossRefPubMed
42.
go back to reference Kawai N, Nakamura T, Okauchi M, Nagao S. Effects of hypothermia on intracranial pressure and brain edema formation: studies in a rat acute subdural hematoma model. J Neurotrauma. 2000;17(3):193–202.CrossRefPubMed Kawai N, Nakamura T, Okauchi M, Nagao S. Effects of hypothermia on intracranial pressure and brain edema formation: studies in a rat acute subdural hematoma model. J Neurotrauma. 2000;17(3):193–202.CrossRefPubMed
43.
go back to reference Soustiel JF, Sviri GE, Mahamid E, Shik V, Abeshaus S, Zaaroor M. Cerebral blood flow and metabolism following decompressive craniectomy for control of increased intracranial pressure. Neurosurgery. 2010;67(1):65–72.CrossRefPubMed Soustiel JF, Sviri GE, Mahamid E, Shik V, Abeshaus S, Zaaroor M. Cerebral blood flow and metabolism following decompressive craniectomy for control of increased intracranial pressure. Neurosurgery. 2010;67(1):65–72.CrossRefPubMed
44.
go back to reference Sangiorgi S, De Benedictis A, Protasoni M, Manelli A, Reguzzoni M, Cividini A, et al. Early-stage microvascular alterations of a new model of controlled cortical traumatic brain injury: 3D morphological analysis using scanning electron microscopy and corrosion casting. J Neurosurg. 2013;118(4):763–74.CrossRefPubMed Sangiorgi S, De Benedictis A, Protasoni M, Manelli A, Reguzzoni M, Cividini A, et al. Early-stage microvascular alterations of a new model of controlled cortical traumatic brain injury: 3D morphological analysis using scanning electron microscopy and corrosion casting. J Neurosurg. 2013;118(4):763–74.CrossRefPubMed
Metadata
Title
Acute subdural haematoma exacerbates cerebral blood flow disorder and promotes the development of intraoperative brain bulge in patients with severe traumatic brain injury
Authors
Shangming Zhang
Qizuan Chen
Liang Xian
Yehuang Chen
Liangfeng Wei
Shousen Wang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01100-y

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue