Skip to main content
Top
Published in: Cancer Cell International 1/2023

Open Access 01-12-2023 | Glioma | Research

Decoding the prognostic significance of integrator complex subunit 9 (INTS9) in glioma: links to TP53 mutations, E2F signaling, and inflammatory microenvironments

Authors: Yu-Chieh Lin, Pei-Chi Chang, Dueng-Yuan Hueng, Shih-Ming Huang, Yao-Feng Li

Published in: Cancer Cell International | Issue 1/2023

Login to get access

Abstract

Introduction

Gliomas, a type of brain neoplasm, are prevalent and often fatal. Molecular diagnostics have improved understanding, but treatment options are limited. This study investigates the role of INTS9 in processing small nuclear RNA (snRNA), which is crucial to generating mature messenger RNA (mRNA). We aim to employ advanced bioinformatics analyses with large-scale databases and conduct functional experiments to elucidate its potential role in glioma therapeutics.

Materials and methods

We collected genomic, proteomic, and Whole-Exon-Sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) for bioinformatic analyses. Then, we validated INTS9 protein expression through immunohistochemistry and assessed its correlation with P53 and KI67 protein expression. Gene Set Enrichment Analysis (GSEA) was performed to identify altered signaling pathways, and functional experiments were conducted on three cell lines treated with siINTS9. Then, we also investigate the impacts of tumor heterogeneity on INTS9 expression by integrating single-cell sequencing, 12-cell state prediction, and CIBERSORT analyses. Finally, we also observed longitudinal changes in INTS9 using the Glioma Longitudinal Analysis (GLASS) dataset.

Results

Our findings showed increased INTS9 levels in tumor tissue compared to non-neoplastic components, correlating with high tumor grading and proliferation index. TP53 mutation was the most notable factor associated with upregulated INTS9, along with other potential contributors, such as combined chromosome 7 gain/10 loss, TERT promoter mutation, and increased Tumor Mutational Burden (TMB). In GSEA analyses, we also linked INTS9 with enhanced cell proliferation and inflammation signaling. Downregulating INTS9 impacted cellular proliferation and cell cycle regulation during the function validation. In the context of the 12 cell states, INTS9 correlated with tumor-stem and tumor-proliferative-stem cells. CIBERSORT analyses revealed increased INTS9 associated with increased macrophage M0 and M2 but depletion of monocytes. Longitudinally, we also noticed that the INTS9 expression declined during recurrence in IDH wildtype.

Conclusion

This study assessed the role of INTS9 protein in glioma development and its potential as a therapeutic target. Results indicated elevated INTS9 levels were linked to increased proliferation capacity, higher tumor grading, and poorer prognosis, potentially resulting from TP53 mutations. This research highlights the potential of INTS9 as a promising target for glioma treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, et al. CBTRUS Statistical Report: primary brain and other Central Nervous System Tumors diagnosed in the United States in 2012–2016. Neurooncology. 2019;21:V1–V100. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, et al. CBTRUS Statistical Report: primary brain and other Central Nervous System Tumors diagnosed in the United States in 2012–2016. Neurooncology. 2019;21:V1–V100.
2.
go back to reference Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedCrossRef Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedCrossRef
3.
go back to reference Louis DN, Wesseling P, Aldape K, Brat DJ, Capper D, Cree IA, et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020;30(4):844–56.PubMedPubMedCentralCrossRef Louis DN, Wesseling P, Aldape K, Brat DJ, Capper D, Cree IA, et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020;30(4):844–56.PubMedPubMedCentralCrossRef
4.
go back to reference Ellison DW, Aldape KD, Capper D, Fouladi M, Gilbert MR, Gilbertson RJ et al. cIMPACT-NOW update 7: advancing the molecular classification of ependymal tumors. Brain pathology (Zurich, Switzerland). 2020. Ellison DW, Aldape KD, Capper D, Fouladi M, Gilbert MR, Gilbertson RJ et al. cIMPACT-NOW update 7: advancing the molecular classification of ependymal tumors. Brain pathology (Zurich, Switzerland). 2020.
5.
go back to reference Brat DJ, Aldape K, Colman H, Figrarella-Branger D, Fuller GN, Giannini C, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603–8.PubMedPubMedCentralCrossRef Brat DJ, Aldape K, Colman H, Figrarella-Branger D, Fuller GN, Giannini C, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603–8.PubMedPubMedCentralCrossRef
6.
go back to reference Ellison DW, Hawkins C, Jones DTW, Onar-Thomas A, Pfister SM, Reifenberger G, et al. cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAF(V600E) mutation. Acta Neuropathol. 2019;137(4):683–7.PubMedCrossRef Ellison DW, Hawkins C, Jones DTW, Onar-Thomas A, Pfister SM, Reifenberger G, et al. cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAF(V600E) mutation. Acta Neuropathol. 2019;137(4):683–7.PubMedCrossRef
7.
go back to reference Louis DN, Wesseling P, Paulus W, Giannini C, Batchelor TT, Cairncross JG, et al. cIMPACT-NOW update 1: not otherwise specified (NOS) and not elsewhere classified (NEC). Acta Neuropathol. 2018;135(3):481–4.PubMedCrossRef Louis DN, Wesseling P, Paulus W, Giannini C, Batchelor TT, Cairncross JG, et al. cIMPACT-NOW update 1: not otherwise specified (NOS) and not elsewhere classified (NEC). Acta Neuropathol. 2018;135(3):481–4.PubMedCrossRef
8.
go back to reference Louis DN, Giannini C, Capper D, Paulus W, Figarella-Branger D, Lopes MB, et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018;135(4):639–42.PubMedCrossRef Louis DN, Giannini C, Capper D, Paulus W, Figarella-Branger D, Lopes MB, et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018;135(4):639–42.PubMedCrossRef
9.
go back to reference Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV. Acta Neuropathol. 2018;136(5):805–10.PubMedPubMedCentralCrossRef Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV. Acta Neuropathol. 2018;136(5):805–10.PubMedPubMedCentralCrossRef
10.
go back to reference Louis DN, Aldape K, Brat DJ, Capper D, Ellison DW, Hawkins C, et al. cIMPACT-NOW (the consortium to inform molecular and practical approaches to CNS tumor taxonomy): a new initiative in advancing nervous system tumor classification. Brain Pathol. 2017;27(6):851–2.PubMedCrossRef Louis DN, Aldape K, Brat DJ, Capper D, Ellison DW, Hawkins C, et al. cIMPACT-NOW (the consortium to inform molecular and practical approaches to CNS tumor taxonomy): a new initiative in advancing nervous system tumor classification. Brain Pathol. 2017;27(6):851–2.PubMedCrossRef
11.
go back to reference Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.PubMedPubMedCentralCrossRef Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.PubMedPubMedCentralCrossRef
13.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.PubMedCrossRef Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.PubMedCrossRef
14.
go back to reference Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neurooncology. 2021;23(8):1231–51. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neurooncology. 2021;23(8):1231–51.
15.
go back to reference Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–74.PubMedPubMedCentralCrossRef Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–74.PubMedPubMedCentralCrossRef
16.
go back to reference Bjorland LS, Fluge O, Gilje B, Mahesparan R, Farbu E. Treatment approach and survival from glioblastoma: results from a population-based retrospective cohort study from western Norway. BMJ Open. 2021;11(3). Bjorland LS, Fluge O, Gilje B, Mahesparan R, Farbu E. Treatment approach and survival from glioblastoma: results from a population-based retrospective cohort study from western Norway. BMJ Open. 2021;11(3).
17.
go back to reference Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant Temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.PubMedCrossRef Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant Temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.PubMedCrossRef
18.
go back to reference Brodbelt A, Greenberg D, Winters T, Williams M, Vernon S, Collins VP. Glioblastoma in England: 2007–2011. Eur J Cancer. 2015;51(4):533–42.PubMedCrossRef Brodbelt A, Greenberg D, Winters T, Williams M, Vernon S, Collins VP. Glioblastoma in England: 2007–2011. Eur J Cancer. 2015;51(4):533–42.PubMedCrossRef
19.
go back to reference Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas-implications for classification and therapy. Nat Reviews Clin Oncol. 2017;14(7):434–52.CrossRef Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas-implications for classification and therapy. Nat Reviews Clin Oncol. 2017;14(7):434–52.CrossRef
20.
go back to reference Colardo M, Segatto M, Di Bartolomeo S. Targeting RTK-PI3K-mTOR Axis in Gliomas: an update. Int J Mol Sci. 2021;22(9). Colardo M, Segatto M, Di Bartolomeo S. Targeting RTK-PI3K-mTOR Axis in Gliomas: an update. Int J Mol Sci. 2021;22(9).
21.
go back to reference Feng SW, Chang PC, Chen HY, Hueng DY, Li YF, Huang SM. Exploring the mechanism of Adjuvant Treatment of Glioblastoma using Temozolomide and Metformin. Int J Mol Sci. 2022;23(15). Feng SW, Chang PC, Chen HY, Hueng DY, Li YF, Huang SM. Exploring the mechanism of Adjuvant Treatment of Glioblastoma using Temozolomide and Metformin. Int J Mol Sci. 2022;23(15).
22.
go back to reference Shersher E, Lahiry M, Alvarez-Trotta A, Diluvio G, Robbins DJ, Shiekhattar R et al. NACK and INTEGRATOR act coordinately to activate notch-mediated transcription in tumorigenesis. Cell Commun Signal. 2021;19(1). Shersher E, Lahiry M, Alvarez-Trotta A, Diluvio G, Robbins DJ, Shiekhattar R et al. NACK and INTEGRATOR act coordinately to activate notch-mediated transcription in tumorigenesis. Cell Commun Signal. 2021;19(1).
23.
go back to reference Albrecht TR, Shevtsov SP, Wu Y, Mascibroda LG, Peart NJ, Huang KL, et al. Integrator subunit 4 is a ‘Symplekin-like’ scaffold that associates with INTS9/11 to form the integrator cleavage module. Nucleic Acids Res. 2018;46(8):4241–55.PubMedPubMedCentralCrossRef Albrecht TR, Shevtsov SP, Wu Y, Mascibroda LG, Peart NJ, Huang KL, et al. Integrator subunit 4 is a ‘Symplekin-like’ scaffold that associates with INTS9/11 to form the integrator cleavage module. Nucleic Acids Res. 2018;46(8):4241–55.PubMedPubMedCentralCrossRef
24.
25.
go back to reference Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking integrator complex. Nat Rev Mol Cell Biol. 2023;24(3):204–20.PubMedCrossRef Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking integrator complex. Nat Rev Mol Cell Biol. 2023;24(3):204–20.PubMedCrossRef
26.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.PubMedPubMedCentralCrossRef Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.PubMedPubMedCentralCrossRef
27.
go back to reference Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO precision oncology. 2017;2017. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO precision oncology. 2017;2017.
28.
go back to reference Le T, Phan T, Pham M, Tran D, Lam L, Nguyen T et al. BBrowser: making single-cell data easily accessible. bioRxiv: the preprint server for biology. 2020:2020.12.11.414136. Le T, Phan T, Pham M, Tran D, Lam L, Nguyen T et al. BBrowser: making single-cell data easily accessible. bioRxiv: the preprint server for biology. 2020:2020.12.11.414136.
29.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef
30.
go back to reference Li YF, Tsai WC, Chou CH, Huang LC, Huang SM, Hueng DY et al. CKAP2L Knockdown exerts Antitumor Effects by increasing miR-4496 in Glioblastoma Cell Lines. Int J Mol Sci. 2020;22(1). Li YF, Tsai WC, Chou CH, Huang LC, Huang SM, Hueng DY et al. CKAP2L Knockdown exerts Antitumor Effects by increasing miR-4496 in Glioblastoma Cell Lines. Int J Mol Sci. 2020;22(1).
31.
go back to reference Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor infiltrating Immune cells with CIBERSORT. Methods in molecular biology. (Clifton NJ). 2018;1711:243–59. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor infiltrating Immune cells with CIBERSORT. Methods in molecular biology. (Clifton NJ). 2018;1711:243–59.
32.
go back to reference Li YF, Scerif F, Picker SR, Stone TJ, Pickles JC, Moulding DA, et al. Identifying cellular signalling molecules in developmental disorders of the brain: evidence from focal cortical dysplasia and tuberous sclerosis. Neuropathol Appl Neurobiol. 2021;47(6):781–95.PubMedCrossRef Li YF, Scerif F, Picker SR, Stone TJ, Pickles JC, Moulding DA, et al. Identifying cellular signalling molecules in developmental disorders of the brain: evidence from focal cortical dysplasia and tuberous sclerosis. Neuropathol Appl Neurobiol. 2021;47(6):781–95.PubMedCrossRef
33.
go back to reference Chang PC, Lin YC, Yen HJ, Hueng DY, Huang SM, Li YF. Ancient ubiquitous protein 1 (AUP1) is a prognostic biomarker connected with TP53 mutation and the inflamed microenvironments in glioma. Cancer Cell Int. 2023;23(1):62.PubMedPubMedCentralCrossRef Chang PC, Lin YC, Yen HJ, Hueng DY, Huang SM, Li YF. Ancient ubiquitous protein 1 (AUP1) is a prognostic biomarker connected with TP53 mutation and the inflamed microenvironments in glioma. Cancer Cell Int. 2023;23(1):62.PubMedPubMedCentralCrossRef
34.
go back to reference Varn FS, Johnson KC, Martinek J, Huse JT, Nasrallah MP, Wesseling P, et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell. 2022;185(12):2184–99e16.PubMedPubMedCentralCrossRef Varn FS, Johnson KC, Martinek J, Huse JT, Nasrallah MP, Wesseling P, et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell. 2022;185(12):2184–99e16.PubMedPubMedCentralCrossRef
35.
go back to reference Ellinghaus E, Stanulla M, Richter G, Ellinghaus D, Te Kronnie G, Cario G, et al. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia. 2012;26(5):902–9.PubMedCrossRef Ellinghaus E, Stanulla M, Richter G, Ellinghaus D, Te Kronnie G, Cario G, et al. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia. 2012;26(5):902–9.PubMedCrossRef
36.
go back to reference Wieland I, Arden KC, Michels D, Klein-Hitpass L, Böhm M, Viars CS, et al. Isolation of DICE1: a gene frequently affected by LOH and downregulated in lung carcinomas. Oncogene. 1999;18(32):4530–7.PubMedCrossRef Wieland I, Arden KC, Michels D, Klein-Hitpass L, Böhm M, Viars CS, et al. Isolation of DICE1: a gene frequently affected by LOH and downregulated in lung carcinomas. Oncogene. 1999;18(32):4530–7.PubMedCrossRef
37.
go back to reference Wieland I, Röpke A, Stumm M, Sell C, Weidle UH, Wieacker PF. Molecular characterization of the DICE1 (DDX26) tumor suppressor gene in lung carcinoma cells. Oncol Res. 2000;12(11–12):491–500. Wieland I, Röpke A, Stumm M, Sell C, Weidle UH, Wieacker PF. Molecular characterization of the DICE1 (DDX26) tumor suppressor gene in lung carcinoma cells. Oncol Res. 2000;12(11–12):491–500.
38.
go back to reference Li WJ, Hu N, Su H, Wang C, Goldstein AM, Wang Y, et al. Allelic loss on chromosome 13q14 and mutation in deleted in cancer 1 gene in esophageal squamous cell carcinoma. Oncogene. 2003;22(2):314–8.PubMedCrossRef Li WJ, Hu N, Su H, Wang C, Goldstein AM, Wang Y, et al. Allelic loss on chromosome 13q14 and mutation in deleted in cancer 1 gene in esophageal squamous cell carcinoma. Oncogene. 2003;22(2):314–8.PubMedCrossRef
39.
go back to reference Röpke A, Buhtz P, Böhm M, Seger J, Wieland I, Allhoff EP, et al. Promoter CpG hypermethylation and downregulation of DICE1 expression in prostate cancer. Oncogene. 2005;24(44):6667–75.PubMedCrossRef Röpke A, Buhtz P, Böhm M, Seger J, Wieland I, Allhoff EP, et al. Promoter CpG hypermethylation and downregulation of DICE1 expression in prostate cancer. Oncogene. 2005;24(44):6667–75.PubMedCrossRef
40.
go back to reference Filleur S, Hirsch J, Wille A, Schön M, Sell C, Shearer MH et al. INTS6/DICE1 inhibits growth of human androgen-independent prostate cancer cells by altering the cell cycle profile and wnt signaling. Cancer Cell Int. 2009;9. Filleur S, Hirsch J, Wille A, Schön M, Sell C, Shearer MH et al. INTS6/DICE1 inhibits growth of human androgen-independent prostate cancer cells by altering the cell cycle profile and wnt signaling. Cancer Cell Int. 2009;9.
41.
go back to reference Li J, Zhai X, Wang H, Qian X, Miao H, Zhu X. Bioinformatics analysis of gene expression profiles in childhood B-precursor acute lymphoblastic leukemia. Hematol (United Kingdom). 2015;20(7):377–83. Li J, Zhai X, Wang H, Qian X, Miao H, Zhu X. Bioinformatics analysis of gene expression profiles in childhood B-precursor acute lymphoblastic leukemia. Hematol (United Kingdom). 2015;20(7):377–83.
42.
go back to reference Peng H, Ishida M, Li L, Saito A, Kamiya A, Hamilton JP, et al. Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of mir-17-5p in hepatocellular carcinoma. Oncotarget. 2015;6(8):5666–77.PubMedPubMedCentralCrossRef Peng H, Ishida M, Li L, Saito A, Kamiya A, Hamilton JP, et al. Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of mir-17-5p in hepatocellular carcinoma. Oncotarget. 2015;6(8):5666–77.PubMedPubMedCentralCrossRef
43.
go back to reference Li Z, Zhu P, Wang M, Fang C, Ji H. Correlation between oncogene integrator complex subunit 7 and a poor prognosis in lung adenocarcinoma. J Thorac Dis. 2022;14(12):4815–27.PubMedPubMedCentralCrossRef Li Z, Zhu P, Wang M, Fang C, Ji H. Correlation between oncogene integrator complex subunit 7 and a poor prognosis in lung adenocarcinoma. J Thorac Dis. 2022;14(12):4815–27.PubMedPubMedCentralCrossRef
44.
go back to reference Simpson HM, Khan RZ, Song C, Sharma D, Sadashivaiah K, Furusawa A et al. Concurrent mutations in ATM and genes associated with common γ chain signaling in peripheral T cell lymphoma. PLoS ONE. 2015;10(11). Simpson HM, Khan RZ, Song C, Sharma D, Sadashivaiah K, Furusawa A et al. Concurrent mutations in ATM and genes associated with common γ chain signaling in peripheral T cell lymphoma. PLoS ONE. 2015;10(11).
45.
go back to reference Zhou Q, Ji L, Shi X, Deng D, Guo F, Wang Z, et al. INTS8 is a therapeutic target for intrahepatic cholangiocarcinoma via the integration of bioinformatics analysis and experimental validation. Sci Rep. 2021;11(1):23649.PubMedPubMedCentralCrossRef Zhou Q, Ji L, Shi X, Deng D, Guo F, Wang Z, et al. INTS8 is a therapeutic target for intrahepatic cholangiocarcinoma via the integration of bioinformatics analysis and experimental validation. Sci Rep. 2021;11(1):23649.PubMedPubMedCentralCrossRef
46.
go back to reference Cheng L, Zhang Q, Yang S, Yang Y, Zhang W, Gao H, et al. A 4-gene panel as a marker at chromosome 8q in asian gastric cancer patients. Genomics. 2013;102(4):323–30.PubMedCrossRef Cheng L, Zhang Q, Yang S, Yang Y, Zhang W, Gao H, et al. A 4-gene panel as a marker at chromosome 8q in asian gastric cancer patients. Genomics. 2013;102(4):323–30.PubMedCrossRef
47.
go back to reference Yoshimi A, Lin KT, Wiseman DH, Rahman MA, Pastore A, Wang B, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574(7777):273–7.PubMedPubMedCentralCrossRef Yoshimi A, Lin KT, Wiseman DH, Rahman MA, Pastore A, Wang B, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574(7777):273–7.PubMedPubMedCentralCrossRef
48.
go back to reference Inagaki Y, Yasui K, Endo M, Nakajima T, Zen K, Tsuji K, et al. CREB3L4, INTS3, and SNAPAP are targets for the 1q21 amplicon frequently detected in hepatocellular carcinoma. Cancer Genet Cytogenet. 2008;180(1):30–6.PubMedCrossRef Inagaki Y, Yasui K, Endo M, Nakajima T, Zen K, Tsuji K, et al. CREB3L4, INTS3, and SNAPAP are targets for the 1q21 amplicon frequently detected in hepatocellular carcinoma. Cancer Genet Cytogenet. 2008;180(1):30–6.PubMedCrossRef
49.
go back to reference Federico A, Rienzo M, Abbondanza C, Costa V, Ciccodicola A, Casamassimi A. Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex. Int J Mol Sci. 2017;18(5). Federico A, Rienzo M, Abbondanza C, Costa V, Ciccodicola A, Casamassimi A. Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex. Int J Mol Sci. 2017;18(5).
50.
go back to reference Tong H, Liu X, Li T, Qiu W, Peng C, Shen B, et al. INTS8 accelerates the epithelial-to-mesenchymal transition in hepatocellular carcinoma by upregulating the TGF-β signaling pathway. Cancer Manage Res. 2019;11:1869–79.CrossRef Tong H, Liu X, Li T, Qiu W, Peng C, Shen B, et al. INTS8 accelerates the epithelial-to-mesenchymal transition in hepatocellular carcinoma by upregulating the TGF-β signaling pathway. Cancer Manage Res. 2019;11:1869–79.CrossRef
51.
go back to reference Takami H, Yoshida A, Fukushima S, Arita H, Matsushita Y, Nakamura T et al. Revisiting TP53 mutations and Immunohistochemistry–A comparative study in 157 diffuse gliomas. Brain pathology (Zurich, Switzerland). 2015;25(3):256–65. Takami H, Yoshida A, Fukushima S, Arita H, Matsushita Y, Nakamura T et al. Revisiting TP53 mutations and Immunohistochemistry–A comparative study in 157 diffuse gliomas. Brain pathology (Zurich, Switzerland). 2015;25(3):256–65.
52.
go back to reference Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Rep. 2020;30(2):481–. – 96.e6.PubMedPubMedCentralCrossRef Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Rep. 2020;30(2):481–. – 96.e6.PubMedPubMedCentralCrossRef
53.
go back to reference Appay R, Dehais C, Maurage CA, Alentorn A, Carpentier C, Colin C, et al. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neurooncology. 2019;21(12):1519–28. Appay R, Dehais C, Maurage CA, Alentorn A, Carpentier C, Colin C, et al. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neurooncology. 2019;21(12):1519–28.
54.
go back to reference Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci. 2021;24(4):595–610.PubMedCrossRef Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci. 2021;24(4):595–610.PubMedCrossRef
55.
go back to reference Friedrich M, Sankowski R, Bunse L, Kilian M, Green E, Ramallo Guevara C, et al. Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nat Cancer. 2021;2(7):723–40.PubMedCrossRef Friedrich M, Sankowski R, Bunse L, Kilian M, Green E, Ramallo Guevara C, et al. Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nat Cancer. 2021;2(7):723–40.PubMedCrossRef
56.
go back to reference Xie XP, Laks DR, Sun D, Ganbold M, Wang Z, Pedraza AM, et al. Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Dev Cell. 2022;57(1):32–46e8.PubMedPubMedCentralCrossRef Xie XP, Laks DR, Sun D, Ganbold M, Wang Z, Pedraza AM, et al. Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Dev Cell. 2022;57(1):32–46e8.PubMedPubMedCentralCrossRef
Metadata
Title
Decoding the prognostic significance of integrator complex subunit 9 (INTS9) in glioma: links to TP53 mutations, E2F signaling, and inflammatory microenvironments
Authors
Yu-Chieh Lin
Pei-Chi Chang
Dueng-Yuan Hueng
Shih-Ming Huang
Yao-Feng Li
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2023
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-023-03006-5

Other articles of this Issue 1/2023

Cancer Cell International 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine