Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2022

Open Access 01-12-2022 | Graft-Versus-Host Disease | Research

hUC-EVs-ATO reduce the severity of acute GVHD by resetting inflammatory macrophages toward the M2 phenotype

Authors: Yan Su, Xueyan Sun, Xiao Liu, Qingyuan Qu, Liping Yang, Qi Chen, Fengqi Liu, Yueying Li, Qianfei Wang, Bo Huang, Xiao-Jun Huang, Xiao-Hui Zhang

Published in: Journal of Hematology & Oncology | Issue 1/2022

Login to get access

Abstract

Background

Both extracellular vesicles from mesenchymal stromal cell-derived human umbilical cords (hUC-EVs) and arsenic trioxides (ATOs) have been demonstrated to treat acute graft-versus-host disease (aGVHD) via immunomodulation. Apart from immunomodulation, hUC-EVs have a unique function of drug delivery, which has been proposed to enhance their efficacy. In this study, we first prepared ATO-loaded hUC-EVs (hUC-EVs-ATO) to investigate the therapeutic effect and potential mechanisms of hUC-EVs-ATO in a mouse model of aGVHD after allogeneic hematopoietic stem cell transplantation (HSCT).

Methods

An aGVHD model was established to observe the therapeutic effects of hUC-EVs-ATO on aGVHD. Target organs were harvested for histopathological analysis on day 14 after transplantation. The effects of hUC-EVs-ATO on alloreactive CD4+ were evaluated by flow cytometry in vivo and in vitro. Flow cytometry, RT-PCR, immunofluorescence colocalization analysis and Western blot (Wb) analysis were performed to examine macrophage polarization after hUC-EV-ATO treatment. The cytokines in serum were measured by a cytometric bead array (CBA). TEM, confocal microscopy and Wb were performed to observe the level of autophagy in macrophages. A graft-versus-lymphoma (GVL) mouse model was established to observe the role of hUC-EVs-ATO in the GVL effect.

Results

The clinical manifestations and histological scores of aGVHD in the hUC-EVs-ATO group were significantly reduced compared with those in the ATO and hUC-EVs groups. The mice receiving hUC-EVs-ATO lived longer than the control mice. Notably, hUC-EVs-ATO interfering with alloreactive CD4+ T cells differentiation were observed in aGVHD mice but not in an in vitro culture system. Additional studies showed that depletion of macrophages blocked the therapeutic effects of hUC-EVs-ATO on aGVHD. Mechanistically, hUC-EVs-ATO induced autophagic flux by inhibiting mammalian target of rapamycin (mTOR) activity to repolarize M1 to M2 macrophages. Additionally, using a murine model of GVL effects, hUC-EVs-ATO were found not only to reduce the severity of aGVHD but also to preserve the GVL effects. Taken together, hUC-EVs-ATO may be promising candidates for aGVHD treatment.

Conclusions

hUC-EVs-ATO enhanced the alleviation of aGVHD severity in mice compared with ATO and hUC-EVs without weakening GVL activity. hUC-EVs-ATO promoted M1 to M2 polarization via the mTOR-autophagy pathway. hUC-EVs-ATO could be a potential therapeutic approach in aGVHD after allo-HSCT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang X, Chen J, Han M, et al. The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol. 2021;14(1):66.CrossRef Zhang X, Chen J, Han M, et al. The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol. 2021;14(1):66.CrossRef
3.
go back to reference Jagasia M, Arora M, Flowers ME, et al. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood. 2012;119(1):296–307.PubMedPubMedCentralCrossRef Jagasia M, Arora M, Flowers ME, et al. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood. 2012;119(1):296–307.PubMedPubMedCentralCrossRef
4.
go back to reference Ramachandran V, Kolli SS, Strowd LC. Review of graft-versus-host disease. Dermatol Clin. 2019;37(4):569–82.PubMedCrossRef Ramachandran V, Kolli SS, Strowd LC. Review of graft-versus-host disease. Dermatol Clin. 2019;37(4):569–82.PubMedCrossRef
5.
go back to reference Yu Y, Wang D, Liu C, et al. Prevention of GVHD while sparing GVL effect by targeting Th1 and Th17 transcription factor T-bet and RORgammat in mice. Blood. 2011;118(18):5011–20.PubMedPubMedCentralCrossRef Yu Y, Wang D, Liu C, et al. Prevention of GVHD while sparing GVL effect by targeting Th1 and Th17 transcription factor T-bet and RORgammat in mice. Blood. 2011;118(18):5011–20.PubMedPubMedCentralCrossRef
6.
go back to reference Herrero-Sanchez MC, Rodriguez-Serrano C, Almeida J, et al. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol. 2016;9(1):113.PubMedPubMedCentralCrossRef Herrero-Sanchez MC, Rodriguez-Serrano C, Almeida J, et al. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol. 2016;9(1):113.PubMedPubMedCentralCrossRef
7.
go back to reference Ito M, Fujino M. Macrophage-mediated complications after stem cell transplantation. Pathol Int. 2019;69(12):679–87.PubMedCrossRef Ito M, Fujino M. Macrophage-mediated complications after stem cell transplantation. Pathol Int. 2019;69(12):679–87.PubMedCrossRef
8.
go back to reference Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.
9.
go back to reference Tugal D, Liao X, Jain MK. Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol. 2013;33(6):1135–44.PubMedCrossRef Tugal D, Liao X, Jain MK. Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol. 2013;33(6):1135–44.PubMedCrossRef
10.
11.
go back to reference Hogenes M, van Dorp S, van Kuik J, et al. Modifying graft-versus-host disease in a humanized mouse model by targeting macrophages or B-cells. J Immunol Res. 2019;2019:3538963.PubMedPubMedCentralCrossRef Hogenes M, van Dorp S, van Kuik J, et al. Modifying graft-versus-host disease in a humanized mouse model by targeting macrophages or B-cells. J Immunol Res. 2019;2019:3538963.PubMedPubMedCentralCrossRef
12.
go back to reference Seno K, Yasunaga M, Kajiya H, et al. Dynamics of M1 macrophages in oral mucosal lesions during the development of acute graft-versus -host disease in rats. Clin Exp Immunol. 2017;190(3):315–27.PubMedPubMedCentralCrossRef Seno K, Yasunaga M, Kajiya H, et al. Dynamics of M1 macrophages in oral mucosal lesions during the development of acute graft-versus -host disease in rats. Clin Exp Immunol. 2017;190(3):315–27.PubMedPubMedCentralCrossRef
13.
go back to reference Wen Q, Kong Y, Zhao H, et al. G-CSF-induced macrophage polarization and mobilization may prevent acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 2019;54(9):1419–33.CrossRef Wen Q, Kong Y, Zhao H, et al. G-CSF-induced macrophage polarization and mobilization may prevent acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 2019;54(9):1419–33.CrossRef
14.
go back to reference Liu X, Su Y, Sun X, et al. Arsenic trioxide alleviates acute graft-versus-host disease by modulating macrophage polarization. Sci China Life Sci. 2020;63(11):1744–54.PubMedCrossRef Liu X, Su Y, Sun X, et al. Arsenic trioxide alleviates acute graft-versus-host disease by modulating macrophage polarization. Sci China Life Sci. 2020;63(11):1744–54.PubMedCrossRef
15.
go back to reference Anderson P, Souza-Moreira L, Morell M, et al. Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut. 2013;62(8):1131–41.PubMedCrossRef Anderson P, Souza-Moreira L, Morell M, et al. Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut. 2013;62(8):1131–41.PubMedCrossRef
17.
18.
go back to reference Zhao K, Lin R, Fan Z, et al. Mesenchymal stromal cells plus basiliximab, calcineurin inhibitor as treatment of steroid-resistant acute graft-versus-host disease: a multicenter, randomized, phase 3, open-label trial. J Hematol Oncol. 2022;15(1):22.PubMedPubMedCentralCrossRef Zhao K, Lin R, Fan Z, et al. Mesenchymal stromal cells plus basiliximab, calcineurin inhibitor as treatment of steroid-resistant acute graft-versus-host disease: a multicenter, randomized, phase 3, open-label trial. J Hematol Oncol. 2022;15(1):22.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Kordelas L, Rebmann V, Ludwig AK, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014;28(4):970–3.PubMedCrossRef Kordelas L, Rebmann V, Ludwig AK, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014;28(4):970–3.PubMedCrossRef
21.
go back to reference Wang L, Gu Z, Zhao X, et al. Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation. Stem Cells Dev. 2016;25(24):1874–83.PubMedCrossRef Wang L, Gu Z, Zhao X, et al. Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation. Stem Cells Dev. 2016;25(24):1874–83.PubMedCrossRef
23.
go back to reference Lai P, Chen X, Guo L, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol. 2018;11(1):135.PubMedPubMedCentralCrossRef Lai P, Chen X, Guo L, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol. 2018;11(1):135.PubMedPubMedCentralCrossRef
24.
go back to reference Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells. 2019;8(12):66.CrossRef Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells. 2019;8(12):66.CrossRef
25.
go back to reference Batsali AK, Georgopoulou A, Mavroudi I, et al. The role of bone marrow mesenchymal stem cell derived extracellular vesicles (MSC-EVs) in normal and abnormal hematopoiesis and their therapeutic potential. J Clin Med. 2020;9(3):66.CrossRef Batsali AK, Georgopoulou A, Mavroudi I, et al. The role of bone marrow mesenchymal stem cell derived extracellular vesicles (MSC-EVs) in normal and abnormal hematopoiesis and their therapeutic potential. J Clin Med. 2020;9(3):66.CrossRef
26.
go back to reference Harrell CR, Jankovic MG, Fellabaum C, et al. Molecular mechanisms responsible for anti-inflammatory and immunosuppressive effects of mesenchymal stem cell-derived factors. Adv Exp Med Biol. 2019;1084:187–206.PubMedCrossRef Harrell CR, Jankovic MG, Fellabaum C, et al. Molecular mechanisms responsible for anti-inflammatory and immunosuppressive effects of mesenchymal stem cell-derived factors. Adv Exp Med Biol. 2019;1084:187–206.PubMedCrossRef
27.
go back to reference Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14.PubMedPubMedCentralCrossRef Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14.PubMedPubMedCentralCrossRef
28.
go back to reference Lo SC, Reverberi D, Balbi C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med. 2017;6(3):1018–28.CrossRef Lo SC, Reverberi D, Balbi C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med. 2017;6(3):1018–28.CrossRef
29.
go back to reference Antman KH. Introduction: the history of arsenic trioxide in cancer therapy. Oncologist. 2001;6(Suppl 2):1–2.PubMedCrossRef Antman KH. Introduction: the history of arsenic trioxide in cancer therapy. Oncologist. 2001;6(Suppl 2):1–2.PubMedCrossRef
30.
go back to reference Zhu J, Chen Z, Lallemand-Breitenbach V, de The H. How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer. 2002;2(9):705–13.PubMedCrossRef Zhu J, Chen Z, Lallemand-Breitenbach V, de The H. How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer. 2002;2(9):705–13.PubMedCrossRef
31.
go back to reference An K, Xue MJ, Zhong JY, et al. Arsenic trioxide ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice by inducing CD4(+) T cell apoptosis. J Neuroinflammation. 2020;17(1):147.PubMedPubMedCentralCrossRef An K, Xue MJ, Zhong JY, et al. Arsenic trioxide ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice by inducing CD4(+) T cell apoptosis. J Neuroinflammation. 2020;17(1):147.PubMedPubMedCentralCrossRef
32.
go back to reference Basso PJ, Sales-Campos H, Nardini V, et al. Peroxisome proliferator-activated receptor Alpha mediates the beneficial effects of atorvastatin in experimental colitis. Front Immunol. 2021;12: 618365.PubMedPubMedCentralCrossRef Basso PJ, Sales-Campos H, Nardini V, et al. Peroxisome proliferator-activated receptor Alpha mediates the beneficial effects of atorvastatin in experimental colitis. Front Immunol. 2021;12: 618365.PubMedPubMedCentralCrossRef
33.
go back to reference Li C, Zhang J, Wang W, et al. Arsenic trioxide improves Treg and Th17 balance by modulating STAT3 in treatment-naïve rheumatoid arthritis patients. Int Immunopharmacol. 2019;73:539–51.PubMedCrossRef Li C, Zhang J, Wang W, et al. Arsenic trioxide improves Treg and Th17 balance by modulating STAT3 in treatment-naïve rheumatoid arthritis patients. Int Immunopharmacol. 2019;73:539–51.PubMedCrossRef
34.
go back to reference Hamidou M, Neel A, Poupon J, et al. Safety and efficacy of low-dose intravenous arsenic trioxide in systemic lupus erythematosus: an open-label phase IIa trial (Lupsenic). Arthritis Res Ther. 2021;23(1):70.PubMedPubMedCentralCrossRef Hamidou M, Neel A, Poupon J, et al. Safety and efficacy of low-dose intravenous arsenic trioxide in systemic lupus erythematosus: an open-label phase IIa trial (Lupsenic). Arthritis Res Ther. 2021;23(1):70.PubMedPubMedCentralCrossRef
35.
go back to reference Kavian N, Marut W, Servettaz A, et al. Arsenic trioxide prevents murine sclerodermatous graft-versus-host disease. J Immunol. 2012;188(10):5142–9.PubMedCrossRef Kavian N, Marut W, Servettaz A, et al. Arsenic trioxide prevents murine sclerodermatous graft-versus-host disease. J Immunol. 2012;188(10):5142–9.PubMedCrossRef
36.
go back to reference Ma J, Zhang Y, Tang K, et al. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res. 2016;26(6):713–27.PubMedPubMedCentralCrossRef Ma J, Zhang Y, Tang K, et al. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res. 2016;26(6):713–27.PubMedPubMedCentralCrossRef
37.
go back to reference Lotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913.PubMedCrossRef Lotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913.PubMedCrossRef
38.
go back to reference Cosenza S, Toupet K, Maumus M, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018;8(5):1399–410.PubMedPubMedCentralCrossRef Cosenza S, Toupet K, Maumus M, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018;8(5):1399–410.PubMedPubMedCentralCrossRef
39.
go back to reference Wu R, Liu C, Deng X, et al. Enhanced alleviation of aGVHD by TGF-beta1-modified mesenchymal stem cells in mice through shifting MPhi into M2 phenotype and promoting the differentiation of Treg cells. J Cell Mol Med. 2020;24(2):1684–99.PubMedCrossRef Wu R, Liu C, Deng X, et al. Enhanced alleviation of aGVHD by TGF-beta1-modified mesenchymal stem cells in mice through shifting MPhi into M2 phenotype and promoting the differentiation of Treg cells. J Cell Mol Med. 2020;24(2):1684–99.PubMedCrossRef
40.
go back to reference Hill GR, Cooke KR, Teshima T, et al. Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest. 1998;102(1):115–23.PubMedPubMedCentralCrossRef Hill GR, Cooke KR, Teshima T, et al. Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest. 1998;102(1):115–23.PubMedPubMedCentralCrossRef
41.
go back to reference Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood. 1996;88(8):3230–9.PubMedCrossRef Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood. 1996;88(8):3230–9.PubMedCrossRef
42.
go back to reference Oishi S, Takano R, Tamura S, et al. M2 polarization of murine peritoneal macrophages induces regulatory cytokine production and suppresses T-cell proliferation. Immunology. 2016;149(3):320–8.PubMedPubMedCentralCrossRef Oishi S, Takano R, Tamura S, et al. M2 polarization of murine peritoneal macrophages induces regulatory cytokine production and suppresses T-cell proliferation. Immunology. 2016;149(3):320–8.PubMedPubMedCentralCrossRef
43.
go back to reference Maier NK, Crown D, Liu J, Leppla SH, Moayeri M. Arsenic trioxide and other arsenical compounds inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes. J Immunol. 2014;192(2):763–70.PubMedCrossRef Maier NK, Crown D, Liu J, Leppla SH, Moayeri M. Arsenic trioxide and other arsenical compounds inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes. J Immunol. 2014;192(2):763–70.PubMedCrossRef
44.
go back to reference Zhang J, Zhang Y, Wang W, Li C, Zhang Z. Double-sided personality: effects of arsenic trioxide on inflammation. Inflammation. 2018;41(4):1128–34.PubMedCrossRef Zhang J, Zhang Y, Wang W, Li C, Zhang Z. Double-sided personality: effects of arsenic trioxide on inflammation. Inflammation. 2018;41(4):1128–34.PubMedCrossRef
45.
go back to reference Hu X, Li L, Yan S, Li Z. Arsenic trioxide suppresses acute graft-versus-host disease by activating the Nrf2/HO-1 pathway in mice. Brit J Haematol. 2019;186(5):66.CrossRef Hu X, Li L, Yan S, Li Z. Arsenic trioxide suppresses acute graft-versus-host disease by activating the Nrf2/HO-1 pathway in mice. Brit J Haematol. 2019;186(5):66.CrossRef
46.
go back to reference Akhtar A, Xiaoyan WS, Ghali L, Bell C, Wen X. Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers. J Biomed Res. 2017;31(3):177–88.PubMedPubMedCentral Akhtar A, Xiaoyan WS, Ghali L, Bell C, Wen X. Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers. J Biomed Res. 2017;31(3):177–88.PubMedPubMedCentral
47.
go back to reference Dal Collo G, Adamo A, Gatti A, et al. Functional dosing of mesenchymal stromal cell-derived extracellular vesicles for the prevention of acute graft-versus-host-disease. Stem Cells. 2020;38(5):698–711.CrossRef Dal Collo G, Adamo A, Gatti A, et al. Functional dosing of mesenchymal stromal cell-derived extracellular vesicles for the prevention of acute graft-versus-host-disease. Stem Cells. 2020;38(5):698–711.CrossRef
48.
go back to reference Yim N, Ryu SW, Choi K, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun. 2016;7:12277.PubMedPubMedCentralCrossRef Yim N, Ryu SW, Choi K, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun. 2016;7:12277.PubMedPubMedCentralCrossRef
49.
go back to reference Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015;77:13–27.PubMedCrossRef Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015;77:13–27.PubMedCrossRef
50.
go back to reference Zeiser R. Advances in understanding the pathogenesis of graft-versus-host disease. Br J Haematol. 2019;187(5):563–72.PubMedCrossRef Zeiser R. Advances in understanding the pathogenesis of graft-versus-host disease. Br J Haematol. 2019;187(5):563–72.PubMedCrossRef
51.
go back to reference Crocchiolo R, Cesana C, Girgenti D, et al. Tregs and GvHD prevention by extracorporeal photopheresis: observations from a clinical trial. Exp Hematol Oncol. 2021;10(1):14.PubMedCrossRef Crocchiolo R, Cesana C, Girgenti D, et al. Tregs and GvHD prevention by extracorporeal photopheresis: observations from a clinical trial. Exp Hematol Oncol. 2021;10(1):14.PubMedCrossRef
52.
go back to reference Song M, Xu S, Zhong A, Zhang J. Crosstalk between macrophage and T cell in atherosclerosis: potential therapeutic targets for cardiovascular diseases. Clin Immunol. 2019;202:11–7.PubMedCrossRef Song M, Xu S, Zhong A, Zhang J. Crosstalk between macrophage and T cell in atherosclerosis: potential therapeutic targets for cardiovascular diseases. Clin Immunol. 2019;202:11–7.PubMedCrossRef
53.
go back to reference Liu K, Zhao E, Ilyas G, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11(2):271–84.PubMedPubMedCentralCrossRef Liu K, Zhao E, Ilyas G, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11(2):271–84.PubMedPubMedCentralCrossRef
54.
go back to reference Yang Y, Wang J, Guo S, et al. Non-lethal sonodynamic therapy facilitates the M1-to-M2 transition in advanced atherosclerotic plaques via activating the ROS–AMPK–mTORC1–autophagy pathway. Redox Biol. 2020;32: 101501.PubMedPubMedCentralCrossRef Yang Y, Wang J, Guo S, et al. Non-lethal sonodynamic therapy facilitates the M1-to-M2 transition in advanced atherosclerotic plaques via activating the ROS–AMPK–mTORC1–autophagy pathway. Redox Biol. 2020;32: 101501.PubMedPubMedCentralCrossRef
55.
56.
go back to reference Byles V, Covarrubias AJ, Ben-Sahra I, et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun. 2013;4:2834.PubMedCrossRef Byles V, Covarrubias AJ, Ben-Sahra I, et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun. 2013;4:2834.PubMedCrossRef
57.
go back to reference Battaglia M, Stabilini A, Migliavacca B, et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol. 2006;177(12):8338–47.PubMedCrossRef Battaglia M, Stabilini A, Migliavacca B, et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol. 2006;177(12):8338–47.PubMedCrossRef
58.
go back to reference Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105(12):4743–8.PubMedCrossRef Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105(12):4743–8.PubMedCrossRef
59.
go back to reference Terada N, Lucas JJ, Szepesi A, et al. Rapamycin blocks cell cycle progression of activated T cells prior to events characteristic of the middle to late G1 phase of the cycle. J Cell Physiol. 1993;154(1):7–15.PubMedCrossRef Terada N, Lucas JJ, Szepesi A, et al. Rapamycin blocks cell cycle progression of activated T cells prior to events characteristic of the middle to late G1 phase of the cycle. J Cell Physiol. 1993;154(1):7–15.PubMedCrossRef
60.
go back to reference Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32(1):67–78.PubMedPubMedCentralCrossRef Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32(1):67–78.PubMedPubMedCentralCrossRef
61.
go back to reference Hackstein H, Taner T, Logar AJ, Thomson AW. Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells. Blood. 2002;100(3):1084–7.PubMedCrossRef Hackstein H, Taner T, Logar AJ, Thomson AW. Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells. Blood. 2002;100(3):1084–7.PubMedCrossRef
62.
go back to reference Scheurer J, Reisser T, Leithauser F, et al. Rapamycin-based graft-versus-host disease prophylaxis increases the immunosuppressivity of myeloid-derived suppressor cells without affecting T cells and anti-tumor cytotoxicity. Clin Exp Immunol. 2020;202(3):407–22.PubMedPubMedCentralCrossRef Scheurer J, Reisser T, Leithauser F, et al. Rapamycin-based graft-versus-host disease prophylaxis increases the immunosuppressivity of myeloid-derived suppressor cells without affecting T cells and anti-tumor cytotoxicity. Clin Exp Immunol. 2020;202(3):407–22.PubMedPubMedCentralCrossRef
63.
go back to reference van den Brink MR, Burakoff SJ. Cytolytic pathways in haematopoietic stem-cell transplantation. Nat Rev Immunol. 2002;2(4):273–81.PubMedCrossRef van den Brink MR, Burakoff SJ. Cytolytic pathways in haematopoietic stem-cell transplantation. Nat Rev Immunol. 2002;2(4):273–81.PubMedCrossRef
64.
go back to reference Ravi D, Bhalla S, Gartenhaus RB, et al. The novel organic arsenical darinaparsin induces MAPK-mediated and SHP1-dependent cell death in T-cell lymphoma and Hodgkin lymphoma cells and human xenograft models. Clin Cancer Res. 2014;20(23):6023–33.PubMedPubMedCentralCrossRef Ravi D, Bhalla S, Gartenhaus RB, et al. The novel organic arsenical darinaparsin induces MAPK-mediated and SHP1-dependent cell death in T-cell lymphoma and Hodgkin lymphoma cells and human xenograft models. Clin Cancer Res. 2014;20(23):6023–33.PubMedPubMedCentralCrossRef
Metadata
Title
hUC-EVs-ATO reduce the severity of acute GVHD by resetting inflammatory macrophages toward the M2 phenotype
Authors
Yan Su
Xueyan Sun
Xiao Liu
Qingyuan Qu
Liping Yang
Qi Chen
Fengqi Liu
Yueying Li
Qianfei Wang
Bo Huang
Xiao-Jun Huang
Xiao-Hui Zhang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2022
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-022-01315-2

Other articles of this Issue 1/2022

Journal of Hematology & Oncology 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine