Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2022

Open Access 01-12-2022 | Review

Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy

Authors: Yun Liu, Yang Li, Yuxi Wang, Congcong Lin, Dan Zhang, Juncheng Chen, Liang Ouyang, Fengbo Wu, Jifa Zhang, Lei Chen

Published in: Journal of Hematology & Oncology | Issue 1/2022

Login to get access

Abstract

Vascular endothelial growth factor receptors (VEGFRs) are a family of receptor protein tyrosine kinases that play an important role in the regulation of tumor-induced angiogenesis. Currently, VEGFR inhibitors have been widely used in the treatment of various tumors. However, current VEGFR inhibitors are limited to a certain extent due to limited clinical efficacy and potential toxicity, which hinder their clinical application. Thus, the development of new strategies to improve the clinical outcomes and minimize the toxic effects of VEGFR inhibitors is required. Given the synergistic effect of VEGFR and other therapies in tumor development and progression, VEGFR dual-target inhibitors are becoming an attractive approach due to their favorable pharmacodynamics, low toxicity, and anti-resistant effects. This perspective provides an overview of the development of VEGFR dual-target inhibitors from multiple aspects, including rational target combinations, drug discovery strategies, structure–activity relationships and future directions.
Literature
1.
go back to reference Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:409–26.PubMedCrossRef Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:409–26.PubMedCrossRef
2.
go back to reference Sato Y. Persistent vascular normalization as an alternative goal of anti-angiogenic cancer therapy. Cancer Sci. 2011;102:1253–6.PubMedCrossRef Sato Y. Persistent vascular normalization as an alternative goal of anti-angiogenic cancer therapy. Cancer Sci. 2011;102:1253–6.PubMedCrossRef
3.
go back to reference Li Y, Yang G, Zhang J, Tang P, Yang C, Wang G, Chen J, Liu J, Zhang L, Ouyang L. Discovery, synthesis, and evaluation of highly selective vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor for the potential treatment of metastatic triple-negative breast cancer. J Med Chem. 2021;64:12022–48.PubMedCrossRef Li Y, Yang G, Zhang J, Tang P, Yang C, Wang G, Chen J, Liu J, Zhang L, Ouyang L. Discovery, synthesis, and evaluation of highly selective vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor for the potential treatment of metastatic triple-negative breast cancer. J Med Chem. 2021;64:12022–48.PubMedCrossRef
4.
go back to reference Li Y, Wang G, Liu J, Ouyang L. Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur J Med Chem. 2020;188: 111972.PubMedCrossRef Li Y, Wang G, Liu J, Ouyang L. Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur J Med Chem. 2020;188: 111972.PubMedCrossRef
6.
7.
go back to reference Li Y, Yang G, Yang C, Tang P, Chen J, Zhang J, Liu J, Ouyang L. Targeting autophagy-related epigenetic regulators for cancer drug discovery. J Med Chem. 2021;64:11798–815.PubMedCrossRef Li Y, Yang G, Yang C, Tang P, Chen J, Zhang J, Liu J, Ouyang L. Targeting autophagy-related epigenetic regulators for cancer drug discovery. J Med Chem. 2021;64:11798–815.PubMedCrossRef
8.
go back to reference Yang JG, Wang LL, Ma DC. Effects of vascular endothelial growth factors and their receptors on megakaryocytes and platelets and related diseases. Br J Haematol. 2018;180:321–34.PubMedCrossRef Yang JG, Wang LL, Ma DC. Effects of vascular endothelial growth factors and their receptors on megakaryocytes and platelets and related diseases. Br J Haematol. 2018;180:321–34.PubMedCrossRef
9.
go back to reference Iwamoto M, Saso W, Sugiyama R, Ishii K, Ohki M, Nagamori S, Suzuki R, Aizaki H, Ryo A, Yun JH, Park SY, Ohtani N, Muramatsu M, Iwami S, Tanaka Y, Sureau C, Wakita T, Watashi K. Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proc Natl Acad Sci U S A. 2019;116:8487–92.PubMedPubMedCentralCrossRef Iwamoto M, Saso W, Sugiyama R, Ishii K, Ohki M, Nagamori S, Suzuki R, Aizaki H, Ryo A, Yun JH, Park SY, Ohtani N, Muramatsu M, Iwami S, Tanaka Y, Sureau C, Wakita T, Watashi K. Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proc Natl Acad Sci U S A. 2019;116:8487–92.PubMedPubMedCentralCrossRef
10.
go back to reference Imoukhuede PI, Popel AS. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp Cell Res. 2011;317:955–65.PubMedCrossRef Imoukhuede PI, Popel AS. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp Cell Res. 2011;317:955–65.PubMedCrossRef
11.
12.
go back to reference Roskoski R Jr. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res. 2017;120:116–32.PubMedCrossRef Roskoski R Jr. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res. 2017;120:116–32.PubMedCrossRef
13.
go back to reference Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: a 2021 update. Pharmacol Res. 2021;165: 105463.PubMedCrossRef Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: a 2021 update. Pharmacol Res. 2021;165: 105463.PubMedCrossRef
15.
go back to reference Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-molecule drug discovery in triple negative breast cancer: current situation and future directions. J Med Chem. 2021;64:2382–418.PubMedCrossRef Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-molecule drug discovery in triple negative breast cancer: current situation and future directions. J Med Chem. 2021;64:2382–418.PubMedCrossRef
16.
go back to reference Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev. 2020;49:2617–87.PubMedCrossRef Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev. 2020;49:2617–87.PubMedCrossRef
17.
go back to reference Abdel-Mohsen HT, Abd El-Meguid EA, El Kerdawy AM, Mahmoud AEE, Ali MM. Design, synthesis, and molecular docking of novel 2-arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Arch Pharm (Weinheim). 2020;353: e1900340.CrossRef Abdel-Mohsen HT, Abd El-Meguid EA, El Kerdawy AM, Mahmoud AEE, Ali MM. Design, synthesis, and molecular docking of novel 2-arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Arch Pharm (Weinheim). 2020;353: e1900340.CrossRef
18.
go back to reference Somwar R, Hofmann NE, Smith B, Odintsov I, Vojnic M, Linkov I, Tam A, Khodos I, Mattar MS, de Stanchina E, Flynn D, Ladanyi M, Drilon A, Shinde U, Davare MA. NTRK kinase domain mutations in cancer variably impact sensitivity to type I and type II inhibitors. Commun Biol. 2020;3:776.PubMedPubMedCentralCrossRef Somwar R, Hofmann NE, Smith B, Odintsov I, Vojnic M, Linkov I, Tam A, Khodos I, Mattar MS, de Stanchina E, Flynn D, Ladanyi M, Drilon A, Shinde U, Davare MA. NTRK kinase domain mutations in cancer variably impact sensitivity to type I and type II inhibitors. Commun Biol. 2020;3:776.PubMedPubMedCentralCrossRef
19.
go back to reference Staben ST, Feng JA, Lyle K, Belvin M, Boggs J, Burch JD, Chua CC, Cui H, DiPasquale AG, Friedman LS, Heise C, Koeppen H, Kotey A, Mintzer R, Oh A, Roberts DA, Rouge L, Rudolph J, Tam C, Wang W, Xiao Y, Young A, Zhang Y, Hoeflich KP. Back pocket flexibility provides group II p21-activated kinase (PAK) selectivity for type I 1/2 kinase inhibitors. J Med Chem. 2014;57:1033–45.PubMedCrossRef Staben ST, Feng JA, Lyle K, Belvin M, Boggs J, Burch JD, Chua CC, Cui H, DiPasquale AG, Friedman LS, Heise C, Koeppen H, Kotey A, Mintzer R, Oh A, Roberts DA, Rouge L, Rudolph J, Tam C, Wang W, Xiao Y, Young A, Zhang Y, Hoeflich KP. Back pocket flexibility provides group II p21-activated kinase (PAK) selectivity for type I 1/2 kinase inhibitors. J Med Chem. 2014;57:1033–45.PubMedCrossRef
21.
go back to reference Khanna P, Soh HJ, Chen CH, Saxena R, Amin S, Naughton M, Joslin PN, Moore A, Bakouny Z, O’Callaghan C, Catalano P, Signoretti S, McKay R, Choueiri TK, Bhasin M, Walther T. Bhatt RS. ACE2 abrogates tumor resistance to VEGFR inhibitors suggesting angiotensin-(1–7) as a therapy for clear cell renal cell carcinoma. Sci Transl Med. 2021;13:eabc0170.PubMedCrossRef Khanna P, Soh HJ, Chen CH, Saxena R, Amin S, Naughton M, Joslin PN, Moore A, Bakouny Z, O’Callaghan C, Catalano P, Signoretti S, McKay R, Choueiri TK, Bhasin M, Walther T. Bhatt RS. ACE2 abrogates tumor resistance to VEGFR inhibitors suggesting angiotensin-(1–7) as a therapy for clear cell renal cell carcinoma. Sci Transl Med. 2021;13:eabc0170.PubMedCrossRef
22.
go back to reference Liang W, Zheng Y, Zhang J, Sun X. Multiscale modeling reveals angiogenesis-induced drug resistance in brain tumors and predicts a synergistic drug combination targeting EGFR and VEGFR pathways. BMC Bioinformatics. 2019;20:203.PubMedPubMedCentralCrossRef Liang W, Zheng Y, Zhang J, Sun X. Multiscale modeling reveals angiogenesis-induced drug resistance in brain tumors and predicts a synergistic drug combination targeting EGFR and VEGFR pathways. BMC Bioinformatics. 2019;20:203.PubMedPubMedCentralCrossRef
23.
go back to reference De Lisi D, De Giorgi U, Lolli C, Schepisi G, Conteduca V, Menna C, Tonini G, Santini D, Farolfi A. Lenvatinib in the management of metastatic renal cell carcinoma: A promising combination therapy? Expert Opin Drug Metab Toxicol. 2018;14:461–7.PubMedCrossRef De Lisi D, De Giorgi U, Lolli C, Schepisi G, Conteduca V, Menna C, Tonini G, Santini D, Farolfi A. Lenvatinib in the management of metastatic renal cell carcinoma: A promising combination therapy? Expert Opin Drug Metab Toxicol. 2018;14:461–7.PubMedCrossRef
24.
go back to reference Liu T, Wang Y, Wang J, Ren C, Chen H, Zhang J. DYRK1A inhibitors for disease therapy: current status and perspectives. Eur J Med Chem. 2022;229: 114062.PubMedCrossRef Liu T, Wang Y, Wang J, Ren C, Chen H, Zhang J. DYRK1A inhibitors for disease therapy: current status and perspectives. Eur J Med Chem. 2022;229: 114062.PubMedCrossRef
25.
go back to reference Zhu AX, Kang YK, Rosmorduc O, Evans TR, Santoro A, Ross P, Gane E, Vogel A, Jeffers M, Meinhardt G, Peña CE. Biomarker analyses of clinical outcomes in patients with advanced hepatocellular carcinoma treated with sorafenib with or without erlotinib in the SEARCH Trial. Clin Cancer Res. 2016;22:4870–9.PubMedCrossRef Zhu AX, Kang YK, Rosmorduc O, Evans TR, Santoro A, Ross P, Gane E, Vogel A, Jeffers M, Meinhardt G, Peña CE. Biomarker analyses of clinical outcomes in patients with advanced hepatocellular carcinoma treated with sorafenib with or without erlotinib in the SEARCH Trial. Clin Cancer Res. 2016;22:4870–9.PubMedCrossRef
26.
go back to reference Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, Pouliot F, Alekseev B, Soulières D, Melichar B, Vynnychenko I, Kryzhanivska A, Bondarenko I, Azevedo SJ, Borchiellini D, Szczylik C, Markus M, McDermott RS, Bedke J, Tartas S, Chang YH, Tamada S, Shou Q, Perini RF, Chen M, Atkins MB, Powles T. KEYNOTE-426 Investigators. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380:1116–27.PubMedCrossRef Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, Pouliot F, Alekseev B, Soulières D, Melichar B, Vynnychenko I, Kryzhanivska A, Bondarenko I, Azevedo SJ, Borchiellini D, Szczylik C, Markus M, McDermott RS, Bedke J, Tartas S, Chang YH, Tamada S, Shou Q, Perini RF, Chen M, Atkins MB, Powles T. KEYNOTE-426 Investigators. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380:1116–27.PubMedCrossRef
27.
go back to reference Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, Nathan P, Staehler M, de Souza P, Merchan JR, Boleti E, Fife K, Jin J, Jones R, Uemura H, De Giorgi U, Harmenberg U, Wang J, Sternberg CN, Deen K, McCann L, Hackshaw MD, Crescenzo R, Pandite LN, Choueiri TK. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369:722–31.PubMedCrossRef Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, Nathan P, Staehler M, de Souza P, Merchan JR, Boleti E, Fife K, Jin J, Jones R, Uemura H, De Giorgi U, Harmenberg U, Wang J, Sternberg CN, Deen K, McCann L, Hackshaw MD, Crescenzo R, Pandite LN, Choueiri TK. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369:722–31.PubMedCrossRef
28.
go back to reference Wells SA Jr, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, Read J, Langmuir P, Ryan AJ, Schlumberger MJ. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30:134–41.PubMedCrossRef Wells SA Jr, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, Read J, Langmuir P, Ryan AJ, Schlumberger MJ. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30:134–41.PubMedCrossRef
29.
go back to reference Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, Pouliot F, Alekseev B, Soulières D, Melichar B, Vynnychenko I, Kryzhanivska A, Bondarenko I, Azevedo SJ, Borchiellini D, Szczylik C, Markus M, McDermott RS, Bedke J, Tartas S, Chang YH, Tamada S, Shou Q, Perini RF, Chen M, Atkins MB, Powles T. KEYNOTE-426 investigators. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380:1116–27.PubMedCrossRef Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, Pouliot F, Alekseev B, Soulières D, Melichar B, Vynnychenko I, Kryzhanivska A, Bondarenko I, Azevedo SJ, Borchiellini D, Szczylik C, Markus M, McDermott RS, Bedke J, Tartas S, Chang YH, Tamada S, Shou Q, Perini RF, Chen M, Atkins MB, Powles T. KEYNOTE-426 investigators. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380:1116–27.PubMedCrossRef
30.
go back to reference Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, Cicin I, Merle P, Chen Y, Park JW, Blanc JF, Bolondi L, Klümpen HJ, Chan SL, Zagonel V, Pressiani T, Ryu MH, Venook AP, Hessel C, Borgman-Hagey AE, Schwab G, Kelley RK. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379:54–63.PubMedPubMedCentralCrossRef Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, Cicin I, Merle P, Chen Y, Park JW, Blanc JF, Bolondi L, Klümpen HJ, Chan SL, Zagonel V, Pressiani T, Ryu MH, Venook AP, Hessel C, Borgman-Hagey AE, Schwab G, Kelley RK. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379:54–63.PubMedPubMedCentralCrossRef
31.
go back to reference Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff AO, Gianoukakis AG, Kiyota N, Taylor MH, Kim SB, Krzyzanowska MK, Dutcus CE, de las Heras B, Zhu J, Sherman SI. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372:621–30.PubMedCrossRef Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff AO, Gianoukakis AG, Kiyota N, Taylor MH, Kim SB, Krzyzanowska MK, Dutcus CE, de las Heras B, Zhu J, Sherman SI. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372:621–30.PubMedCrossRef
32.
go back to reference Fukuoka S, Hara H, Takahashi N, Kojima T, Kawazoe A, Asayama M, Yoshii T, Kotani D, Tamura H, Mikamoto Y, Hirano N, Wakabayashi M, Nomura S, Sato A, Kuwata T, Togashi Y, Nishikawa H, Shitara K. Regorafenib plus Nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J Clin Oncol. 2020;38:2053–61.PubMedCrossRef Fukuoka S, Hara H, Takahashi N, Kojima T, Kawazoe A, Asayama M, Yoshii T, Kotani D, Tamura H, Mikamoto Y, Hirano N, Wakabayashi M, Nomura S, Sato A, Kuwata T, Togashi Y, Nishikawa H, Shitara K. Regorafenib plus Nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J Clin Oncol. 2020;38:2053–61.PubMedCrossRef
33.
go back to reference Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre PD, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, DeAngelo DJ, Abruzzese E, Rea D, Baccarani M, Müller MC, Gambacorti-Passerini C, Lustgarten S, Rivera VM, Haluska FG, Guilhot F, Deininger MW, Hochhaus A, Hughes TP, Shah NP, Kantarjian HM. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132:393–404.PubMedPubMedCentralCrossRef Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre PD, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, DeAngelo DJ, Abruzzese E, Rea D, Baccarani M, Müller MC, Gambacorti-Passerini C, Lustgarten S, Rivera VM, Haluska FG, Guilhot F, Deininger MW, Hochhaus A, Hughes TP, Shah NP, Kantarjian HM. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132:393–404.PubMedPubMedCentralCrossRef
34.
go back to reference Hui R, Pearson A, Cortes J, Campbell C, Poirot C, Azim HA Jr, Fumagalli D, Lambertini M, Daly F, Arahmani A, Perez-Garcia J, Aftimos P, Bedard PL, Xuereb L, Scheepers ED, Vicente M, Goulioti T, Loibl S, Loi S, Pierrat MJ, Turner NC, Andre F, Curigliano G. Lucitanib for the treatment of HR+/HER2- metastatic breast cancer: results from the multicohort phase II FINESSE study. Clin Cancer Res. 2020;26:354–63.PubMedCrossRef Hui R, Pearson A, Cortes J, Campbell C, Poirot C, Azim HA Jr, Fumagalli D, Lambertini M, Daly F, Arahmani A, Perez-Garcia J, Aftimos P, Bedard PL, Xuereb L, Scheepers ED, Vicente M, Goulioti T, Loibl S, Loi S, Pierrat MJ, Turner NC, Andre F, Curigliano G. Lucitanib for the treatment of HR+/HER2- metastatic breast cancer: results from the multicohort phase II FINESSE study. Clin Cancer Res. 2020;26:354–63.PubMedCrossRef
35.
go back to reference De Boer RH, Kotasek D, White S, Koczwara B, Mainwaring P, Chan A, Melara R, Ye Y, Adewoye AH, Sikorski R, Kaufman PA. Phase 1b dose-finding study of motesanib with docetaxel or paclitaxel in patients with metastatic breast cancer. Breast Cancer Res Treat. 2012;135:241–52.PubMedPubMedCentralCrossRef De Boer RH, Kotasek D, White S, Koczwara B, Mainwaring P, Chan A, Melara R, Ye Y, Adewoye AH, Sikorski R, Kaufman PA. Phase 1b dose-finding study of motesanib with docetaxel or paclitaxel in patients with metastatic breast cancer. Breast Cancer Res Treat. 2012;135:241–52.PubMedPubMedCentralCrossRef
36.
go back to reference Jost LM, Gschwind HP, Jalava T, Wang Y, Guenther C, Souppart C, Rottmann A, Denner K, Waldmeier F, Gross G, Masson E, Laurent D. Metabolism and disposition of vatalanib (PTK787/ZK-222584) in cancer patients. Drug Metab Dispos. 2006;34:1817–28.PubMedCrossRef Jost LM, Gschwind HP, Jalava T, Wang Y, Guenther C, Souppart C, Rottmann A, Denner K, Waldmeier F, Gross G, Masson E, Laurent D. Metabolism and disposition of vatalanib (PTK787/ZK-222584) in cancer patients. Drug Metab Dispos. 2006;34:1817–28.PubMedCrossRef
37.
go back to reference Colli LM, Machiela MJ, Zhang H, Myers TA, Jessop L, Delattre O, Yu K, Chanock SJ. Landscape of combination immunotherapy and targeted therapy to improve cancer management. Cancer Res. 2017;77:3666–71.PubMedPubMedCentralCrossRef Colli LM, Machiela MJ, Zhang H, Myers TA, Jessop L, Delattre O, Yu K, Chanock SJ. Landscape of combination immunotherapy and targeted therapy to improve cancer management. Cancer Res. 2017;77:3666–71.PubMedPubMedCentralCrossRef
38.
go back to reference Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med. 2017;376:354–66.PubMedCrossRef Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med. 2017;376:354–66.PubMedCrossRef
39.
go back to reference Finn RS, Zhu AX. Evolution of systemic therapy for hepatocellular carcinoma. Hepatology. 2021;73:150–7.PubMedCrossRef Finn RS, Zhu AX. Evolution of systemic therapy for hepatocellular carcinoma. Hepatology. 2021;73:150–7.PubMedCrossRef
41.
go back to reference Zhu P, Hu C, Hui K, Jiang X. The role and significance of VEGFR2+ regulatory T cells in tumor immunity. Onco Targ Ther. 2017;10:4315–9.CrossRef Zhu P, Hu C, Hui K, Jiang X. The role and significance of VEGFR2+ regulatory T cells in tumor immunity. Onco Targ Ther. 2017;10:4315–9.CrossRef
42.
go back to reference Zhao L, Chen HY, Lu L, Wang L, Zhang XK, Guo XL. New insights into the role of co-receptor neuropilins in tumour angiogenesis and lymphangiogenesis and targeted therapy strategies. J Drug Target. 2021;29:155–67.PubMedCrossRef Zhao L, Chen HY, Lu L, Wang L, Zhang XK, Guo XL. New insights into the role of co-receptor neuropilins in tumour angiogenesis and lymphangiogenesis and targeted therapy strategies. J Drug Target. 2021;29:155–67.PubMedCrossRef
43.
go back to reference Prasad CB, Singh D, Pandey LK, Pradhan S, Singh S, Narayan G. VEGFa/VEGFR2 autocrine and paracrine signaling promotes cervical carcinogenesis via β-catenin and snail. Int J Biochem Cell Biol. 2022;142: 106122.PubMedCrossRef Prasad CB, Singh D, Pandey LK, Pradhan S, Singh S, Narayan G. VEGFa/VEGFR2 autocrine and paracrine signaling promotes cervical carcinogenesis via β-catenin and snail. Int J Biochem Cell Biol. 2022;142: 106122.PubMedCrossRef
44.
go back to reference Gao F, Yang C. Anti-VEGF/VEGFR2 monoclonal antibodies and their combinations with PD-1/PD-L1 inhibitors in clinic. Curr Cancer Drug Targets. 2020;20:3–18.PubMedCrossRef Gao F, Yang C. Anti-VEGF/VEGFR2 monoclonal antibodies and their combinations with PD-1/PD-L1 inhibitors in clinic. Curr Cancer Drug Targets. 2020;20:3–18.PubMedCrossRef
45.
go back to reference Lai S, Chen JN, Huang HW, Zhang XY, Jiang HL, Li W, Wang PL, Wang J, Liu FN. Structure activity relationships of chrysoeriol and analogs as dual c-Met and VEGFR2 tyrosine kinase inhibitors. Oncol Rep. 2018;40:1650–6.PubMed Lai S, Chen JN, Huang HW, Zhang XY, Jiang HL, Li W, Wang PL, Wang J, Liu FN. Structure activity relationships of chrysoeriol and analogs as dual c-Met and VEGFR2 tyrosine kinase inhibitors. Oncol Rep. 2018;40:1650–6.PubMed
46.
go back to reference Marijon H, Faivre S, Raymond E. Thérapies ciblées des carcinomes hépatocellulaires: progrès récents et futurs développements [Targeted therapies in hepatocellular carcinomas: recent results and future development]. Bull Cancer. 2009;96:553–61.PubMed Marijon H, Faivre S, Raymond E. Thérapies ciblées des carcinomes hépatocellulaires: progrès récents et futurs développements [Targeted therapies in hepatocellular carcinomas: recent results and future development]. Bull Cancer. 2009;96:553–61.PubMed
47.
go back to reference Shi L, Zhou J, Wu J, Shen Y, Li X. Anti-angiogenic therapy: Strategies to develop potent VEGFR-2 tyrosine kinase inhibitors and future prospect. Curr Med Chem. 2016;23:1000–40.PubMedCrossRef Shi L, Zhou J, Wu J, Shen Y, Li X. Anti-angiogenic therapy: Strategies to develop potent VEGFR-2 tyrosine kinase inhibitors and future prospect. Curr Med Chem. 2016;23:1000–40.PubMedCrossRef
48.
go back to reference Won E, Basunia A, Chatila WK, Hechtman JF, Chou JF, Ku GY, Chalasani SB, Boyar MS, Goldberg Z, Desai AM, Tuvy Y, Berger MF, Tang L, Kelsen DP, Schattner M, Ilson DH, Capanu M, Solit DB, Schultz N, Janjigian YY. Efficacy of combined VEGFR1-3, PDGFα/β, and FGFR1-3 blockade using nintedanib for esophagogastric cancer. Clin Cancer Res. 2019;25:3811–7.PubMedPubMedCentralCrossRef Won E, Basunia A, Chatila WK, Hechtman JF, Chou JF, Ku GY, Chalasani SB, Boyar MS, Goldberg Z, Desai AM, Tuvy Y, Berger MF, Tang L, Kelsen DP, Schattner M, Ilson DH, Capanu M, Solit DB, Schultz N, Janjigian YY. Efficacy of combined VEGFR1-3, PDGFα/β, and FGFR1-3 blockade using nintedanib for esophagogastric cancer. Clin Cancer Res. 2019;25:3811–7.PubMedPubMedCentralCrossRef
49.
go back to reference Moehler M, Gepfner-Tuma I, Maderer A, Thuss-Patience PC, Ruessel J, Hegewisch-Becker S, Wilke H, Al-Batran SE, Rafiyan MR, Weißinger F, Schmoll HJ, Kullmann F, von Weikersthal LF, Siveke JT, Weusmann J, Kanzler S, Schimanski CC, Otte M, Schollenberger L, Koenig J, Galle PR. Sunitinib added to FOLFIRI versus FOLFIRI in patients with chemorefractory advanced adenocarcinoma of the stomach or lower esophagus: a randomized, placebo-controlled phase II AIO trial with serum biomarker program. BMC Cancer. 2016;16:699.PubMedPubMedCentralCrossRef Moehler M, Gepfner-Tuma I, Maderer A, Thuss-Patience PC, Ruessel J, Hegewisch-Becker S, Wilke H, Al-Batran SE, Rafiyan MR, Weißinger F, Schmoll HJ, Kullmann F, von Weikersthal LF, Siveke JT, Weusmann J, Kanzler S, Schimanski CC, Otte M, Schollenberger L, Koenig J, Galle PR. Sunitinib added to FOLFIRI versus FOLFIRI in patients with chemorefractory advanced adenocarcinoma of the stomach or lower esophagus: a randomized, placebo-controlled phase II AIO trial with serum biomarker program. BMC Cancer. 2016;16:699.PubMedPubMedCentralCrossRef
50.
go back to reference Kurzrock R, Ball DW, Zahurak ML, Nelkin BD, Subbiah V, Ahmed S, O’Connor A, Karunsena E, Parkinson RM, Bishop JA, Ha Y, Sharma R, Gocke CD, Zinner R, Rudek MA, Sherman SI, Azad NS. A phase I trial of the VEGF receptor tyrosine kinase inhibitor pazopanib in combination with the MEK inhibitor trametinib in advanced solid tumors and differentiated thyroid cancers. Clin Cancer Res. 2019;25:5475–84.PubMedPubMedCentralCrossRef Kurzrock R, Ball DW, Zahurak ML, Nelkin BD, Subbiah V, Ahmed S, O’Connor A, Karunsena E, Parkinson RM, Bishop JA, Ha Y, Sharma R, Gocke CD, Zinner R, Rudek MA, Sherman SI, Azad NS. A phase I trial of the VEGF receptor tyrosine kinase inhibitor pazopanib in combination with the MEK inhibitor trametinib in advanced solid tumors and differentiated thyroid cancers. Clin Cancer Res. 2019;25:5475–84.PubMedPubMedCentralCrossRef
51.
53.
go back to reference Moore M, Hirte HW, Siu L, Oza A, Hotte SJ, Petrenciuc O, Cihon F, Lathia C, Schwartz B. Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43–9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol. 2005;16:1688–94.PubMedCrossRef Moore M, Hirte HW, Siu L, Oza A, Hotte SJ, Petrenciuc O, Cihon F, Lathia C, Schwartz B. Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43–9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol. 2005;16:1688–94.PubMedCrossRef
54.
go back to reference Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, Sherman SI, Sherman EJ. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17:1272–82.PubMedPubMedCentralCrossRef Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, Sherman SI, Sherman EJ. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17:1272–82.PubMedPubMedCentralCrossRef
55.
go back to reference Izar B, Sharfman W, Hodi FS, Lawrence D, Flaherty KT, Amaravadi R, Kim KB, Puzanov I, Sosman J, Dummer R, Goldinger SM, Lam L, Kakar S, Tang Z, Krieter O, McDermott DF, Atkins MB. A first-in-human phase I, multicenter, open-label, dose-escalation study of the oral RAF/VEGFR-2 inhibitor (RAF265) in locally advanced or metastatic melanoma independent from BRAF mutation status. Cancer Med. 2017;6:1904–14.PubMedPubMedCentralCrossRef Izar B, Sharfman W, Hodi FS, Lawrence D, Flaherty KT, Amaravadi R, Kim KB, Puzanov I, Sosman J, Dummer R, Goldinger SM, Lam L, Kakar S, Tang Z, Krieter O, McDermott DF, Atkins MB. A first-in-human phase I, multicenter, open-label, dose-escalation study of the oral RAF/VEGFR-2 inhibitor (RAF265) in locally advanced or metastatic melanoma independent from BRAF mutation status. Cancer Med. 2017;6:1904–14.PubMedPubMedCentralCrossRef
56.
57.
go back to reference Chan D, Zheng Y, Tyner JW, Chng WJ, Chien WW, Gery S, Leong G, Braunstein GD, Koeffler HP. Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer. J Cancer Res Clin Oncol. 2013;139:1507–14.PubMedPubMedCentralCrossRef Chan D, Zheng Y, Tyner JW, Chng WJ, Chien WW, Gery S, Leong G, Braunstein GD, Koeffler HP. Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer. J Cancer Res Clin Oncol. 2013;139:1507–14.PubMedPubMedCentralCrossRef
58.
go back to reference Fu S, Hou MM, Naing A, Janku F, Hess K, Zinner R, Subbiah V, Hong D, Wheler J, Piha-Paul S, Tsimberidou A, Karp D, Araujo D, Kee B, Hwu P, Wolff R, Kurzrock R, Meric-Bernstam F. Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation. Ann Oncol. 2015;26:1012–8.PubMedPubMedCentralCrossRef Fu S, Hou MM, Naing A, Janku F, Hess K, Zinner R, Subbiah V, Hong D, Wheler J, Piha-Paul S, Tsimberidou A, Karp D, Araujo D, Kee B, Hwu P, Wolff R, Kurzrock R, Meric-Bernstam F. Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation. Ann Oncol. 2015;26:1012–8.PubMedPubMedCentralCrossRef
59.
go back to reference Aggarwal R, Thomas S, Pawlowska N, Bartelink I, Grabowsky J, Jahan T, Cripps A, Harb A, Leng J, Reinert A, Mastroserio I, Truong TG, Ryan CJ, Munster PN. Inhibiting histone deacetylase as a means to reverse resistance to angiogenesis inhibitors: phase I study of abexinostat plus pazopanib in advanced solid tumor malignancies. J Clin Oncol. 2017;35:1231–9.PubMedPubMedCentralCrossRef Aggarwal R, Thomas S, Pawlowska N, Bartelink I, Grabowsky J, Jahan T, Cripps A, Harb A, Leng J, Reinert A, Mastroserio I, Truong TG, Ryan CJ, Munster PN. Inhibiting histone deacetylase as a means to reverse resistance to angiogenesis inhibitors: phase I study of abexinostat plus pazopanib in advanced solid tumor malignancies. J Clin Oncol. 2017;35:1231–9.PubMedPubMedCentralCrossRef
60.
go back to reference Chen H, Lin Z, Arnst KE, Miller DD, Li W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules. 2017;22:1281.PubMedCentralCrossRef Chen H, Lin Z, Arnst KE, Miller DD, Li W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules. 2017;22:1281.PubMedCentralCrossRef
61.
go back to reference Cesca M, Morosi L, Berndt A, Fuso Nerini I, Frapolli R, Richter P, Decio A, Dirsch O, Micotti E, Giordano S, D’Incalci M, Davoli E, Zucchetti M, Giavazzi R. Bevacizumab-induced inhibition of angiogenesis promotes a more homogeneous intratumoral distribution of paclitaxel, improving the antitumor response. Mol Cancer Ther. 2016;15:125–35.PubMedCrossRef Cesca M, Morosi L, Berndt A, Fuso Nerini I, Frapolli R, Richter P, Decio A, Dirsch O, Micotti E, Giordano S, D’Incalci M, Davoli E, Zucchetti M, Giavazzi R. Bevacizumab-induced inhibition of angiogenesis promotes a more homogeneous intratumoral distribution of paclitaxel, improving the antitumor response. Mol Cancer Ther. 2016;15:125–35.PubMedCrossRef
62.
go back to reference Patel RR, Sengupta S, Kim HR, Klein-Szanto AJ, Pyle JR, Zhu F, Li T, Ross EA, Oseni S, Fargnoli J, Jordan VC. Experimental treatment of oestrogen receptor (ER) positive breast cancer with tamoxifen and brivanib alaninate, a VEGFR-2/FGFR-1 kinase inhibitor: a potential clinical application of angiogenesis inhibitors. Eur J Cancer. 2010;46:1537–53.PubMedPubMedCentralCrossRef Patel RR, Sengupta S, Kim HR, Klein-Szanto AJ, Pyle JR, Zhu F, Li T, Ross EA, Oseni S, Fargnoli J, Jordan VC. Experimental treatment of oestrogen receptor (ER) positive breast cancer with tamoxifen and brivanib alaninate, a VEGFR-2/FGFR-1 kinase inhibitor: a potential clinical application of angiogenesis inhibitors. Eur J Cancer. 2010;46:1537–53.PubMedPubMedCentralCrossRef
63.
go back to reference Xu J, Zhang T, Wang T, You L, Zhao Y. PIM kinases: an overview in tumors and recent advances in pancreatic cancer. Future Oncol. 2014;10:865–76.PubMedCrossRef Xu J, Zhang T, Wang T, You L, Zhao Y. PIM kinases: an overview in tumors and recent advances in pancreatic cancer. Future Oncol. 2014;10:865–76.PubMedCrossRef
64.
go back to reference Casillas AL, Toth RK, Sainz AG, Singh N, Desai AA, Kraft AS, Warfel NA. Hypoxia-inducible PIM kinase expression promotes resistance to antiangiogenic agents. Clin Cancer Res. 2018;24:169–80.PubMedCrossRef Casillas AL, Toth RK, Sainz AG, Singh N, Desai AA, Kraft AS, Warfel NA. Hypoxia-inducible PIM kinase expression promotes resistance to antiangiogenic agents. Clin Cancer Res. 2018;24:169–80.PubMedCrossRef
66.
go back to reference Hu L, Fan M, Shi S, Song X, Wang F, He H, Qi B. Dual target inhibitors based on EGFR: promising anticancer agents for the treatment of cancers (2017-). Eur J Med Chem. 2022;227: 113963.PubMedCrossRef Hu L, Fan M, Shi S, Song X, Wang F, He H, Qi B. Dual target inhibitors based on EGFR: promising anticancer agents for the treatment of cancers (2017-). Eur J Med Chem. 2022;227: 113963.PubMedCrossRef
67.
go back to reference Meric-Bernstam F, Larkin J, Tabernero J, Bonini C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet. 2021;397:1010–22.PubMedCrossRef Meric-Bernstam F, Larkin J, Tabernero J, Bonini C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet. 2021;397:1010–22.PubMedCrossRef
68.
go back to reference Wang X, Song K, Li L, Chen L. Structure-based drug design strategies and challenges. Curr Top Med Chem. 2018;18:998–1006.PubMedCrossRef Wang X, Song K, Li L, Chen L. Structure-based drug design strategies and challenges. Curr Top Med Chem. 2018;18:998–1006.PubMedCrossRef
69.
go back to reference Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, Schutjens MH. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov Today. 2015;20:1027–34.PubMedCrossRef Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, Schutjens MH. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov Today. 2015;20:1027–34.PubMedCrossRef
70.
go back to reference Seidel T, Schuetz DA, Garon A, Langer T. The pharmacophore concept and its applications in computer-aided drug design. Prog Chem Org Nat Prod. 2019;110:99–141.PubMed Seidel T, Schuetz DA, Garon A, Langer T. The pharmacophore concept and its applications in computer-aided drug design. Prog Chem Org Nat Prod. 2019;110:99–141.PubMed
71.
72.
go back to reference Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today. 2010;15:444–50.PubMedCrossRef Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today. 2010;15:444–50.PubMedCrossRef
73.
go back to reference Basak SC, Bhattacharjee AK. Computational approaches for the design of mosquito repellent chemicals. Curr Med Chem. 2020;27:32–41.PubMedCrossRef Basak SC, Bhattacharjee AK. Computational approaches for the design of mosquito repellent chemicals. Curr Med Chem. 2020;27:32–41.PubMedCrossRef
75.
go back to reference Sangande F, Julianti E, Tjahjono DH. Ligand-based pharmacophore modeling, molecular docking, and molecular dynamic studies of dual tyrosine kinase inhibitor of EGFR and VEGFR2. Int J Mol Sci. 2020;21:7779.PubMedCentralCrossRef Sangande F, Julianti E, Tjahjono DH. Ligand-based pharmacophore modeling, molecular docking, and molecular dynamic studies of dual tyrosine kinase inhibitor of EGFR and VEGFR2. Int J Mol Sci. 2020;21:7779.PubMedCentralCrossRef
76.
go back to reference Khan MI, Rath S, Adhami VM, Mukhtar H. Hypoxia driven glycation: mechanisms and therapeutic opportunities. Semin Cancer Biol. 2018;49:75–82.PubMedCrossRef Khan MI, Rath S, Adhami VM, Mukhtar H. Hypoxia driven glycation: mechanisms and therapeutic opportunities. Semin Cancer Biol. 2018;49:75–82.PubMedCrossRef
77.
go back to reference Wei H, Duan Y, Gou W, Cui J, Ning H, Li D, Qin Y, Liu Q, Li Y. Design, synthesis and biological evaluation of novel 4-anilinoquinazoline derivatives as hypoxia-selective EGFR and VEGFR-2 dual inhibitors. Eur J Med Chem. 2019;181: 111552.PubMedCrossRef Wei H, Duan Y, Gou W, Cui J, Ning H, Li D, Qin Y, Liu Q, Li Y. Design, synthesis and biological evaluation of novel 4-anilinoquinazoline derivatives as hypoxia-selective EGFR and VEGFR-2 dual inhibitors. Eur J Med Chem. 2019;181: 111552.PubMedCrossRef
78.
go back to reference Bang KC, Song TH, Park YJ, Lee JS, Kim HH. Synthesis of 4-anilinoquinazoline-derivative dual kinase inhibitors targeting EGFR and VEGFR2. B Korean Chem Soc. 2018;39:123–5.CrossRef Bang KC, Song TH, Park YJ, Lee JS, Kim HH. Synthesis of 4-anilinoquinazoline-derivative dual kinase inhibitors targeting EGFR and VEGFR2. B Korean Chem Soc. 2018;39:123–5.CrossRef
79.
go back to reference Sun S, Zhang J, Wang N, Kong X, Fu F, Wang H, Yao J. Design and discovery of quinazoline- and thiourea-containing sorafenib analogs as EGFR and VEGFR-2 dual TK inhibitors. Molecules. 2017;23:24.PubMedCentralCrossRef Sun S, Zhang J, Wang N, Kong X, Fu F, Wang H, Yao J. Design and discovery of quinazoline- and thiourea-containing sorafenib analogs as EGFR and VEGFR-2 dual TK inhibitors. Molecules. 2017;23:24.PubMedCentralCrossRef
80.
go back to reference Abd El-Meguid EA, Naglah AM, Moustafa GO, Awad HM, El Kerdawy AM. Novel benzothiazole-based dual VEGFR-2/EGFR inhibitors targeting breast and liver cancers: synthesis, cytotoxic activity, QSAR and molecular docking studies. Bioorg Med Chem Lett. 2022;58: 128529.PubMedCrossRef Abd El-Meguid EA, Naglah AM, Moustafa GO, Awad HM, El Kerdawy AM. Novel benzothiazole-based dual VEGFR-2/EGFR inhibitors targeting breast and liver cancers: synthesis, cytotoxic activity, QSAR and molecular docking studies. Bioorg Med Chem Lett. 2022;58: 128529.PubMedCrossRef
81.
go back to reference Mourad AAE, Farouk NA, El-Sayed EH, Mahdy ARE. EGFR/VEGFR-2 dual inhibitor and apoptotic inducer: design, synthesis, anticancer activity and docking study of new 2-thioxoimidazolidin-4one derivatives. Life Sci. 2021;277: 119531.PubMedCrossRef Mourad AAE, Farouk NA, El-Sayed EH, Mahdy ARE. EGFR/VEGFR-2 dual inhibitor and apoptotic inducer: design, synthesis, anticancer activity and docking study of new 2-thioxoimidazolidin-4one derivatives. Life Sci. 2021;277: 119531.PubMedCrossRef
82.
go back to reference Brands RC, Knierim LM, De Donno F, Steinacker V, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Targeting VEGFR and FGFR in head and neck squamous cell carcinoma in vitro. Oncol Rep. 2017;38:1877–85.PubMedCrossRef Brands RC, Knierim LM, De Donno F, Steinacker V, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Targeting VEGFR and FGFR in head and neck squamous cell carcinoma in vitro. Oncol Rep. 2017;38:1877–85.PubMedCrossRef
83.
84.
go back to reference Bhide RS, Cai ZW, Zhang YZ, Qian L, Wei D, Barbosa S, Lombardo LJ, Borzilleri RM, Zheng X, Wu LI, Barrish JC, Kim SH, Leavitt K, Mathur A, Leith L, Chao S, Wautlet B, Mortillo S, Jeyaseelan R Sr, Kukral D, Hunt JT, Kamath A, Fura A, Vyas V, Marathe P, D’Arienzo C, Derbin G, Fargnoli J. Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5- methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan- 2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor. J Med Chem. 2006;49:2143–6.PubMedCrossRef Bhide RS, Cai ZW, Zhang YZ, Qian L, Wei D, Barbosa S, Lombardo LJ, Borzilleri RM, Zheng X, Wu LI, Barrish JC, Kim SH, Leavitt K, Mathur A, Leith L, Chao S, Wautlet B, Mortillo S, Jeyaseelan R Sr, Kukral D, Hunt JT, Kamath A, Fura A, Vyas V, Marathe P, D’Arienzo C, Derbin G, Fargnoli J. Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5- methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan- 2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor. J Med Chem. 2006;49:2143–6.PubMedCrossRef
85.
go back to reference Cai ZW, Zhang Y, Borzilleri RM, Qian L, Barbosa S, Wei D, Zheng X, Wu L, Fan J, Shi Z, Wautlet BS, Mortillo S, Jeyaseelan R Sr, Kukral DW, Kamath A, Marathe P, D’Arienzo C, Derbin G, Barrish JC, Robl JA, Hunt JT, Lombardo LJ, Fargnoli J, Bhide RS. Discovery of brivanib alaninate ((S)-((R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan-2-yl)2-aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinase inhibitor (BMS-540215). J Med Chem. 2008;51:1976–80.PubMedCrossRef Cai ZW, Zhang Y, Borzilleri RM, Qian L, Barbosa S, Wei D, Zheng X, Wu L, Fan J, Shi Z, Wautlet BS, Mortillo S, Jeyaseelan R Sr, Kukral DW, Kamath A, Marathe P, D’Arienzo C, Derbin G, Barrish JC, Robl JA, Hunt JT, Lombardo LJ, Fargnoli J, Bhide RS. Discovery of brivanib alaninate ((S)-((R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan-2-yl)2-aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinase inhibitor (BMS-540215). J Med Chem. 2008;51:1976–80.PubMedCrossRef
86.
go back to reference Hofman J, Sorf A, Vagiannis D, Sucha S, Kammerer S, Küpper JH, Chen S, Guo L, Ceckova M, Staud F. Brivanib exhibits potential for pharmacokinetic drug-drug interactions and the modulation of multidrug resistance through the inhibition of human ABCG2 drug efflux transporter and CYP450 biotransformation enzymes. Mol Pharm. 2019;16:4436–50.PubMedCrossRef Hofman J, Sorf A, Vagiannis D, Sucha S, Kammerer S, Küpper JH, Chen S, Guo L, Ceckova M, Staud F. Brivanib exhibits potential for pharmacokinetic drug-drug interactions and the modulation of multidrug resistance through the inhibition of human ABCG2 drug efflux transporter and CYP450 biotransformation enzymes. Mol Pharm. 2019;16:4436–50.PubMedCrossRef
87.
go back to reference Bello E, Colella G, Scarlato V, Oliva P, Berndt A, Valbusa G, Serra SC, D’Incalci M, Cavalletti E, Giavazzi R, Damia G, Camboni G. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res. 2011;71:1396–405.PubMedCrossRef Bello E, Colella G, Scarlato V, Oliva P, Berndt A, Valbusa G, Serra SC, D’Incalci M, Cavalletti E, Giavazzi R, Damia G, Camboni G. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res. 2011;71:1396–405.PubMedCrossRef
88.
go back to reference Wei M, Peng X, Xing L, Dai Y, Huang R, Geng M, Zhang A, Ai J, Song Z. Design, synthesis and biological evaluation of a series of novel 2-benzamide-4-(6-oxy-N-methyl-1-naphthamide)-pyridine derivatives as potent fibroblast growth factor receptor (FGFR) inhibitors. Eur J Med Chem. 2018;154:9–28.PubMedCrossRef Wei M, Peng X, Xing L, Dai Y, Huang R, Geng M, Zhang A, Ai J, Song Z. Design, synthesis and biological evaluation of a series of novel 2-benzamide-4-(6-oxy-N-methyl-1-naphthamide)-pyridine derivatives as potent fibroblast growth factor receptor (FGFR) inhibitors. Eur J Med Chem. 2018;154:9–28.PubMedCrossRef
89.
go back to reference Holmström TH, Moilanen AM, Ikonen T, Björkman ML, Linnanen T, Wohlfahrt G, Karlsson S, Oksala R, Korjamo T, Samajdar S, Rajagopalan S, Chelur S, Narayanan K, Ramachandra RK, Mani J, Nair R, Gowda N, Anthony T, Dhodheri S, Mukherjee S, Ujjinamatada RK, Srinivas N, Ramachandra M, Kallio PJ. ODM-203, a selective inhibitor of FGFR and VEGFR, shows strong antitumor activity, and induces antitumor immunity. Mol Cancer Ther. 2019;18:28–38.PubMedCrossRef Holmström TH, Moilanen AM, Ikonen T, Björkman ML, Linnanen T, Wohlfahrt G, Karlsson S, Oksala R, Korjamo T, Samajdar S, Rajagopalan S, Chelur S, Narayanan K, Ramachandra RK, Mani J, Nair R, Gowda N, Anthony T, Dhodheri S, Mukherjee S, Ujjinamatada RK, Srinivas N, Ramachandra M, Kallio PJ. ODM-203, a selective inhibitor of FGFR and VEGFR, shows strong antitumor activity, and induces antitumor immunity. Mol Cancer Ther. 2019;18:28–38.PubMedCrossRef
90.
go back to reference Bono P, Massard C, Peltola KJ, Azaro A, Italiano A, Kristeleit RS, Curigliano G, Lassen U, Arkenau HT, Hakulinen P, Garratt C, Ikonen T, Mustonen MVJ, Rodon JA. Phase I/IIa, open-label, multicentre study to evaluate the optimal dosing and safety of ODM-203 in patients with advanced or metastatic solid tumours. ESMO Open. 2020;5: e001081.PubMedPubMedCentralCrossRef Bono P, Massard C, Peltola KJ, Azaro A, Italiano A, Kristeleit RS, Curigliano G, Lassen U, Arkenau HT, Hakulinen P, Garratt C, Ikonen T, Mustonen MVJ, Rodon JA. Phase I/IIa, open-label, multicentre study to evaluate the optimal dosing and safety of ODM-203 in patients with advanced or metastatic solid tumours. ESMO Open. 2020;5: e001081.PubMedPubMedCentralCrossRef
91.
go back to reference Yan W, Wang X, Dai Y, Zhao B, Yang X, Fan J, Gao Y, Meng F, Wang Y, Luo C, Ai J, Geng M, Duan W. Discovery of 3-(5’-Substituted)-Benzimidazole-5-(1-(3,5-dichloropyridin-4-yl)ethoxy)-1H-indazoles as potent fibroblast growth factor receptor inhibitors: design, synthesis, and biological evaluation. J Med Chem. 2016;59:6690–708.PubMedCrossRef Yan W, Wang X, Dai Y, Zhao B, Yang X, Fan J, Gao Y, Meng F, Wang Y, Luo C, Ai J, Geng M, Duan W. Discovery of 3-(5’-Substituted)-Benzimidazole-5-(1-(3,5-dichloropyridin-4-yl)ethoxy)-1H-indazoles as potent fibroblast growth factor receptor inhibitors: design, synthesis, and biological evaluation. J Med Chem. 2016;59:6690–708.PubMedCrossRef
92.
go back to reference Carvalho B, Lopes JM, Silva R, Peixoto J, Leitão D, Soares P, Fernandes AC, Linhares P, Vaz R, Lima J. The role of c-Met and VEGFR2 in glioblastoma resistance to bevacizumab. Sci Rep. 2021;11:6067.PubMedPubMedCentralCrossRef Carvalho B, Lopes JM, Silva R, Peixoto J, Leitão D, Soares P, Fernandes AC, Linhares P, Vaz R, Lima J. The role of c-Met and VEGFR2 in glioblastoma resistance to bevacizumab. Sci Rep. 2021;11:6067.PubMedPubMedCentralCrossRef
93.
go back to reference Zhang Q, Zheng P, Zhu W. Research progress of small molecule VEGFR/c-Met inhibitors as anticancer agents (2016-Present). Molecules. 2020;25:2666.PubMedCentralCrossRef Zhang Q, Zheng P, Zhu W. Research progress of small molecule VEGFR/c-Met inhibitors as anticancer agents (2016-Present). Molecules. 2020;25:2666.PubMedCentralCrossRef
94.
go back to reference Nakagawa T, Tohyama O, Yamaguchi A, Matsushima T, Takahashi K, Funasaka S, Shirotori S, Asada M, Obaishi H. E7050: a dual c-Met and VEGFR2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Sci. 2010;101:210–5.PubMedCrossRef Nakagawa T, Tohyama O, Yamaguchi A, Matsushima T, Takahashi K, Funasaka S, Shirotori S, Asada M, Obaishi H. E7050: a dual c-Met and VEGFR2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Sci. 2010;101:210–5.PubMedCrossRef
95.
go back to reference García-Quiroz J, Cárdenas-Ochoa N, García-Becerra R, Morales-Guadarrama G, Méndez-Pérez EA, Santos-Cuevas C, Ramírez-Nava GJ, Segovia-Mendoza M, Prado-García H, Avila E, Larrea F, Díaz L. Antitumoral effects of dovitinib in triple-negative breast cancer are synergized by calcitriol in vivo and in vitro. J Steroid Biochem Mol Biol. 2021;214: 105979.PubMedCrossRef García-Quiroz J, Cárdenas-Ochoa N, García-Becerra R, Morales-Guadarrama G, Méndez-Pérez EA, Santos-Cuevas C, Ramírez-Nava GJ, Segovia-Mendoza M, Prado-García H, Avila E, Larrea F, Díaz L. Antitumoral effects of dovitinib in triple-negative breast cancer are synergized by calcitriol in vivo and in vitro. J Steroid Biochem Mol Biol. 2021;214: 105979.PubMedCrossRef
96.
go back to reference Salgia NJ, Zengin ZB, Pal SK. Tivozanib in renal cell carcinoma: a new approach to previously treated disease. Ther Adv Med Oncol. 2020;12:1758835920923818.PubMedPubMedCentralCrossRef Salgia NJ, Zengin ZB, Pal SK. Tivozanib in renal cell carcinoma: a new approach to previously treated disease. Ther Adv Med Oncol. 2020;12:1758835920923818.PubMedPubMedCentralCrossRef
97.
go back to reference Kasikara C, Davra V, Calianese D, Geng K, Spires TE, Quigley M, Wichroski M, Sriram G, Suarez-Lopez L, Yaffe MB, Kotenko SV, De Lorenzo MS, Birge RB. Pan-TAM tyrosine kinase inhibitor BMS-777607 enhances anti-PD-1 mAb efficacy in a murine model of triple-negative breast cancer. Cancer Res. 2019;79:2669–83.PubMedCrossRef Kasikara C, Davra V, Calianese D, Geng K, Spires TE, Quigley M, Wichroski M, Sriram G, Suarez-Lopez L, Yaffe MB, Kotenko SV, De Lorenzo MS, Birge RB. Pan-TAM tyrosine kinase inhibitor BMS-777607 enhances anti-PD-1 mAb efficacy in a murine model of triple-negative breast cancer. Cancer Res. 2019;79:2669–83.PubMedCrossRef
98.
go back to reference Padda S, Neal JW, Wakelee HA. MET inhibitors in combination with other therapies in non-small cell lung cancer. Transl Lung Cancer Res. 2012;1:238–53.PubMedPubMedCentral Padda S, Neal JW, Wakelee HA. MET inhibitors in combination with other therapies in non-small cell lung cancer. Transl Lung Cancer Res. 2012;1:238–53.PubMedPubMedCentral
99.
go back to reference Torres MA, Raju U, Molkentine D, Riesterer O, Milas L, Ang KK. AC480, formerly BMS-599626, a pan her inhibitor, enhances radiosensitivity and radioresponse of head and neck squamous cell carcinoma cells in vitro and in vivo. Invest New Drugs. 2011;29:554–61.PubMedCrossRef Torres MA, Raju U, Molkentine D, Riesterer O, Milas L, Ang KK. AC480, formerly BMS-599626, a pan her inhibitor, enhances radiosensitivity and radioresponse of head and neck squamous cell carcinoma cells in vitro and in vivo. Invest New Drugs. 2011;29:554–61.PubMedCrossRef
100.
go back to reference Dong L, Meng F, Wu L, Mitchell AV, Block CJ, Zhang B, Craig DB, Jang H, Chen W, Yang Q, Wu G. Cooperative oncogenic effect and cell signaling crosstalk of co-occurring HER2 and mutant PIK3CA in mammary epithelial cells. Int J Oncol. 2017;51:1320–30.PubMedPubMedCentralCrossRef Dong L, Meng F, Wu L, Mitchell AV, Block CJ, Zhang B, Craig DB, Jang H, Chen W, Yang Q, Wu G. Cooperative oncogenic effect and cell signaling crosstalk of co-occurring HER2 and mutant PIK3CA in mammary epithelial cells. Int J Oncol. 2017;51:1320–30.PubMedPubMedCentralCrossRef
101.
go back to reference Liu L, Siegmund A, Xi N, Kaplan-Lefko P, Rex K, Chen A, Lin J, Moriguchi J, Berry L, Huang L, Teffera Y, Yang Y, Zhang Y, Bellon SF, Lee M, Shimanovich R, Bak A, Dominguez C, Norman MH, Harmange JC, Dussault I, Kim TS. Discovery of a potent, selective, and orally bioavailable c-Met inhibitor: 1-(2-hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J Med Chem. 2008;51:3688–91.PubMedCrossRef Liu L, Siegmund A, Xi N, Kaplan-Lefko P, Rex K, Chen A, Lin J, Moriguchi J, Berry L, Huang L, Teffera Y, Yang Y, Zhang Y, Bellon SF, Lee M, Shimanovich R, Bak A, Dominguez C, Norman MH, Harmange JC, Dussault I, Kim TS. Discovery of a potent, selective, and orally bioavailable c-Met inhibitor: 1-(2-hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J Med Chem. 2008;51:3688–91.PubMedCrossRef
102.
go back to reference Álvarez R, Aramburu L, Puebla P, Caballero E, González M, Vicente A, Medarde M, Peláez R. Pyridine based antitumour compounds acting at the colchicine site. Curr Med Chem. 2016;23:1100–30.PubMedCrossRef Álvarez R, Aramburu L, Puebla P, Caballero E, González M, Vicente A, Medarde M, Peláez R. Pyridine based antitumour compounds acting at the colchicine site. Curr Med Chem. 2016;23:1100–30.PubMedCrossRef
103.
go back to reference Qiang H, Gu W, Huang D, Shi W, Qiu Q, Dai Y, Huang W, Qian H. Design, synthesis and biological evaluation of 4-aminopyrimidine-5-cabaldehyde oximes as dual inhibitors of c-Met and VEGFR-2. Bioorg Med Chem. 2016;24:3353–8.PubMedCrossRef Qiang H, Gu W, Huang D, Shi W, Qiu Q, Dai Y, Huang W, Qian H. Design, synthesis and biological evaluation of 4-aminopyrimidine-5-cabaldehyde oximes as dual inhibitors of c-Met and VEGFR-2. Bioorg Med Chem. 2016;24:3353–8.PubMedCrossRef
104.
go back to reference Zhao Y, Zhang J, Zhuang R, He R, Xi J, Pan X, Shao Y, Pan J, Sun J, Cai Z, Liu S, Huang W, Lv X. Synthesis and evaluation of a series of pyridine and pyrimidine derivatives as type II c-Met inhibitors. Bioorg Med Chem. 2017;25:3195–205.PubMedCrossRef Zhao Y, Zhang J, Zhuang R, He R, Xi J, Pan X, Shao Y, Pan J, Sun J, Cai Z, Liu S, Huang W, Lv X. Synthesis and evaluation of a series of pyridine and pyrimidine derivatives as type II c-Met inhibitors. Bioorg Med Chem. 2017;25:3195–205.PubMedCrossRef
105.
go back to reference Gu W, Dai Y, Qiang H, Shi W, Liao C, Zhao F, Huang W, Qian H. Discovery of novel 2-substituted-4-(2-fluorophenoxy) pyridine derivatives possessing pyrazolone and triazole moieties as dual c-Met/VEGFR-2 receptor tyrosine kinase inhibitors. Bioorg Chem. 2017;72:116–22.PubMedCrossRef Gu W, Dai Y, Qiang H, Shi W, Liao C, Zhao F, Huang W, Qian H. Discovery of novel 2-substituted-4-(2-fluorophenoxy) pyridine derivatives possessing pyrazolone and triazole moieties as dual c-Met/VEGFR-2 receptor tyrosine kinase inhibitors. Bioorg Chem. 2017;72:116–22.PubMedCrossRef
106.
go back to reference Wang MS, Zhuo LS, Yang FP, Wang WJ, Huang W, Yang GF. Synthesis and biological evaluation of new MET inhibitors with 1,6-naphthyridinone scaffold. Eur J Med Chem. 2020;185: 111803.PubMedCrossRef Wang MS, Zhuo LS, Yang FP, Wang WJ, Huang W, Yang GF. Synthesis and biological evaluation of new MET inhibitors with 1,6-naphthyridinone scaffold. Eur J Med Chem. 2020;185: 111803.PubMedCrossRef
107.
go back to reference Liu J, Nie M, Wang Y, Hu J, Zhang F, Gao Y, Liu Y, Gong P. Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing 1,2,4-triazolone moiety as c-Met kinase inhibitors. Eur J Med Chem. 2016;123:431–46.PubMedCrossRef Liu J, Nie M, Wang Y, Hu J, Zhang F, Gao Y, Liu Y, Gong P. Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing 1,2,4-triazolone moiety as c-Met kinase inhibitors. Eur J Med Chem. 2016;123:431–46.PubMedCrossRef
108.
go back to reference Liu J, Yang D, Yang X, Nie M, Wu G, Wang Z, Li W, Liu Y, Gong P. Design, synthesis and biological evaluation of novel 4-phenoxyquinoline derivatives containing 3-oxo-3,4-dihydroquinoxaline moiety as c-Met kinase inhibitors. Bioorg Med Chem. 2017;25:4475–86.PubMedCrossRef Liu J, Yang D, Yang X, Nie M, Wu G, Wang Z, Li W, Liu Y, Gong P. Design, synthesis and biological evaluation of novel 4-phenoxyquinoline derivatives containing 3-oxo-3,4-dihydroquinoxaline moiety as c-Met kinase inhibitors. Bioorg Med Chem. 2017;25:4475–86.PubMedCrossRef
109.
go back to reference Nan X, Jiang YF, Li HJ, Wang JH, Wu YC. Design, synthesis and evaluation of sulfonylurea-containing 4-phenoxyquinolines as highly selective c-Met kinase inhibitors. Bioorg Med Chem. 2019;27:2801–12.PubMedCrossRef Nan X, Jiang YF, Li HJ, Wang JH, Wu YC. Design, synthesis and evaluation of sulfonylurea-containing 4-phenoxyquinolines as highly selective c-Met kinase inhibitors. Bioorg Med Chem. 2019;27:2801–12.PubMedCrossRef
110.
go back to reference El-Gamal MI, Anbar HS. Recent advances of pyrrolopyridines derivatives: a patent and literature review. Expert Opin Ther Pat. 2017;27:591–606.PubMedCrossRef El-Gamal MI, Anbar HS. Recent advances of pyrrolopyridines derivatives: a patent and literature review. Expert Opin Ther Pat. 2017;27:591–606.PubMedCrossRef
111.
go back to reference Zhu WF, Wang WH, Xu S, Tang QD, Luo R, Wang M, Gong P, Zheng PW. Design, synthesis, and docking studies of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety as c-Met inhibitors. Bioorg Med Chem. 2016;24:812–9.PubMedCrossRef Zhu WF, Wang WH, Xu S, Tang QD, Luo R, Wang M, Gong P, Zheng PW. Design, synthesis, and docking studies of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety as c-Met inhibitors. Bioorg Med Chem. 2016;24:812–9.PubMedCrossRef
112.
go back to reference Zhu WF, Wang WH, Xu S, Wang JQ, Tang QD, Wu CJ, Zhao YF, Zheng PW. Synthesis, and docking studies of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety as c-Met inhibitors. Bioorg Med Chem. 2016;24:1749–56.PubMedCrossRef Zhu WF, Wang WH, Xu S, Wang JQ, Tang QD, Wu CJ, Zhao YF, Zheng PW. Synthesis, and docking studies of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety as c-Met inhibitors. Bioorg Med Chem. 2016;24:1749–56.PubMedCrossRef
113.
go back to reference Wang W, Xu S, Duan Y, Liu X, Li X, Wang C, Zhao B, Zheng P, Zhu W. Synthesis and bioevaluation and doking study of 1H-pyrrolo[2,3-b]pyridine derivatives bearing aromatic hydrazone moiety as c-Met inhibitors. Eur J Med Chem. 2018;145:315–27.PubMedCrossRef Wang W, Xu S, Duan Y, Liu X, Li X, Wang C, Zhao B, Zheng P, Zhu W. Synthesis and bioevaluation and doking study of 1H-pyrrolo[2,3-b]pyridine derivatives bearing aromatic hydrazone moiety as c-Met inhibitors. Eur J Med Chem. 2018;145:315–27.PubMedCrossRef
114.
go back to reference Wang LX, Liu X, Xu S, Tang Q, Duan Y, Xiao Z, Zhi J, Jiang L, Zheng P, Zhu W. Discovery of novel pyrrolo-pyridine/pyrimidine derivatives bearing pyridazinone moiety as c-Met kinase inhibitors. Eur J Med Chem. 2017;141:538–51.PubMedCrossRef Wang LX, Liu X, Xu S, Tang Q, Duan Y, Xiao Z, Zhi J, Jiang L, Zheng P, Zhu W. Discovery of novel pyrrolo-pyridine/pyrimidine derivatives bearing pyridazinone moiety as c-Met kinase inhibitors. Eur J Med Chem. 2017;141:538–51.PubMedCrossRef
115.
go back to reference Li J, Gu W, Bi X, Li H, Liao C, Liu C, Huang W, Qian H. Design, synthesis, and biological evaluation of thieno[2,3-d]pyrimidine derivatives as novel dual c-Met and VEGFR-2 kinase inhibitors. Bioorg Med Chem. 2017;25:6674–9.PubMedCrossRef Li J, Gu W, Bi X, Li H, Liao C, Liu C, Huang W, Qian H. Design, synthesis, and biological evaluation of thieno[2,3-d]pyrimidine derivatives as novel dual c-Met and VEGFR-2 kinase inhibitors. Bioorg Med Chem. 2017;25:6674–9.PubMedCrossRef
116.
go back to reference Shi W, Qiang H, Huang D, Bi X, Huang W, Qian H. Exploration of novel pyrrolo[2,1-f][1,2,4]triazine derivatives with improved anticancer efficacy as dual inhibitors of c-Met/VEGFR-2. Eur J Med Chem. 2018;158:814–31.PubMedCrossRef Shi W, Qiang H, Huang D, Bi X, Huang W, Qian H. Exploration of novel pyrrolo[2,1-f][1,2,4]triazine derivatives with improved anticancer efficacy as dual inhibitors of c-Met/VEGFR-2. Eur J Med Chem. 2018;158:814–31.PubMedCrossRef
117.
go back to reference Huang D, Huang L, Zhang Q, Li J. Synthesis and biological evaluation of novel 6,11-dihydro-5H-benzo[e]pyrimido- [5,4-b][1,4]diazepine derivatives as potential c-Met inhibitors. Eur J Med Chem. 2017;140:212–28.PubMedCrossRef Huang D, Huang L, Zhang Q, Li J. Synthesis and biological evaluation of novel 6,11-dihydro-5H-benzo[e]pyrimido- [5,4-b][1,4]diazepine derivatives as potential c-Met inhibitors. Eur J Med Chem. 2017;140:212–28.PubMedCrossRef
118.
go back to reference Zhuo LS, Xu HC, Wang MS, Zhao XE, Ming ZH, Zhu XL, Huang W, Yang GF. 2,7-naphthyridinone-based MET kinase inhibitors: a promising novel scaffold for antitumor drug development. Eur J Med Chem. 2019;178:705–14.PubMedCrossRef Zhuo LS, Xu HC, Wang MS, Zhao XE, Ming ZH, Zhu XL, Huang W, Yang GF. 2,7-naphthyridinone-based MET kinase inhibitors: a promising novel scaffold for antitumor drug development. Eur J Med Chem. 2019;178:705–14.PubMedCrossRef
119.
go back to reference Megally Abdo NY, Milad Mohareb R, Halim PA. Uses of cyclohexane-1,3-dione for the synthesis of 1,2,4-triazine derivatives as anti-proliferative agents and tyrosine kinases inhibitors. Bioorg Chem. 2020;97: 103667.PubMedCrossRef Megally Abdo NY, Milad Mohareb R, Halim PA. Uses of cyclohexane-1,3-dione for the synthesis of 1,2,4-triazine derivatives as anti-proliferative agents and tyrosine kinases inhibitors. Bioorg Chem. 2020;97: 103667.PubMedCrossRef
120.
go back to reference El-Nassan HB. Recent progress in the identification of BRAF inhibitors as anti-cancer agents. Eur J Med Chem. 2014;72:170–205.PubMedCrossRef El-Nassan HB. Recent progress in the identification of BRAF inhibitors as anti-cancer agents. Eur J Med Chem. 2014;72:170–205.PubMedCrossRef
121.
go back to reference Fu Y, Wang Y, Wan S, Li Z, Wang G, Zhang J, Wu X. Bisarylureas based on 1H-Pyrazolo[3,4-d]pyrimidine scaffold as novel pan-RAF Inhibitors with potent anti-proliferative activities: structure-based design, synthesis, biological evaluation and molecular modelling studies. Molecules. 2017;22:542.PubMedCentralCrossRef Fu Y, Wang Y, Wan S, Li Z, Wang G, Zhang J, Wu X. Bisarylureas based on 1H-Pyrazolo[3,4-d]pyrimidine scaffold as novel pan-RAF Inhibitors with potent anti-proliferative activities: structure-based design, synthesis, biological evaluation and molecular modelling studies. Molecules. 2017;22:542.PubMedCentralCrossRef
122.
go back to reference Wang YY, Wan SH, Li ZH, Fu Y, Wang GF, Zhang JJ, Wu XY. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrazolo[3,4-d]pyrimidine derivatives as BRAFV600E and VEGFR2 dual inhibitors. Eur J Med Chem. 2018;155:210–28.PubMedCrossRef Wang YY, Wan SH, Li ZH, Fu Y, Wang GF, Zhang JJ, Wu XY. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrazolo[3,4-d]pyrimidine derivatives as BRAFV600E and VEGFR2 dual inhibitors. Eur J Med Chem. 2018;155:210–28.PubMedCrossRef
123.
go back to reference Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI. Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors. Eur J Med Chem. 2019;179:707–22.PubMedCrossRef Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI. Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors. Eur J Med Chem. 2019;179:707–22.PubMedCrossRef
124.
go back to reference Peng X, Sun Z, Kuang P, Chen J. Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment. Eur J Med Chem. 2020;208: 112831.PubMedCrossRef Peng X, Sun Z, Kuang P, Chen J. Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment. Eur J Med Chem. 2020;208: 112831.PubMedCrossRef
125.
go back to reference Peng FW, Xuan J, Wu TT, Xue JY, Ren ZW, Liu DK, Wang XQ, Chen XH, Zhang JW, Xu YG, Shi L. Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC. Eur J Med Chem. 2016;109:1–12.PubMedCrossRef Peng FW, Xuan J, Wu TT, Xue JY, Ren ZW, Liu DK, Wang XQ, Chen XH, Zhang JW, Xu YG, Shi L. Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC. Eur J Med Chem. 2016;109:1–12.PubMedCrossRef
126.
go back to reference Lee S, Wang SW, Yu CL, Tai HC, Yen JY, Tuan YL, Wang HH, Liu YT, Chen SS, Lee HY. Effect of phenylurea hydroxamic acids on histone deacetylase and VEGFR-2. Bioorg Med Chem. 2021;50: 116454.PubMedCrossRef Lee S, Wang SW, Yu CL, Tai HC, Yen JY, Tuan YL, Wang HH, Liu YT, Chen SS, Lee HY. Effect of phenylurea hydroxamic acids on histone deacetylase and VEGFR-2. Bioorg Med Chem. 2021;50: 116454.PubMedCrossRef
127.
go back to reference Zhang Y, Chen Y, Zhang D, Wang L, Lu T, Jiao Y. Discovery of novel potent VEGFR-2 inhibitors exerting significant antiproliferative activity against cancer cell lines. J Med Chem. 2018;61:140–57.PubMedCrossRef Zhang Y, Chen Y, Zhang D, Wang L, Lu T, Jiao Y. Discovery of novel potent VEGFR-2 inhibitors exerting significant antiproliferative activity against cancer cell lines. J Med Chem. 2018;61:140–57.PubMedCrossRef
128.
go back to reference Zang J, Liang X, Huang Y, Jia Y, Li X, Xu W, Chou CJ, Zhang Y. Discovery of novel pazopanib-based HDAC and VEGFR dual inhibitors targeting cancer epigenetics and angiogenesis simultaneously. J Med Chem. 2018;61:5304–22.PubMedCrossRef Zang J, Liang X, Huang Y, Jia Y, Li X, Xu W, Chou CJ, Zhang Y. Discovery of novel pazopanib-based HDAC and VEGFR dual inhibitors targeting cancer epigenetics and angiogenesis simultaneously. J Med Chem. 2018;61:5304–22.PubMedCrossRef
129.
go back to reference Xue X, Zhang Y, Liao Y, Sun D, Li L, Liu Y, Wang Y, Jiang W, Zhang J, Luan Y, Zhao X. Design, synthesis and biological evaluation of dual HDAC and VEGFR inhibitors as multitargeted anticancer agents. Invest New Drugs. 2022;40:10–20.PubMedCrossRef Xue X, Zhang Y, Liao Y, Sun D, Li L, Liu Y, Wang Y, Jiang W, Zhang J, Luan Y, Zhao X. Design, synthesis and biological evaluation of dual HDAC and VEGFR inhibitors as multitargeted anticancer agents. Invest New Drugs. 2022;40:10–20.PubMedCrossRef
130.
go back to reference Chen Q, Liu J, Sawada T, Wei C, Wu S, Han F. Possible role of EphA4 and VEGFR2 interactions in neural stem and progenitor cell differentiation. Exp Ther Med. 2020;19:1789–96.PubMedPubMedCentral Chen Q, Liu J, Sawada T, Wei C, Wu S, Han F. Possible role of EphA4 and VEGFR2 interactions in neural stem and progenitor cell differentiation. Exp Ther Med. 2020;19:1789–96.PubMedPubMedCentral
132.
go back to reference Gangjee A, Pavana RK, Ihnat MA, Thorpe JE, Disch BC, Bastian A, Bailey-Downs LC, Hamel E, Bai R. Discovery of antitubulin agents with antiangiogenic activity as single entities with multitarget chemotherapy potential. ACS Med Chem Lett. 2014;5:480–4.PubMedPubMedCentralCrossRef Gangjee A, Pavana RK, Ihnat MA, Thorpe JE, Disch BC, Bastian A, Bailey-Downs LC, Hamel E, Bai R. Discovery of antitubulin agents with antiangiogenic activity as single entities with multitarget chemotherapy potential. ACS Med Chem Lett. 2014;5:480–4.PubMedPubMedCentralCrossRef
133.
go back to reference Pavana RK, Choudhary S, Bastian A, Ihnat MA, Bai R, Hamel E, Gangjee A. Discovery and preclinical evaluation of 7-benzyl-N-(substituted)-pyrrolo[3,2-d]pyrimidin-4-amines as single agents with microtubule targeting effects along with triple-acting angiokinase inhibition as antitumor agents. Bioorg Med Chem. 2017;25:545–56.PubMedCrossRef Pavana RK, Choudhary S, Bastian A, Ihnat MA, Bai R, Hamel E, Gangjee A. Discovery and preclinical evaluation of 7-benzyl-N-(substituted)-pyrrolo[3,2-d]pyrimidin-4-amines as single agents with microtubule targeting effects along with triple-acting angiokinase inhibition as antitumor agents. Bioorg Med Chem. 2017;25:545–56.PubMedCrossRef
134.
go back to reference Zhang X, Raghavan S, Ihnat M, Thorpe JE, Disch BC, Bastian A, Bailey-Downs LC, Dybdal-Hargreaves NF, Rohena CC, Hamel E, Mooberry SL, Gangjee A. The design and discovery of water soluble 4-substituted-2,6-dimethylfuro[2,3-d]pyrimidines as multitargeted receptor tyrosine kinase inhibitors and microtubule targeting antitumor agents. Bioorg Med Chem. 2014;22:3753–72.PubMedPubMedCentralCrossRef Zhang X, Raghavan S, Ihnat M, Thorpe JE, Disch BC, Bastian A, Bailey-Downs LC, Dybdal-Hargreaves NF, Rohena CC, Hamel E, Mooberry SL, Gangjee A. The design and discovery of water soluble 4-substituted-2,6-dimethylfuro[2,3-d]pyrimidines as multitargeted receptor tyrosine kinase inhibitors and microtubule targeting antitumor agents. Bioorg Med Chem. 2014;22:3753–72.PubMedPubMedCentralCrossRef
135.
go back to reference Zhang X, Raghavan S, Ihnat M, Hamel E, Zammiello C, Bastian A, Mooberry SL, Gangjee A. The design, synthesis and biological evaluation of conformationally restricted 4-substituted-2,6-dimethylfuro[2,3-d]pyrimidines as multi-targeted receptor tyrosine kinase and microtubule inhibitors as potential antitumor agents. Bioorg Med Chem. 2015;23:2408–23.PubMedPubMedCentralCrossRef Zhang X, Raghavan S, Ihnat M, Hamel E, Zammiello C, Bastian A, Mooberry SL, Gangjee A. The design, synthesis and biological evaluation of conformationally restricted 4-substituted-2,6-dimethylfuro[2,3-d]pyrimidines as multi-targeted receptor tyrosine kinase and microtubule inhibitors as potential antitumor agents. Bioorg Med Chem. 2015;23:2408–23.PubMedPubMedCentralCrossRef
136.
go back to reference Chekler EL, Kiselyov AS, Ouyang X, Chen X, Pattaropong V, Wang Y, Tuma MC, Doody JF. Discovery of dual VEGFR-2 and tubulin inhibitors with in vivo efficacy. ACS Med Chem Lett. 2010;1:488–92.PubMedPubMedCentralCrossRef Chekler EL, Kiselyov AS, Ouyang X, Chen X, Pattaropong V, Wang Y, Tuma MC, Doody JF. Discovery of dual VEGFR-2 and tubulin inhibitors with in vivo efficacy. ACS Med Chem Lett. 2010;1:488–92.PubMedPubMedCentralCrossRef
137.
go back to reference Nagini S. Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med Chem. 2017;17:152–63.PubMedCrossRef Nagini S. Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med Chem. 2017;17:152–63.PubMedCrossRef
138.
go back to reference Tang Z, Niu S, Liu F, Lao K, Miao J, Ji J, Wang X, Yan M, Zhang L, You Q, Xiao H, Xiang H. Synthesis and biological evaluation of 2,3-diaryl isoquinolinone derivatives as anti-breast cancer agents targeting ERα and VEGFR-2. Bioorg Med Chem Lett. 2014;24:2129–33.PubMedCrossRef Tang Z, Niu S, Liu F, Lao K, Miao J, Ji J, Wang X, Yan M, Zhang L, You Q, Xiao H, Xiang H. Synthesis and biological evaluation of 2,3-diaryl isoquinolinone derivatives as anti-breast cancer agents targeting ERα and VEGFR-2. Bioorg Med Chem Lett. 2014;24:2129–33.PubMedCrossRef
139.
go back to reference Tang Z, Wu C, Wang T, Lao K, Wang Y, Liu L, Muyaba M, Xu P, He C, Luo G, Qian Z, Niu S, Wang L, Wang Y, Xiao H, You Q, Xiang H. Design, synthesis and evaluation of 6-aryl-indenoisoquinolone derivatives dual targeting ERα and VEGFR-2 as anti-breast cancer agents. Eur J Med Chem. 2016;118:328–39.PubMedCrossRef Tang Z, Wu C, Wang T, Lao K, Wang Y, Liu L, Muyaba M, Xu P, He C, Luo G, Qian Z, Niu S, Wang L, Wang Y, Xiao H, You Q, Xiang H. Design, synthesis and evaluation of 6-aryl-indenoisoquinolone derivatives dual targeting ERα and VEGFR-2 as anti-breast cancer agents. Eur J Med Chem. 2016;118:328–39.PubMedCrossRef
140.
go back to reference Liu L, Tang Z, Wu C, Li X, Huang A, Lu X, You Q, Xiang H. Synthesis and biological evaluation of 4,6-diaryl-2-pyrimidinamine derivatives as anti-breast cancer agents. Bioorg Med Chem Lett. 2018;28:1138–42.PubMedCrossRef Liu L, Tang Z, Wu C, Li X, Huang A, Lu X, You Q, Xiang H. Synthesis and biological evaluation of 4,6-diaryl-2-pyrimidinamine derivatives as anti-breast cancer agents. Bioorg Med Chem Lett. 2018;28:1138–42.PubMedCrossRef
141.
go back to reference Luo G, Tang Z, Lao K, Li X, You Q, Xiang H. Structure-activity relationships of 2, 4-disubstituted pyrimidines as dual ERα/VEGFR-2 ligands with anti-breast cancer activity. Eur J Med Chem. 2018;150:783–95.PubMedCrossRef Luo G, Tang Z, Lao K, Li X, You Q, Xiang H. Structure-activity relationships of 2, 4-disubstituted pyrimidines as dual ERα/VEGFR-2 ligands with anti-breast cancer activity. Eur J Med Chem. 2018;150:783–95.PubMedCrossRef
142.
go back to reference Okamoto Y, Shibutani S. Development of novel and safer anti-breast cancer agents, SS1020 and SS5020, based on a fundamental carcinogenic research. Genes Environ. 2019;41:9.PubMedPubMedCentralCrossRef Okamoto Y, Shibutani S. Development of novel and safer anti-breast cancer agents, SS1020 and SS5020, based on a fundamental carcinogenic research. Genes Environ. 2019;41:9.PubMedPubMedCentralCrossRef
143.
go back to reference Luo G, Li X, Zhang G, Wu C, Tang Z, Liu L, You Q, Xiang H. Novel SERMs based on 3-aryl-4-aryloxy-2H-chromen-2-one skeleton-a possible way to dual ERα/VEGFR-2 ligands for treatment of breast cancer. Eur J Med Chem. 2017;140:252–73.PubMedCrossRef Luo G, Li X, Zhang G, Wu C, Tang Z, Liu L, You Q, Xiang H. Novel SERMs based on 3-aryl-4-aryloxy-2H-chromen-2-one skeleton-a possible way to dual ERα/VEGFR-2 ligands for treatment of breast cancer. Eur J Med Chem. 2017;140:252–73.PubMedCrossRef
144.
go back to reference Tursynbay Y, Zhang J, Li Z, Tokay T, Zhumadilov Z, Wu D, Xie Y. Pim-1 kinase as cancer drug target: an update. Biomed Rep. 2016;4:140–6.PubMedCrossRef Tursynbay Y, Zhang J, Li Z, Tokay T, Zhumadilov Z, Wu D, Xie Y. Pim-1 kinase as cancer drug target: an update. Biomed Rep. 2016;4:140–6.PubMedCrossRef
145.
go back to reference Rizk OH, Teleb M, Abu-Serie MM, Shaaban OG. Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: design, synthesis and biological evaluation. Bioorg Chem. 2019;92: 103189.PubMedCrossRef Rizk OH, Teleb M, Abu-Serie MM, Shaaban OG. Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: design, synthesis and biological evaluation. Bioorg Chem. 2019;92: 103189.PubMedCrossRef
146.
go back to reference Frett B, Carlomagno F, Moccia ML, Brescia A, Federico G, De Falco V, Admire B, Chen Z, Qi W, Santoro M, Li HY. Fragment-based discovery of a dual pan-RET/VEGFR2 kinase inhibitor optimized for single-agent polypharmacology. Angew Chem Int Ed Engl. 2015;54:8717–21.PubMedPubMedCentralCrossRef Frett B, Carlomagno F, Moccia ML, Brescia A, Federico G, De Falco V, Admire B, Chen Z, Qi W, Santoro M, Li HY. Fragment-based discovery of a dual pan-RET/VEGFR2 kinase inhibitor optimized for single-agent polypharmacology. Angew Chem Int Ed Engl. 2015;54:8717–21.PubMedPubMedCentralCrossRef
147.
go back to reference Moccia M, Frett B, Zhang L, Lakkaniga NR, Briggs DC, Chauhan R, Brescia A, Federico G, Yan W, Santoro M, McDonald NQ, Li HY, Carlomagno F. Bioisosteric discovery of NPA101.3, a second-generation RET/VEGFR2 inhibitor optimized for single-agent polypharmacology. J Med Chem. 2020;63:4506–16.PubMedPubMedCentralCrossRef Moccia M, Frett B, Zhang L, Lakkaniga NR, Briggs DC, Chauhan R, Brescia A, Federico G, Yan W, Santoro M, McDonald NQ, Li HY, Carlomagno F. Bioisosteric discovery of NPA101.3, a second-generation RET/VEGFR2 inhibitor optimized for single-agent polypharmacology. J Med Chem. 2020;63:4506–16.PubMedPubMedCentralCrossRef
148.
go back to reference Abdelnaby RM, El-Malah AA, FakhrEldeen RR, Saeed MM, Nadeem RI, Younis NS, Abdel-Rahman HM, El-Dydamony NM. In vitro anticancer activity screening of novel fused thiophene derivatives as VEGFR-2/AKT dual inhibitors and apoptosis inducers. Pharmaceuticals (Basel). 2022;15:700.CrossRef Abdelnaby RM, El-Malah AA, FakhrEldeen RR, Saeed MM, Nadeem RI, Younis NS, Abdel-Rahman HM, El-Dydamony NM. In vitro anticancer activity screening of novel fused thiophene derivatives as VEGFR-2/AKT dual inhibitors and apoptosis inducers. Pharmaceuticals (Basel). 2022;15:700.CrossRef
149.
go back to reference Ibrahim N, Yu Y, Walsh WR, Yang JL. Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (review). Oncol Rep. 2012;27:1303–11.PubMed Ibrahim N, Yu Y, Walsh WR, Yang JL. Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (review). Oncol Rep. 2012;27:1303–11.PubMed
150.
go back to reference Liu JF, Barry WT, Birrer M, Lee JM, Buckanovich RJ, Fleming GF, Rimel B, Buss MK, Nattam S, Hurteau J, Luo W, Quy P, Whalen C, Obermayer L, Lee H, Winer EP, Kohn EC, Ivy SP, Matulonis UA. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol. 2014;15:1207–14.PubMedPubMedCentralCrossRef Liu JF, Barry WT, Birrer M, Lee JM, Buckanovich RJ, Fleming GF, Rimel B, Buss MK, Nattam S, Hurteau J, Luo W, Quy P, Whalen C, Obermayer L, Lee H, Winer EP, Kohn EC, Ivy SP, Matulonis UA. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol. 2014;15:1207–14.PubMedPubMedCentralCrossRef
151.
go back to reference Nayarisseri A. Experimental and computational approaches to improve binding affinity in chemical biology and drug discovery. Curr Top Med Chem. 2020;20:1651–60.PubMedCrossRef Nayarisseri A. Experimental and computational approaches to improve binding affinity in chemical biology and drug discovery. Curr Top Med Chem. 2020;20:1651–60.PubMedCrossRef
152.
go back to reference Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci. 2019;40:592–604.PubMedCrossRef Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci. 2019;40:592–604.PubMedCrossRef
Metadata
Title
Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy
Authors
Yun Liu
Yang Li
Yuxi Wang
Congcong Lin
Dan Zhang
Juncheng Chen
Liang Ouyang
Fengbo Wu
Jifa Zhang
Lei Chen
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2022
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-022-01310-7

Other articles of this Issue 1/2022

Journal of Hematology & Oncology 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine