Skip to main content
Top
Published in: Annals of Nuclear Medicine 5/2024

11-03-2024 | Glioma | Original Article

Impact of [11C]methionine PET with Bayesian penalized likelihood reconstruction on glioma grades based on new WHO 2021 classification

Authors: Kei Wagatsuma, Kensuke Ikemoto, Motoki Inaji, Yuto Kamitaka, Shoko Hara, Kaoru Tamura, Kenta Miwa, Kaede Tsuzura, Taisei Tsuruki, Noriaki Miyaji, Kenji Ishibashi, Kenji Ishii

Published in: Annals of Nuclear Medicine | Issue 5/2024

Login to get access

Abstract

Objective

The uptake of [11C]methionine in positron emission tomography (PET) imaging overlapped in earlier images of tumors. Bayesian penalized likelihood (BPL) reconstruction increases the quantitative values of tumors compared with conventional ordered subset-expectation maximization (OSEM). The present study aimed to grade glioma malignancy based on the new WHO 2021 classification using [11C]methionine PET images reconstructed using BPL.

Methods

We categorized 32 gliomas in 28 patients as grades 2/3 (n = 15) and 4 (n = 17) based on the WHO 2021 classification. All [11C]methionine images were reconstructed using OSEM + time-of-flight (TOF) and BPL + TOF (β = 200). Maximum standardized uptake value (SUVmax) and tumor-to-normal tissue ratio (T/Nmax) were measured at each lesion.

Results

The mean SUVmax was 4.65 and 4.93 in grade 2/3 and 6.38 and 7.11 in grade 4, and the mean T/Nmax was 7.08 and 7.22 in grade 2/3 and 9.30 and 10.19 in grade 4 for OSEM and BPL, respectively. The BPL significantly increased these values in grade 4 gliomas. The area under the receiver operator characteristic (ROC) curve (AUC) for SUVmax was the highest (0.792) using BPL.

Conclusions

The BPL increased mean SUVmax and mean T/Nmax in lesions with higher contrast such as grade 4 glioma. The discrimination power between grades 2/3 and 4 in SUVmax was also increased using [11C]methionine PET images reconstructed with BPL.
Literature
1.
go back to reference Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 2021;23(12 Suppl 2):iii1–105.PubMedPubMedCentralCrossRef Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 2021;23(12 Suppl 2):iii1–105.PubMedPubMedCentralCrossRef
2.
go back to reference Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.PubMedPubMedCentralCrossRef Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.PubMedPubMedCentralCrossRef
3.
go back to reference Torp SH, Solheim O, Skjulsvik AJ. The WHO 2021 classification of central nervous system tumours: a practical update on what neurosurgeons need to know-a minireview. Acta Neurochir (Wien). 2022;164(9):2453–64.PubMedCrossRef Torp SH, Solheim O, Skjulsvik AJ. The WHO 2021 classification of central nervous system tumours: a practical update on what neurosurgeons need to know-a minireview. Acta Neurochir (Wien). 2022;164(9):2453–64.PubMedCrossRef
4.
go back to reference Whitfield BT, Huse JT. Classification of adult-type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathol. 2022;32(4): e13062.PubMedPubMedCentralCrossRef Whitfield BT, Huse JT. Classification of adult-type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathol. 2022;32(4): e13062.PubMedPubMedCentralCrossRef
5.
go back to reference Heiss WD, Raab P, Lanfermann H. Multimodality assessment of brain tumors and tumor recurrence. J Nucl Med. 2011;52(10):1585–600.PubMedCrossRef Heiss WD, Raab P, Lanfermann H. Multimodality assessment of brain tumors and tumor recurrence. J Nucl Med. 2011;52(10):1585–600.PubMedCrossRef
6.
go back to reference Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.PubMedCrossRef Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.PubMedCrossRef
7.
go back to reference Falk Delgado A, Falk DA. Discrimination between primary low-grade and high-grade glioma with 11C-methionine PET: a bivariate diagnostic test accuracy meta-analysis. Br J Radiol. 2018;91(1082):20170426.PubMedPubMedCentralCrossRef Falk Delgado A, Falk DA. Discrimination between primary low-grade and high-grade glioma with 11C-methionine PET: a bivariate diagnostic test accuracy meta-analysis. Br J Radiol. 2018;91(1082):20170426.PubMedPubMedCentralCrossRef
8.
go back to reference Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, et al. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017;44(7):1155–64.PubMedCrossRef Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, et al. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017;44(7):1155–64.PubMedCrossRef
9.
go back to reference Russo G, Stefano A, Alongi P, Comelli A, Catalfamo B, Mantarro C, et al. Feasibility on the use of radiomics features of 11[C]-MET PET/CT in central nervous system tumours: preliminary results on potential grading discrimination using a machine learning model. Curr Oncol. 2021;28(6):5318–31.PubMedPubMedCentralCrossRef Russo G, Stefano A, Alongi P, Comelli A, Catalfamo B, Mantarro C, et al. Feasibility on the use of radiomics features of 11[C]-MET PET/CT in central nervous system tumours: preliminary results on potential grading discrimination using a machine learning model. Curr Oncol. 2021;28(6):5318–31.PubMedPubMedCentralCrossRef
10.
go back to reference Hatakeyama T, Kawai N, Nishiyama Y, Yamamoto Y, Sasakawa Y, Ichikawa T, et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging. 2008;35(11):2009–17.PubMedCrossRef Hatakeyama T, Kawai N, Nishiyama Y, Yamamoto Y, Sasakawa Y, Ichikawa T, et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging. 2008;35(11):2009–17.PubMedCrossRef
11.
go back to reference Moulin-Romsee G, D’Hondt E, de Groot T, Goffin J, Sciot R, Mortelmans L, et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging. 2007;34(12):2082–7.PubMedCrossRef Moulin-Romsee G, D’Hondt E, de Groot T, Goffin J, Sciot R, Mortelmans L, et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging. 2007;34(12):2082–7.PubMedCrossRef
12.
go back to reference Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, et al. Comparison of 18F-FET and 18F-FDG PET in brain tumors. Nucl Med Biol. 2009;36(7):779–87.PubMedCrossRef Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, et al. Comparison of 18F-FET and 18F-FDG PET in brain tumors. Nucl Med Biol. 2009;36(7):779–87.PubMedCrossRef
13.
go back to reference Nakajo K, Uda T, Kawashima T, Terakawa Y, Ishibashi K, Tsuyuguchi N, et al. Diagnostic performance of [11C]Methionine positron emission tomography in newly diagnosed and untreated glioma based on the revised World Health Organization 2016 classification. World Neurosurg. 2021;148:e471–81.PubMedCrossRef Nakajo K, Uda T, Kawashima T, Terakawa Y, Ishibashi K, Tsuyuguchi N, et al. Diagnostic performance of [11C]Methionine positron emission tomography in newly diagnosed and untreated glioma based on the revised World Health Organization 2016 classification. World Neurosurg. 2021;148:e471–81.PubMedCrossRef
14.
go back to reference Ahn S, Ross SG, Asma E, Miao J, Jin X, Cheng L, et al. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET. Phys Med Biol. 2015;60(15):5733–51.PubMedCrossRef Ahn S, Ross SG, Asma E, Miao J, Jin X, Cheng L, et al. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET. Phys Med Biol. 2015;60(15):5733–51.PubMedCrossRef
15.
go back to reference Murata T, Miwa K, Miyaji N, Wagatsuma K, Hasegawa T, Oda K, et al. Evaluation of spatial dependence of point spread function-based PET reconstruction using a traceable point-like 22Na source. EJNMMI Phys. 2016;3(1):26.PubMedPubMedCentralCrossRef Murata T, Miwa K, Miyaji N, Wagatsuma K, Hasegawa T, Oda K, et al. Evaluation of spatial dependence of point spread function-based PET reconstruction using a traceable point-like 22Na source. EJNMMI Phys. 2016;3(1):26.PubMedPubMedCentralCrossRef
16.
go back to reference Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the bayesian penalized likelihood reconstruction algorithm Q.clear on an LYSO PET/CT system. J Nucl Med. 2015;56(9):1447–52.PubMedCrossRef Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the bayesian penalized likelihood reconstruction algorithm Q.clear on an LYSO PET/CT system. J Nucl Med. 2015;56(9):1447–52.PubMedCrossRef
17.
go back to reference Aide N, Lasnon C, Kesner A, Levin CS, Buvat I, Iagaru A, et al. New PET technologies - embracing progress and pushing the limits. Eur J Nucl Med Mol Imaging. 2021;48(9):2711–26.PubMedPubMedCentralCrossRef Aide N, Lasnon C, Kesner A, Levin CS, Buvat I, Iagaru A, et al. New PET technologies - embracing progress and pushing the limits. Eur J Nucl Med Mol Imaging. 2021;48(9):2711–26.PubMedPubMedCentralCrossRef
18.
go back to reference Aljared A, Alharbi AA, Huellner MW. BSREM reconstruction for improved detection of in-transit metastases with digital FDG-PET/CT in patients with malignant melanoma. Clin Nucl Med. 2018;43(5):370–1.PubMedCrossRef Aljared A, Alharbi AA, Huellner MW. BSREM reconstruction for improved detection of in-transit metastases with digital FDG-PET/CT in patients with malignant melanoma. Clin Nucl Med. 2018;43(5):370–1.PubMedCrossRef
19.
go back to reference Miwa K, Wagatsuma K, Nemoto R, Masubuchi M, Kamitaka Y, Yamao T, et al. Detection of sub-centimeter lesions using digital TOF-PET/CT system combined with Bayesian penalized likelihood reconstruction algorithm. Ann Nucl Med. 2020;34(10):762–71.PubMedCrossRef Miwa K, Wagatsuma K, Nemoto R, Masubuchi M, Kamitaka Y, Yamao T, et al. Detection of sub-centimeter lesions using digital TOF-PET/CT system combined with Bayesian penalized likelihood reconstruction algorithm. Ann Nucl Med. 2020;34(10):762–71.PubMedCrossRef
20.
go back to reference Te Riet J, Rijnsdorp S, Roef MJ, Arends AJ. Evaluation of a Bayesian penalized likelihood reconstruction algorithm for low-count clinical 18F-FDG PET/CT. EJNMMI Phys. 2019;6(1):32.CrossRef Te Riet J, Rijnsdorp S, Roef MJ, Arends AJ. Evaluation of a Bayesian penalized likelihood reconstruction algorithm for low-count clinical 18F-FDG PET/CT. EJNMMI Phys. 2019;6(1):32.CrossRef
21.
go back to reference Asma E, Ahn S, Ross SG, Chen A, Manjeshwar RM. Accurate and consistent lesion quantitation with clinically acceptable penalized likelihood images. IEEE Nucl Sci Sympos Med Imaging Conf Record. 2012;2012:4062–6. Asma E, Ahn S, Ross SG, Chen A, Manjeshwar RM. Accurate and consistent lesion quantitation with clinically acceptable penalized likelihood images. IEEE Nucl Sci Sympos Med Imaging Conf Record. 2012;2012:4062–6.
22.
go back to reference Miwa K, Yoshii T, Wagatsuma K, Nezu S, Kamitaka Y, Yamao T, et al. Impact of gamma factor in the penalty function of Bayesian penalized likelihood reconstruction (Q.Clear) to achieve high-resolution PET images. EJNMMI Phys. 2023;10(1):4.PubMedPubMedCentralCrossRef Miwa K, Yoshii T, Wagatsuma K, Nezu S, Kamitaka Y, Yamao T, et al. Impact of gamma factor in the penalty function of Bayesian penalized likelihood reconstruction (Q.Clear) to achieve high-resolution PET images. EJNMMI Phys. 2023;10(1):4.PubMedPubMedCentralCrossRef
23.
go back to reference Reynes-Llompart G, Gamez-Cenzano C, Vercher-Conejero JL, Sabate-Llobera A, Calvo-Malvar N, Marti-Climent JM. Phantom, clinical, and texture indices evaluation and optimization of a penalized-likelihood image reconstruction method (Q.Clear) on a BGO PET/CT scanner. Med Phys. 2018;45(7):3214–22.PubMedCrossRef Reynes-Llompart G, Gamez-Cenzano C, Vercher-Conejero JL, Sabate-Llobera A, Calvo-Malvar N, Marti-Climent JM. Phantom, clinical, and texture indices evaluation and optimization of a penalized-likelihood image reconstruction method (Q.Clear) on a BGO PET/CT scanner. Med Phys. 2018;45(7):3214–22.PubMedCrossRef
24.
go back to reference Teoh EJ, McGowan DR, Bradley KM, Belcher E, Black E, Gleeson FV. Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules. Eur Radiol. 2016;26(2):576–84.PubMedCrossRef Teoh EJ, McGowan DR, Bradley KM, Belcher E, Black E, Gleeson FV. Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules. Eur Radiol. 2016;26(2):576–84.PubMedCrossRef
25.
go back to reference Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PETCT Discovery-690. Med Phys. 2011;38(10):5394–411.PubMedCrossRef Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PETCT Discovery-690. Med Phys. 2011;38(10):5394–411.PubMedCrossRef
26.
go back to reference Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10.PubMedCrossRef Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10.PubMedCrossRef
27.
go back to reference Ogishima T, Tamura K, Kobayashi D, Inaji M, Hayashi S, Tamura R, et al. ATRX status correlates with 11 C-methionine uptake in WHO grade II and III gliomas with IDH1 mutations. Brain Tumor Pathol. 2017;34(1):20–7.PubMedCrossRef Ogishima T, Tamura K, Kobayashi D, Inaji M, Hayashi S, Tamura R, et al. ATRX status correlates with 11 C-methionine uptake in WHO grade II and III gliomas with IDH1 mutations. Brain Tumor Pathol. 2017;34(1):20–7.PubMedCrossRef
28.
go back to reference Reuss DE, Sahm F, Schrimpf D, Wiestler B, Capper D, Koelsche C, et al. ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol. 2015;129(1):133–46.PubMedCrossRef Reuss DE, Sahm F, Schrimpf D, Wiestler B, Capper D, Koelsche C, et al. ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol. 2015;129(1):133–46.PubMedCrossRef
29.
go back to reference Ebiko Y, Tamura K, Hara S, Inaji M, Tanaka Y, Nariai T, et al. T2-FLAIR mismatch sign correlates with 11C-methionine uptake in lower-grade diffuse gliomas. J Neurooncol. 2023;164(1):257–65.PubMedCrossRef Ebiko Y, Tamura K, Hara S, Inaji M, Tanaka Y, Nariai T, et al. T2-FLAIR mismatch sign correlates with 11C-methionine uptake in lower-grade diffuse gliomas. J Neurooncol. 2023;164(1):257–65.PubMedCrossRef
30.
go back to reference Hirata K, Kobayashi K, Wong KP, Manabe O, Surmak A, Tamaki N, et al. A semi-automated technique determining the liver standardized uptake value reference for tumor delineation in FDG PET-CT. PLoS ONE. 2014;9(8): e105682.PubMedPubMedCentralCrossRef Hirata K, Kobayashi K, Wong KP, Manabe O, Surmak A, Tamaki N, et al. A semi-automated technique determining the liver standardized uptake value reference for tumor delineation in FDG PET-CT. PLoS ONE. 2014;9(8): e105682.PubMedPubMedCentralCrossRef
31.
go back to reference Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–57.PubMedCrossRef Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–57.PubMedCrossRef
32.
go back to reference Unterrainer M, Vettermann F, Brendel M, Holzgreve A, Lifschitz M, Zahringer M, et al. Towards standardization of 18F-FET PET imaging: do we need a consistent method of background activity assessment? EJNMMI Res. 2017;7(1):48.PubMedPubMedCentralCrossRef Unterrainer M, Vettermann F, Brendel M, Holzgreve A, Lifschitz M, Zahringer M, et al. Towards standardization of 18F-FET PET imaging: do we need a consistent method of background activity assessment? EJNMMI Res. 2017;7(1):48.PubMedPubMedCentralCrossRef
33.
go back to reference Krokos G, Pike LC, Cook GJR, Marsden PK. Standardisation of conventional and advanced iterative reconstruction methods for Gallium-68 multi-centre PET-CT trials. EJNMMI Phys. 2021;8(1):52.PubMedPubMedCentralCrossRef Krokos G, Pike LC, Cook GJR, Marsden PK. Standardisation of conventional and advanced iterative reconstruction methods for Gallium-68 multi-centre PET-CT trials. EJNMMI Phys. 2021;8(1):52.PubMedPubMedCentralCrossRef
34.
go back to reference Texte E, Gouel P, Thureau S, Lequesne J, Barres B, Edet-Sanson A, et al. Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images. EJNMMI Phys. 2020;7(1):28.PubMedPubMedCentralCrossRef Texte E, Gouel P, Thureau S, Lequesne J, Barres B, Edet-Sanson A, et al. Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images. EJNMMI Phys. 2020;7(1):28.PubMedPubMedCentralCrossRef
35.
go back to reference Alkhaibary A, Alassiri AH, AlSufiani F, Alharbi MA. Ki-67 labeling index in glioblastoma; does it really matter? Hematol Oncol Stem Cell Ther. 2019;12(2):82–8.PubMedCrossRef Alkhaibary A, Alassiri AH, AlSufiani F, Alharbi MA. Ki-67 labeling index in glioblastoma; does it really matter? Hematol Oncol Stem Cell Ther. 2019;12(2):82–8.PubMedCrossRef
36.
go back to reference Armocida D, Frati A, Salvati M, Santoro A, Pesce A. Is Ki-67 index overexpression in IDH wild type glioblastoma a predictor of shorter progression free survival? A clinical and Molecular analytic investigation. Clin Neurol Neurosurg. 2020;198: 106126.PubMedCrossRef Armocida D, Frati A, Salvati M, Santoro A, Pesce A. Is Ki-67 index overexpression in IDH wild type glioblastoma a predictor of shorter progression free survival? A clinical and Molecular analytic investigation. Clin Neurol Neurosurg. 2020;198: 106126.PubMedCrossRef
37.
go back to reference Johannessen AL, Torp SH. The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathol Oncol Res. 2006;12(3):143–7.PubMedCrossRef Johannessen AL, Torp SH. The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathol Oncol Res. 2006;12(3):143–7.PubMedCrossRef
38.
go back to reference Zeng A, Hu Q, Liu Y, Wang Z, Cui X, Li R, et al. IDH1/2 mutation status combined with Ki-67 labeling index defines distinct prognostic groups in glioma. Oncotarget. 2015;6(30):30232–8.PubMedPubMedCentralCrossRef Zeng A, Hu Q, Liu Y, Wang Z, Cui X, Li R, et al. IDH1/2 mutation status combined with Ki-67 labeling index defines distinct prognostic groups in glioma. Oncotarget. 2015;6(30):30232–8.PubMedPubMedCentralCrossRef
39.
go back to reference Miyake K, Shinomiya A, Okada M, Hatakeyama T, Kawai N, Tamiya T. Usefulness of FDG, MET and FLT-PET studies for the management of human gliomas. J Biomed Biotechnol. 2012;2012: 205818.PubMedPubMedCentralCrossRef Miyake K, Shinomiya A, Okada M, Hatakeyama T, Kawai N, Tamiya T. Usefulness of FDG, MET and FLT-PET studies for the management of human gliomas. J Biomed Biotechnol. 2012;2012: 205818.PubMedPubMedCentralCrossRef
40.
go back to reference Cicuendez M, Lorenzo-Bosquet C, Cuberas-Borros G, Martinez-Ricarte F, Cordero E, Martinez-Saez E, et al. Role of [11C] methionine positron emission tomography in the diagnosis and prediction of survival in brain tumours. Clin Neurol Neurosurg. 2015;139:328–33.PubMedCrossRef Cicuendez M, Lorenzo-Bosquet C, Cuberas-Borros G, Martinez-Ricarte F, Cordero E, Martinez-Saez E, et al. Role of [11C] methionine positron emission tomography in the diagnosis and prediction of survival in brain tumours. Clin Neurol Neurosurg. 2015;139:328–33.PubMedCrossRef
41.
go back to reference Saito T, Maruyama T, Muragaki Y, Tanaka M, Nitta M, Shinoda J, et al. 11C-methionine uptake correlates with combined 1p and 19q loss of heterozygosity in oligodendroglial tumors. AJNR Am J Neuroradiol. 2013;34(1):85–91.PubMedPubMedCentralCrossRef Saito T, Maruyama T, Muragaki Y, Tanaka M, Nitta M, Shinoda J, et al. 11C-methionine uptake correlates with combined 1p and 19q loss of heterozygosity in oligodendroglial tumors. AJNR Am J Neuroradiol. 2013;34(1):85–91.PubMedPubMedCentralCrossRef
42.
go back to reference Laudicella R, Albano D, Alongi P, Argiroffi G, Bauckneht M, Baldari S, et al. 18F-Facbc in prostate cancer: a systematic review and meta-analysis. Cancers (Basel). 2019;11(9):1348.PubMedPubMedCentralCrossRef Laudicella R, Albano D, Alongi P, Argiroffi G, Bauckneht M, Baldari S, et al. 18F-Facbc in prostate cancer: a systematic review and meta-analysis. Cancers (Basel). 2019;11(9):1348.PubMedPubMedCentralCrossRef
43.
go back to reference Parent EE, Benayoun M, Ibeanu I, Olson JJ, Hadjipanayis CG, Brat DJ, et al. [18F]Fluciclovine PET discrimination between high- and low-grade gliomas. EJNMMI Res. 2018;8(1):67.PubMedPubMedCentralCrossRef Parent EE, Benayoun M, Ibeanu I, Olson JJ, Hadjipanayis CG, Brat DJ, et al. [18F]Fluciclovine PET discrimination between high- and low-grade gliomas. EJNMMI Res. 2018;8(1):67.PubMedPubMedCentralCrossRef
44.
go back to reference Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y. Diagnosis of brain tumors using amino acid transport PET imaging with 18F-fluciclovine: a comparative study with L-methyl-11C-methionine PET imaging. Asia Ocean J Nucl Med Biol. 2017;5(2):85–94.PubMedPubMedCentral Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y. Diagnosis of brain tumors using amino acid transport PET imaging with 18F-fluciclovine: a comparative study with L-methyl-11C-methionine PET imaging. Asia Ocean J Nucl Med Biol. 2017;5(2):85–94.PubMedPubMedCentral
Metadata
Title
Impact of [11C]methionine PET with Bayesian penalized likelihood reconstruction on glioma grades based on new WHO 2021 classification
Authors
Kei Wagatsuma
Kensuke Ikemoto
Motoki Inaji
Yuto Kamitaka
Shoko Hara
Kaoru Tamura
Kenta Miwa
Kaede Tsuzura
Taisei Tsuruki
Noriaki Miyaji
Kenji Ishibashi
Kenji Ishii
Publication date
11-03-2024
Publisher
Springer Nature Singapore
Published in
Annals of Nuclear Medicine / Issue 5/2024
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-024-01911-x

Other articles of this Issue 5/2024

Annals of Nuclear Medicine 5/2024 Go to the issue