Skip to main content
Top
Published in: BMC Medicine 1/2022

Open Access 01-12-2022 | Nilotinib | Research article

High-affinity SOAT1 ligands remodeled cholesterol metabolism program to inhibit tumor growth

Authors: Zhihua Wang, Miaomiao Wang, Mengxin Zhang, Kaikun Xu, Xinshuai Zhang, Yi Xie, Yiming Zhang, Cheng Chang, Xiaolu Li, Aihua Sun, Fuchu He

Published in: BMC Medicine | Issue 1/2022

Login to get access

Abstract

Background

Although cholesterol metabolism is a common pathway for the development of antitumor drugs, there are no specific targets and drugs for clinical use. Here, based on our previous study of sterol O-acyltransferase 1 (SOAT1) in hepatocelluar carcinoma, we sought to screen an effective targeted drug for precise treatment of hepatocelluar carcinoma and, from the perspective of cholesterol metabolism, clarify the relationship between cholesterol regulation and tumorigenesis and development.

Methods

In this study, we developed a virtual screening integrated affinity screening technology for target protein drug screening. A series of in vitro and in vivo experiments were used for drug activity verification. Multi-omics analysis and flow cytometry analysis were used to explore antitumor mechanisms. Comparative analysis of proteome and transcriptome combined with survival follow-up information of patients reveals the clinical therapeutic potential of screened drugs.

Results

We screened three compounds, nilotinib, ABT-737, and evacetrapib, that exhibited optimal binding with SOAT1. In particular, nilotinib displayed a high affinity for SOAT1 protein and significantly inhibited tumor activity both in vitro and in vivo. Multi-omics analysis and flow cytometry analysis indicated that SOAT1-targeting compounds reprogrammed the cholesterol metabolism in tumors and enhanced CD8+ T cells and neutrophils to suppress tumor growth.

Conclusions

Taken together, we reported several high-affinity SOAT1 ligands and demonstrated their clinical potential in the precision therapy of liver cancer, and also reveal the potential antitumor mechanism of SOAT1-targeting compounds.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V, Ulas T, Papantonopoulou O, Van Eck M, Auphan-Anezin N, et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 2019;29(6):1376–89 (e1374).CrossRef Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V, Ulas T, Papantonopoulou O, Van Eck M, Auphan-Anezin N, et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 2019;29(6):1376–89 (e1374).CrossRef
2.
go back to reference Riscal R, Skuli N, Simon MC. Even cancer cells watch their cholesterol! Mol Cell. 2019;76(2):220–31.CrossRef Riscal R, Skuli N, Simon MC. Even cancer cells watch their cholesterol! Mol Cell. 2019;76(2):220–31.CrossRef
3.
go back to reference Huang B, Song BL, Xu C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab. 2020;2(2):132–41.CrossRef Huang B, Song BL, Xu C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab. 2020;2(2):132–41.CrossRef
4.
go back to reference Zhang H, Zhao W, Li X, He Y. Cholesterol metabolism as a potential therapeutic target and a prognostic biomarker for cancer immunotherapy. Onco Targets Ther. 2021;14:3803–12.CrossRef Zhang H, Zhao W, Li X, He Y. Cholesterol metabolism as a potential therapeutic target and a prognostic biomarker for cancer immunotherapy. Onco Targets Ther. 2021;14:3803–12.CrossRef
5.
go back to reference Yarmolinsky J, Bull CJ, Vincent EE, Robinson J, Walther A, Smith GD, Lewis SJ, Relton CL, Martin RM. Association between genetically proxied inhibition of HMG-CoA reductase and epithelial ovarian cancer. JAMA. 2020;323(7):646–55.CrossRef Yarmolinsky J, Bull CJ, Vincent EE, Robinson J, Walther A, Smith GD, Lewis SJ, Relton CL, Martin RM. Association between genetically proxied inhibition of HMG-CoA reductase and epithelial ovarian cancer. JAMA. 2020;323(7):646–55.CrossRef
6.
go back to reference Head SA, Shi WQ, Yang EJ, Nacev BA, Hong SY, Pasunooti KK, Li RJ, Shim JS, Liu JO. Simultaneous targeting of NPC1 and VDAC1 by itraconazole leads to synergistic inhibition of mTOR signaling and angiogenesis. ACS Chem Biol. 2017;12(1):174–82.CrossRef Head SA, Shi WQ, Yang EJ, Nacev BA, Hong SY, Pasunooti KK, Li RJ, Shim JS, Liu JO. Simultaneous targeting of NPC1 and VDAC1 by itraconazole leads to synergistic inhibition of mTOR signaling and angiogenesis. ACS Chem Biol. 2017;12(1):174–82.CrossRef
7.
go back to reference Wan W, Hou Y, Wang K, Cheng Y, Pu X, Ye X. The LXR-623-induced long non-coding RNA LINC01125 suppresses the proliferation of breast cancer cells via PTEN/AKT/p53 signaling pathway. Cell Death Dis. 2019;10(3):248.CrossRef Wan W, Hou Y, Wang K, Cheng Y, Pu X, Ye X. The LXR-623-induced long non-coding RNA LINC01125 suppresses the proliferation of breast cancer cells via PTEN/AKT/p53 signaling pathway. Cell Death Dis. 2019;10(3):248.CrossRef
8.
go back to reference Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, Xing B, Sun W, Ren L, Hu B, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567(7747):257–61.CrossRef Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, Xing B, Sun W, Ren L, Hu B, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567(7747):257–61.CrossRef
9.
go back to reference Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19(3):393–406.CrossRef Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19(3):393–406.CrossRef
10.
go back to reference Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, Wang Q, Yang M, Kalady MF, Qian J, et al. Cholesterol induces CD8(+) T cell exhaustion in the tumor microenvironment. Cell Metab. 2019;30(1):143–56 (e145).CrossRef Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, Wang Q, Yang M, Kalady MF, Qian J, et al. Cholesterol induces CD8(+) T cell exhaustion in the tumor microenvironment. Cell Metab. 2019;30(1):143–56 (e145).CrossRef
11.
go back to reference Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, Meng X, Li L, Wang J, Xu C, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature. 2016;531(7596):651–5.CrossRef Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, Meng X, Li L, Wang J, Xu C, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature. 2016;531(7596):651–5.CrossRef
12.
go back to reference Long T, Sun Y, Hassan A, Qi X, Li X. Structure of nevanimibe-bound tetrameric human ACAT1. Nature. 2020;581(7808):339–43.CrossRef Long T, Sun Y, Hassan A, Qi X, Li X. Structure of nevanimibe-bound tetrameric human ACAT1. Nature. 2020;581(7808):339–43.CrossRef
13.
go back to reference Guan C, Niu Y, Chen SC, Kang Y, Wu JX, Nishi K, Chang CCY, Chang TY, Luo T, Chen L. Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor. Nat Commun. 2020;11(1):2478.CrossRef Guan C, Niu Y, Chen SC, Kang Y, Wu JX, Nishi K, Chang CCY, Chang TY, Luo T, Chen L. Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor. Nat Commun. 2020;11(1):2478.CrossRef
14.
go back to reference Santos-Martins D, Forli S, Ramos MJ, Olson AJ. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J Chem Inf Model. 2014;54(8):2371–9.CrossRef Santos-Martins D, Forli S, Ramos MJ, Olson AJ. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J Chem Inf Model. 2014;54(8):2371–9.CrossRef
15.
go back to reference Homer RW, Swanson J, Jilek RJ, Hurst T, Clark RD. SYBYL line notation (SLN): a single notation to represent chemical structures, queries, reactions, and virtual libraries. J Chem Inf Model. 2008;48(12):2294–307.CrossRef Homer RW, Swanson J, Jilek RJ, Hurst T, Clark RD. SYBYL line notation (SLN): a single notation to represent chemical structures, queries, reactions, and virtual libraries. J Chem Inf Model. 2008;48(12):2294–307.CrossRef
16.
go back to reference Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750–9.CrossRef Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750–9.CrossRef
17.
go back to reference Schiffrin B, Radford SE, Brockwell DJ, Calabrese AN. PyXlinkViewer: a flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Sci. 2020;29(8):1851–7.CrossRef Schiffrin B, Radford SE, Brockwell DJ, Calabrese AN. PyXlinkViewer: a flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Sci. 2020;29(8):1851–7.CrossRef
18.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.CrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.CrossRef
19.
go back to reference Chen T, Ma J, Liu Y, Chen Z, Xiao N, Lu Y, Fu Y, Yang C, Li M, Wu S, et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 2022;50(D1):D1522–7.CrossRef Chen T, Ma J, Liu Y, Chen Z, Xiao N, Lu Y, Fu Y, Yang C, Li M, Wu S, et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 2022;50(D1):D1522–7.CrossRef
20.
go back to reference Haug K, Cochrane K, Nainala VC, Williams M, Chang J, Jayaseelan KV, O’Donovan C. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020;48(D1):D440–4.PubMed Haug K, Cochrane K, Nainala VC, Williams M, Chang J, Jayaseelan KV, O’Donovan C. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020;48(D1):D440–4.PubMed
21.
go back to reference Cancer Genome Atlas Research Network. Electronic address wbe, Cancer Genome Atlas Research N: Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327–41 (e1323).CrossRef Cancer Genome Atlas Research Network. Electronic address wbe, Cancer Genome Atlas Research N: Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327–41 (e1323).CrossRef
22.
go back to reference Sharpe LJ, Cook EC, Zelcer N, Brown AJ. The UPS and downs of cholesterol homeostasis. Trends Biochem Sci. 2014;39(11):527–35.CrossRef Sharpe LJ, Cook EC, Zelcer N, Brown AJ. The UPS and downs of cholesterol homeostasis. Trends Biochem Sci. 2014;39(11):527–35.CrossRef
23.
go back to reference Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225–45.CrossRef Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225–45.CrossRef
24.
go back to reference Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell. 2021;56(10):1363–93.CrossRef Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell. 2021;56(10):1363–93.CrossRef
25.
go back to reference Bogl T, Mlynek F, Himmelsbach M, Buchberger W. Comparison of one-phase and two-phase extraction methods for porcine tissue lipidomics applying a fast and reliable tentative annotation workflow. Talanta. 2022;236:122849.CrossRef Bogl T, Mlynek F, Himmelsbach M, Buchberger W. Comparison of one-phase and two-phase extraction methods for porcine tissue lipidomics applying a fast and reliable tentative annotation workflow. Talanta. 2022;236:122849.CrossRef
26.
go back to reference Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31(1):62–76.CrossRef Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31(1):62–76.CrossRef
27.
go back to reference Zhao L, Liu Y, Zhao F, Jin Y, Feng J, Geng R, Sun J, Kang L, Yu L, Wei Y. Inhibition of cholesterol esterification enzyme enhances the potency of human chimeric antigen receptor T cells against pancreatic carcinoma. Mol Ther Oncolytics. 2020;16:262–71.CrossRef Zhao L, Liu Y, Zhao F, Jin Y, Feng J, Geng R, Sun J, Kang L, Yu L, Wei Y. Inhibition of cholesterol esterification enzyme enhances the potency of human chimeric antigen receptor T cells against pancreatic carcinoma. Mol Ther Oncolytics. 2020;16:262–71.CrossRef
28.
go back to reference Flores-Montero J, Kalina T, Corral-Mateos A, Sanoja-Flores L, Perez-Andres M, Martin-Ayuso M, Sedek L, Rejlova K, Mayado A, Fernandez P, et al. Fluorochrome choices for multi-color flow cytometry. J Immunol Methods. 2019;475: 112618.CrossRef Flores-Montero J, Kalina T, Corral-Mateos A, Sanoja-Flores L, Perez-Andres M, Martin-Ayuso M, Sedek L, Rejlova K, Mayado A, Fernandez P, et al. Fluorochrome choices for multi-color flow cytometry. J Immunol Methods. 2019;475: 112618.CrossRef
29.
go back to reference Almeida AS, Fein MR, Egeblad M. Multi-color flow cytometry for comprehensive analysis of the tumor immune infiltrate in a murine model of breast cancer. Bio Protoc. 2021;11(11):e4012.CrossRef Almeida AS, Fein MR, Egeblad M. Multi-color flow cytometry for comprehensive analysis of the tumor immune infiltrate in a murine model of breast cancer. Bio Protoc. 2021;11(11):e4012.CrossRef
30.
go back to reference Sica A, Bleve A, Garassino MC. Membrane cholesterol regulates macrophage plasticity in cancer. Cell Metab. 2019;29(6):1238–40.CrossRef Sica A, Bleve A, Garassino MC. Membrane cholesterol regulates macrophage plasticity in cancer. Cell Metab. 2019;29(6):1238–40.CrossRef
31.
go back to reference Bovenga F, Sabba C, Moschetta A. Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer. Cell Metab. 2015;21(4):517–26.CrossRef Bovenga F, Sabba C, Moschetta A. Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer. Cell Metab. 2015;21(4):517–26.CrossRef
32.
go back to reference Waku T, Hagiwara T, Tamura N, Atsumi Y, Urano Y, Suzuki M, Iwami T, Sato K, Yamamoto M, Noguchi N, et al. NRF3 upregulates gene expression in SREBP2-dependent mevalonate pathway with cholesterol uptake and lipogenesis inhibition. iScience. 2021;24(10):103180.CrossRef Waku T, Hagiwara T, Tamura N, Atsumi Y, Urano Y, Suzuki M, Iwami T, Sato K, Yamamoto M, Noguchi N, et al. NRF3 upregulates gene expression in SREBP2-dependent mevalonate pathway with cholesterol uptake and lipogenesis inhibition. iScience. 2021;24(10):103180.CrossRef
33.
go back to reference Xu H, Zhou S, Tang Q, Xia H, Bi F. Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188394.CrossRef Xu H, Zhou S, Tang Q, Xia H, Bi F. Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188394.CrossRef
34.
go back to reference Gabitova L, Gorin A, Astsaturov I. Molecular pathways: sterols and receptor signaling in cancer. Clin Cancer Res. 2014;20(1):28–34.CrossRef Gabitova L, Gorin A, Astsaturov I. Molecular pathways: sterols and receptor signaling in cancer. Clin Cancer Res. 2014;20(1):28–34.CrossRef
35.
go back to reference Qian H, Wu X, Du X, Yao X, Zhao X, Lee J, Yang H, Yan N. Structural basis of low-pH-dependent lysosomal cholesterol egress by NPC1 and NPC2. Cell. 2020;182(1):98–111 (e118).CrossRef Qian H, Wu X, Du X, Yao X, Zhao X, Lee J, Yang H, Yan N. Structural basis of low-pH-dependent lysosomal cholesterol egress by NPC1 and NPC2. Cell. 2020;182(1):98–111 (e118).CrossRef
36.
go back to reference Ikonomopoulou MP, Lopez-Mancheno Y, Novelle MG, Martinez-Una M, Gangoda L, Pal M, Costa-Machado LF, Fernandez-Marcos PJ, Ramm GA, Fernandez-Rojo MA. LXR stimulates a metabolic switch and reveals cholesterol homeostasis as a statin target in Tasmanian devil facial tumor disease. Cell Rep. 2021;34(11):108851.CrossRef Ikonomopoulou MP, Lopez-Mancheno Y, Novelle MG, Martinez-Una M, Gangoda L, Pal M, Costa-Machado LF, Fernandez-Marcos PJ, Ramm GA, Fernandez-Rojo MA. LXR stimulates a metabolic switch and reveals cholesterol homeostasis as a statin target in Tasmanian devil facial tumor disease. Cell Rep. 2021;34(11):108851.CrossRef
37.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRef
38.
go back to reference Chan LK, Ho DW, Kam CS, Chiu EY, Lo IL, Yau DT, Cheung ET, Tang CN, Tang VW, Lee TK, et al. RSK2-inactivating mutations potentiate MAPK signaling and support cholesterol metabolism in hepatocellular carcinoma. J Hepatol. 2021;74(2):360–71.CrossRef Chan LK, Ho DW, Kam CS, Chiu EY, Lo IL, Yau DT, Cheung ET, Tang CN, Tang VW, Lee TK, et al. RSK2-inactivating mutations potentiate MAPK signaling and support cholesterol metabolism in hepatocellular carcinoma. J Hepatol. 2021;74(2):360–71.CrossRef
39.
go back to reference Li M, Yang Y, Wei J, Cun X, Lu Z, Qiu Y, Zhang Z, He Q. Enhanced chemo-immunotherapy against melanoma by inhibition of cholesterol esterification in CD8(+) T cells. Nanomedicine. 2018;14(8):2541–50.CrossRef Li M, Yang Y, Wei J, Cun X, Lu Z, Qiu Y, Zhang Z, He Q. Enhanced chemo-immunotherapy against melanoma by inhibition of cholesterol esterification in CD8(+) T cells. Nanomedicine. 2018;14(8):2541–50.CrossRef
Metadata
Title
High-affinity SOAT1 ligands remodeled cholesterol metabolism program to inhibit tumor growth
Authors
Zhihua Wang
Miaomiao Wang
Mengxin Zhang
Kaikun Xu
Xinshuai Zhang
Yi Xie
Yiming Zhang
Cheng Chang
Xiaolu Li
Aihua Sun
Fuchu He
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Nilotinib
Published in
BMC Medicine / Issue 1/2022
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02436-8

Other articles of this Issue 1/2022

BMC Medicine 1/2022 Go to the issue