Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2024

Open Access 01-12-2024 | Gaucher Disease | Research article

GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice

Authors: Ilaria Gregorio, Loris Russo, Enrica Torretta, Pietro Barbacini, Gabriella Contarini, Giada Pacinelli, Dario Bizzotto, Manuela Moriggi, Paola Braghetta, Francesco Papaleo, Cecilia Gelfi, Enrico Moro, Matilde Cescon

Published in: Molecular Neurodegeneration | Issue 1/2024

Login to get access

Abstract

Background

Mutations in the β-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson’s disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated.

Methods

We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of β-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a β-glucocerebrosidase irreversible inhibitor was used to dissect the impact of β-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of β-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which β-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9–11, encoding for β-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of β-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures.

Results

Here we show that β-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific β-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment.

Conclusions

Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C, et al. A Review of Gaucher Disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18:441.CrossRefPubMedPubMedCentral Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C, et al. A Review of Gaucher Disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18:441.CrossRefPubMedPubMedCentral
3.
go back to reference Dandana A, Ben Khelifa S, Chahed H, Miled A, Ferchichi S. Gaucher Disease: clinical, biological and therapeutic aspects. Pathobiology. 2015;83:13–23.CrossRefPubMed Dandana A, Ben Khelifa S, Chahed H, Miled A, Ferchichi S. Gaucher Disease: clinical, biological and therapeutic aspects. Pathobiology. 2015;83:13–23.CrossRefPubMed
4.
go back to reference Schiffmann R, Sevigny J, Rolfs A, Davies EH, Goker-Alpan O, Abdelwahab M, et al. The definition of neuronopathic Gaucher disease. J Inherit Metab Dis. 2020;43:1056–9.CrossRefPubMedPubMedCentral Schiffmann R, Sevigny J, Rolfs A, Davies EH, Goker-Alpan O, Abdelwahab M, et al. The definition of neuronopathic Gaucher disease. J Inherit Metab Dis. 2020;43:1056–9.CrossRefPubMedPubMedCentral
6.
go back to reference Orvisky E, Park J k, Parker A, Walker J m, Martin B m, Stubblefield B k, et al. The identification of eight novel glucocerebrosidase (GBA) mutations in patients with Gaucher disease. Hum Mutat. 2002;19:458–9.CrossRefPubMed Orvisky E, Park J k, Parker A, Walker J m, Martin B m, Stubblefield B k, et al. The identification of eight novel glucocerebrosidase (GBA) mutations in patients with Gaucher disease. Hum Mutat. 2002;19:458–9.CrossRefPubMed
7.
go back to reference Schueler UH, Kolter T, Kaneski CR, Blusztajn JK, Herkenham M, Sandhoff K, et al. Toxicity of glucosylsphingosine (glucopsychosine) to cultured neuronal cells: a model system for assessing neuronal damage in Gaucher disease type 2 and 3. Neurobiol Dis. 2003;14:595–601.CrossRefPubMed Schueler UH, Kolter T, Kaneski CR, Blusztajn JK, Herkenham M, Sandhoff K, et al. Toxicity of glucosylsphingosine (glucopsychosine) to cultured neuronal cells: a model system for assessing neuronal damage in Gaucher disease type 2 and 3. Neurobiol Dis. 2003;14:595–601.CrossRefPubMed
8.
go back to reference Wong K, Sidransky E, Verma A, Mixon T, Sandberg GD, Wakefield LK, et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab. 2004;82:192–207.CrossRefPubMed Wong K, Sidransky E, Verma A, Mixon T, Sandberg GD, Wakefield LK, et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab. 2004;82:192–207.CrossRefPubMed
9.
go back to reference Farfel-Becker T, Vitner EB, Pressey SNR, Eilam R, Cooper JD, Futerman AH. Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet. 2011;20:1375–86.CrossRefPubMed Farfel-Becker T, Vitner EB, Pressey SNR, Eilam R, Cooper JD, Futerman AH. Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet. 2011;20:1375–86.CrossRefPubMed
10.
go back to reference Farfel-Becker T, Vitner EB, Kelly SL, Bame JR, Duan J, Shinder V, et al. Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Hum Mol Genet. 2014;23:843–54.CrossRefPubMed Farfel-Becker T, Vitner EB, Kelly SL, Bame JR, Duan J, Shinder V, et al. Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Hum Mol Genet. 2014;23:843–54.CrossRefPubMed
11.
go back to reference Stoker TB, Torsney KM, Barker RA. Pathological mechanisms and clinical aspects of GBA1 mutation-associated Parkinson’s Disease. In: Stoker TB, Greenland JC, editors. Park Dis Pathog Clin Asp [Internet]. Brisbane (AU): Codon Publications; 2018 [cited 2023 Feb 20]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK536716/ Stoker TB, Torsney KM, Barker RA. Pathological mechanisms and clinical aspects of GBA1 mutation-associated Parkinson’s Disease. In: Stoker TB, Greenland JC, editors. Park Dis Pathog Clin Asp [Internet]. Brisbane (AU): Codon Publications; 2018 [cited 2023 Feb 20]. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK536716/​
12.
go back to reference Alaei MR, Tabrizi A, Jafari N, Mozafari H. Gaucher Disease: new expanded classification emphasizing neurological features. Iran J Child Neurol. 2019;13:7–24.PubMedPubMedCentral Alaei MR, Tabrizi A, Jafari N, Mozafari H. Gaucher Disease: new expanded classification emphasizing neurological features. Iran J Child Neurol. 2019;13:7–24.PubMedPubMedCentral
13.
go back to reference Gan-Or Z, Giladi N, Rozovski U, Shifrin C, Rosner S, Gurevich T, et al. Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology. 2008;70:2277–83.CrossRefPubMed Gan-Or Z, Giladi N, Rozovski U, Shifrin C, Rosner S, Gurevich T, et al. Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology. 2008;70:2277–83.CrossRefPubMed
14.
go back to reference Blumenreich S, Jenkins BJ, Barav OB, Milenkovic I, Futerman AH. The Lysosome and Nonmotor Symptoms: linking Parkinson’s Disease and lysosomal storage disorders. Mov Disord. 2020;35:2150–5.CrossRefPubMed Blumenreich S, Jenkins BJ, Barav OB, Milenkovic I, Futerman AH. The Lysosome and Nonmotor Symptoms: linking Parkinson’s Disease and lysosomal storage disorders. Mov Disord. 2020;35:2150–5.CrossRefPubMed
15.
go back to reference Pitcairn C, Wani WY, Mazzulli JR. Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson’s disease. Neurobiol Dis. 2019;122:72–82.CrossRefPubMed Pitcairn C, Wani WY, Mazzulli JR. Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson’s disease. Neurobiol Dis. 2019;122:72–82.CrossRefPubMed
16.
go back to reference Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt A, Brandner S, et al. Mitochondria and quality control defects in a mouse model of Gaucher Disease—Links to Parkinson’s Disease. Cell Metab. 2013;17:941–53.CrossRefPubMedPubMedCentral Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt A, Brandner S, et al. Mitochondria and quality control defects in a mouse model of Gaucher Disease—Links to Parkinson’s Disease. Cell Metab. 2013;17:941–53.CrossRefPubMedPubMedCentral
17.
go back to reference Rocha EM, Smith GA, Park E, Cao H, Graham A-R, Brown E, et al. Sustained systemic glucocerebrosidase inhibition induces brain α-synuclein aggregation, microglia and complement C1q activation in mice. Antioxid Redox Signal. 2015;23:550–64.CrossRefPubMedPubMedCentral Rocha EM, Smith GA, Park E, Cao H, Graham A-R, Brown E, et al. Sustained systemic glucocerebrosidase inhibition induces brain α-synuclein aggregation, microglia and complement C1q activation in mice. Antioxid Redox Signal. 2015;23:550–64.CrossRefPubMedPubMedCentral
18.
go back to reference Awad O, Sarkar C, Panicker LM, Miller D, Zeng X, Sgambato JA, et al. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum Mol Genet. 2015;24:5775–88.CrossRefPubMed Awad O, Sarkar C, Panicker LM, Miller D, Zeng X, Sgambato JA, et al. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum Mol Genet. 2015;24:5775–88.CrossRefPubMed
19.
go back to reference Schöndorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B, et al. iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun. 2014;5:4028.CrossRefADSPubMed Schöndorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B, et al. iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun. 2014;5:4028.CrossRefADSPubMed
20.
go back to reference Mazzulli JR, Xu Y-H, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher’s Disease Glucocerebrosidase and <alpha>-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52.CrossRefPubMedPubMedCentral Mazzulli JR, Xu Y-H, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher’s Disease Glucocerebrosidase and <alpha>-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52.CrossRefPubMedPubMedCentral
21.
go back to reference Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26:1049–55.CrossRefPubMed Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26:1049–55.CrossRefPubMed
22.
go back to reference Soria FN, Engeln M, Martinez-Vicente M, Glangetas C, López-González MJ, Dovero S, et al. Glucocerebrosidase deficiency in dopaminergic neurons induces microglial activation without neurodegeneration. Hum Mol Genet. 2017;26:2603–15.CrossRefPubMed Soria FN, Engeln M, Martinez-Vicente M, Glangetas C, López-González MJ, Dovero S, et al. Glucocerebrosidase deficiency in dopaminergic neurons induces microglial activation without neurodegeneration. Hum Mol Genet. 2017;26:2603–15.CrossRefPubMed
23.
go back to reference Conradi NG, Sourander P, Nilsson O, Svennerholm L, Erikson A. Neuropathology of the Norrbottnian type of Gaucher disease. Acta Neuropathol (Berl). 1984;65:99–109.CrossRefPubMed Conradi NG, Sourander P, Nilsson O, Svennerholm L, Erikson A. Neuropathology of the Norrbottnian type of Gaucher disease. Acta Neuropathol (Berl). 1984;65:99–109.CrossRefPubMed
24.
go back to reference Sanyal A, Novis HS, Gasser E, Lin S, LaVoie MJ. LRRK2 kinase inhibition rescues deficits in lysosome function due to heterozygous GBA1 expression in human iPSC-derived neurons. Front Neurosci. 2020;14:442.CrossRefPubMedPubMedCentral Sanyal A, Novis HS, Gasser E, Lin S, LaVoie MJ. LRRK2 kinase inhibition rescues deficits in lysosome function due to heterozygous GBA1 expression in human iPSC-derived neurons. Front Neurosci. 2020;14:442.CrossRefPubMedPubMedCentral
25.
go back to reference Aflaki E, Stubblefield BK, McGlinchey RP, McMahon B, Ory DS, Sidransky E. A characterization of Gaucher iPS-derived astrocytes: Potential implications for Parkinson’s disease. Neurobiol Dis. 2020;134: 104647.CrossRefPubMed Aflaki E, Stubblefield BK, McGlinchey RP, McMahon B, Ory DS, Sidransky E. A characterization of Gaucher iPS-derived astrocytes: Potential implications for Parkinson’s disease. Neurobiol Dis. 2020;134: 104647.CrossRefPubMed
26.
go back to reference Brunialti E, Villa A, Mekhaeil M, Mornata F, Vegeto E, Maggi A, et al. Inhibition of microglial β-glucocerebrosidase hampers the microglia-mediated antioxidant and protective response in neurons. J Neuroinflammation. 2021;18:220.CrossRefPubMedPubMedCentral Brunialti E, Villa A, Mekhaeil M, Mornata F, Vegeto E, Maggi A, et al. Inhibition of microglial β-glucocerebrosidase hampers the microglia-mediated antioxidant and protective response in neurons. J Neuroinflammation. 2021;18:220.CrossRefPubMedPubMedCentral
27.
go back to reference Boddupalli CS, Nair S, Belinsky G, Gans J, Teeple E, Nguyen T-H, et al. Neuroinflammation in neuronopathic Gaucher disease: Role of microglia and NK cells, biomarkers, and response to substrate reduction therapy. Zaidi M, editor eLife. 2022;11:e79830. Boddupalli CS, Nair S, Belinsky G, Gans J, Teeple E, Nguyen T-H, et al. Neuroinflammation in neuronopathic Gaucher disease: Role of microglia and NK cells, biomarkers, and response to substrate reduction therapy. Zaidi M, editor eLife. 2022;11:e79830.
28.
go back to reference Wang L, Lin G, Zuo Z, Li Y, Byeon SK, Pandey A, et al. Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. Sci Adv. 8:eabn3326. Wang L, Lin G, Zuo Z, Li Y, Byeon SK, Pandey A, et al. Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. Sci Adv. 8:eabn3326.
30.
go back to reference Meschkat M, Steyer AM, Weil M-T, Kusch K, Jahn O, Piepkorn L, et al. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun. 2022;13:1163.CrossRefADSPubMedPubMedCentral Meschkat M, Steyer AM, Weil M-T, Kusch K, Jahn O, Piepkorn L, et al. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun. 2022;13:1163.CrossRefADSPubMedPubMedCentral
31.
go back to reference Edgar JM, McGowan E, Chapple KJ, Möbius W, Lemgruber L, Insall RH, et al. Río-Hortega’s drawings revisited with fluorescent protein defines a cytoplasm-filled channel system of CNS myelin. J Anat. 2021;239:1241–55.CrossRefPubMedPubMedCentral Edgar JM, McGowan E, Chapple KJ, Möbius W, Lemgruber L, Insall RH, et al. Río-Hortega’s drawings revisited with fluorescent protein defines a cytoplasm-filled channel system of CNS myelin. J Anat. 2021;239:1241–55.CrossRefPubMedPubMedCentral
32.
go back to reference Kang H, Zhang M, Ouyang M, Guo R, Yu Q, Peng Q, et al. Brain white matter microstructural alterations in children of type I Gaucher disease characterized with diffusion tensor MR imaging. Eur J Radiol. 2018;102:22–9.CrossRefPubMed Kang H, Zhang M, Ouyang M, Guo R, Yu Q, Peng Q, et al. Brain white matter microstructural alterations in children of type I Gaucher disease characterized with diffusion tensor MR imaging. Eur J Radiol. 2018;102:22–9.CrossRefPubMed
33.
go back to reference Davies EH, Seunarine KK, Banks T, Clark CA, Vellodi A. Brain white matter abnormalities in paediatric Gaucher Type I and Type III using diffusion tensor imaging. J Inherit Metab Dis. 2011;34:549–53.CrossRefPubMed Davies EH, Seunarine KK, Banks T, Clark CA, Vellodi A. Brain white matter abnormalities in paediatric Gaucher Type I and Type III using diffusion tensor imaging. J Inherit Metab Dis. 2011;34:549–53.CrossRefPubMed
34.
go back to reference Aronson SM, Volk BW. Cerebral Sphingolipidoses: a symposium on Tay-Sachs’ Disease and allied disorders. Elsevier; 2013. p. 1–474. ISBN: 9781483221519. Aronson SM, Volk BW. Cerebral Sphingolipidoses: a symposium on Tay-Sachs’ Disease and allied disorders. Elsevier; 2013. p. 1–474. ISBN: 9781483221519.
36.
go back to reference Enquist IB, Nilsson E, Ooka A, Månsson J-E, Olsson K, Ehinger M, et al. Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad Sci U S A. 2006;103:13819–24.CrossRefADSPubMedPubMedCentral Enquist IB, Nilsson E, Ooka A, Månsson J-E, Olsson K, Ehinger M, et al. Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad Sci U S A. 2006;103:13819–24.CrossRefADSPubMedPubMedCentral
37.
go back to reference Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33:366–74.CrossRefPubMed Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33:366–74.CrossRefPubMed
38.
go back to reference Chen P, Cescon M, Megighian A, Ronaldo P. Collagen VI regulates peripheral nerve myelination and function. FASEB J. 2014;28:1145–56.CrossRefPubMed Chen P, Cescon M, Megighian A, Ronaldo P. Collagen VI regulates peripheral nerve myelination and function. FASEB J. 2014;28:1145–56.CrossRefPubMed
39.
go back to reference Jung M, Krämer E, Grzenkowski M, Tang K, Blakemore W, Aguzzi A, et al. Lines of murine oligodendroglial precursor cells immortalized by an activated neu tyrosine kinase show distinct degrees of interaction with axons in vitro and in vivo. Eur J Neurosci. 1995;7:1245–65.CrossRefPubMed Jung M, Krämer E, Grzenkowski M, Tang K, Blakemore W, Aguzzi A, et al. Lines of murine oligodendroglial precursor cells immortalized by an activated neu tyrosine kinase show distinct degrees of interaction with axons in vitro and in vivo. Eur J Neurosci. 1995;7:1245–65.CrossRefPubMed
40.
go back to reference Trotter J, Bitter-Suermann D, Schachner M. Differentiation-regulated loss of the polysialylated embryonic form and expression of the different polypeptides of the neural cell adhesion molecule by cultured oligodendrocytes and myelin. J Neurosci Res. 1989;22:369–83.CrossRefPubMed Trotter J, Bitter-Suermann D, Schachner M. Differentiation-regulated loss of the polysialylated embryonic form and expression of the different polypeptides of the neural cell adhesion molecule by cultured oligodendrocytes and myelin. J Neurosci Res. 1989;22:369–83.CrossRefPubMed
41.
go back to reference Zoupi L, Savvaki M, Kalemaki K, Kalafatakis I, Sidiropoulou K, Karagogeos D. The function of contactin-2/TAG-1 in oligodendrocytes in health and demyelinating pathology. Glia. 2018;66:576–91.CrossRefPubMed Zoupi L, Savvaki M, Kalemaki K, Kalafatakis I, Sidiropoulou K, Karagogeos D. The function of contactin-2/TAG-1 in oligodendrocytes in health and demyelinating pathology. Glia. 2018;66:576–91.CrossRefPubMed
42.
go back to reference Sasaki A, Arawaka S, Sato H, Kato T. Sensitive western blotting for detection of endogenous Ser129-phosphorylated α-synuclein in intracellular and extracellular spaces. Sci Rep. 2015;5:14211.CrossRefADSPubMedPubMedCentral Sasaki A, Arawaka S, Sato H, Kato T. Sensitive western blotting for detection of endogenous Ser129-phosphorylated α-synuclein in intracellular and extracellular spaces. Sci Rep. 2015;5:14211.CrossRefADSPubMedPubMedCentral
43.
go back to reference Thetiot M, Freeman SA, Desmazières A. Immunohistochemical analysis of myelin structures. In: Woodhoo A, editor. Myelin Methods Protoc. New York, NY: Springer; 2018. p. 15–23.CrossRef Thetiot M, Freeman SA, Desmazières A. Immunohistochemical analysis of myelin structures. In: Woodhoo A, editor. Myelin Methods Protoc. New York, NY: Springer; 2018. p. 15–23.CrossRef
44.
go back to reference He D, Marie C, Zhao C, Kim B, Wang J, Deng Y, et al. Chd7 Cooperates with Sox10 and Regulates the Onset of CNS Myelination and Remyelination. Nat Neurosci. 2016;19:678–89.CrossRefPubMedPubMedCentral He D, Marie C, Zhao C, Kim B, Wang J, Deng Y, et al. Chd7 Cooperates with Sox10 and Regulates the Onset of CNS Myelination and Remyelination. Nat Neurosci. 2016;19:678–89.CrossRefPubMedPubMedCentral
45.
go back to reference de Faria O, Dhaunchak AS, Kamen Y, Roth AD, Kuhlmann T, Colman DR, et al. TMEM10 promotes oligodendrocyte differentiation and is expressed by oligodendrocytes in human remyelinating multiple sclerosis plaques. Sci Rep. 2019;9:3606.CrossRefADSPubMedPubMedCentral de Faria O, Dhaunchak AS, Kamen Y, Roth AD, Kuhlmann T, Colman DR, et al. TMEM10 promotes oligodendrocyte differentiation and is expressed by oligodendrocytes in human remyelinating multiple sclerosis plaques. Sci Rep. 2019;9:3606.CrossRefADSPubMedPubMedCentral
46.
47.
go back to reference García-Mateo N, Pascua-Maestro R, Pérez-Castellanos A, Lillo C, Sanchez D, Ganfornina MD. Myelin extracellular leaflet compaction requires apolipoprotein D membrane management to optimize lysosomal-dependent recycling and glycocalyx removal. Glia. 2018;66:670–87.CrossRefPubMed García-Mateo N, Pascua-Maestro R, Pérez-Castellanos A, Lillo C, Sanchez D, Ganfornina MD. Myelin extracellular leaflet compaction requires apolipoprotein D membrane management to optimize lysosomal-dependent recycling and glycocalyx removal. Glia. 2018;66:670–87.CrossRefPubMed
48.
go back to reference Magalhaes J, Gegg ME, Migdalska-Richards A, Doherty MK, Whitfield PD, Schapira AHV. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum Mol Genet. 2016;25:3432–45.CrossRefPubMedPubMedCentral Magalhaes J, Gegg ME, Migdalska-Richards A, Doherty MK, Whitfield PD, Schapira AHV. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum Mol Genet. 2016;25:3432–45.CrossRefPubMedPubMedCentral
49.
go back to reference Stojkovska I, Krainc D, Mazzulli JR. Molecular mechanisms of α-synuclein and GBA1 in Parkinson’s Disease. Cell Tissue Res. 2018;373:51–60.CrossRefPubMed Stojkovska I, Krainc D, Mazzulli JR. Molecular mechanisms of α-synuclein and GBA1 in Parkinson’s Disease. Cell Tissue Res. 2018;373:51–60.CrossRefPubMed
50.
go back to reference Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-Sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.CrossRefPubMedPubMedCentral Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-Sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.CrossRefPubMedPubMedCentral
51.
go back to reference Asi YT, Simpson JE, Heath PR, Wharton SB, Lees AJ, Revesz T, et al. Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia. 2014;62:964–70.CrossRefPubMedPubMedCentral Asi YT, Simpson JE, Heath PR, Wharton SB, Lees AJ, Revesz T, et al. Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia. 2014;62:964–70.CrossRefPubMedPubMedCentral
52.
go back to reference Hein LK, Meikle PJ, Hopwood JJ, Fuller M. Secondary sphingolipid accumulation in a macrophage model of Gaucher disease. Mol Genet Metab. 2007;92:336–45.CrossRefPubMed Hein LK, Meikle PJ, Hopwood JJ, Fuller M. Secondary sphingolipid accumulation in a macrophage model of Gaucher disease. Mol Genet Metab. 2007;92:336–45.CrossRefPubMed
53.
go back to reference García-Sanz P, Orgaz L, Bueno-Gil G, Espadas I, Rodríguez-Traver E, Kulisevsky J, et al. N370S-GBA1 mutation causes lysosomal cholesterol accumulation in Parkinson’s disease. Mov Disord. 2017;32:1409–22.CrossRefPubMed García-Sanz P, Orgaz L, Bueno-Gil G, Espadas I, Rodríguez-Traver E, Kulisevsky J, et al. N370S-GBA1 mutation causes lysosomal cholesterol accumulation in Parkinson’s disease. Mov Disord. 2017;32:1409–22.CrossRefPubMed
54.
go back to reference Bacioglu M, Maia LF, Preische O, Schelle J, Apel A, Kaeser SA, et al. Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron. 2016;91:56–66.CrossRefPubMed Bacioglu M, Maia LF, Preische O, Schelle J, Apel A, Kaeser SA, et al. Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron. 2016;91:56–66.CrossRefPubMed
55.
go back to reference Jäkel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci. 2017;11:24.CrossRefPubMedPubMedCentral Jäkel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci. 2017;11:24.CrossRefPubMedPubMedCentral
56.
go back to reference Montero-Odasso M, Pieruccini-Faria F, Bartha R, Black SE, Finger E, Freedman M, et al. Motor phenotype in neurodegenerative disorders: gait and balance platform study design protocol for the ontario neurodegenerative research initiative (ONDRI). J Alzheimer Dis. 2017;59:707–21. Montero-Odasso M, Pieruccini-Faria F, Bartha R, Black SE, Finger E, Freedman M, et al. Motor phenotype in neurodegenerative disorders: gait and balance platform study design protocol for the ontario neurodegenerative research initiative (ONDRI). J Alzheimer Dis. 2017;59:707–21.
57.
go back to reference McNeill A, Duran R, Proukakis C, Bras J, Hughes D, Mehta A, et al. Hyposmia and cognitive impairment in Gaucher Disease patients and carriers. Mov Disord Off J Mov Disord Soc. 2012;27:526–32.CrossRef McNeill A, Duran R, Proukakis C, Bras J, Hughes D, Mehta A, et al. Hyposmia and cognitive impairment in Gaucher Disease patients and carriers. Mov Disord Off J Mov Disord Soc. 2012;27:526–32.CrossRef
58.
go back to reference Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW, et al. Glucocerebrosidase deficiency in substantia nigra of Parkinson Disease brains. Ann Neurol. 2012;72:455–63.CrossRefPubMedPubMedCentral Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW, et al. Glucocerebrosidase deficiency in substantia nigra of Parkinson Disease brains. Ann Neurol. 2012;72:455–63.CrossRefPubMedPubMedCentral
59.
go back to reference Navarro-Romero A, Fernandez-Gonzalez I, Riera J, Montpeyo M, Albert-Bayo M, Lopez-Royo T, et al. Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. Npj Park Dis. 2022;8:1–15. Navarro-Romero A, Fernandez-Gonzalez I, Riera J, Montpeyo M, Albert-Bayo M, Lopez-Royo T, et al. Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. Npj Park Dis. 2022;8:1–15.
60.
go back to reference Trajkovic K, Dhaunchak AS, Goncalves JT, Wenzel D, Schneider A, Bunt G, et al. Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. J Cell Biol. 2006;172:937–48.CrossRefPubMedPubMedCentral Trajkovic K, Dhaunchak AS, Goncalves JT, Wenzel D, Schneider A, Bunt G, et al. Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. J Cell Biol. 2006;172:937–48.CrossRefPubMedPubMedCentral
61.
go back to reference Winterstein C, Trotter J, Krämer-Albers E-M. Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. J Cell Sci. 2008;121:834–42.CrossRefPubMed Winterstein C, Trotter J, Krämer-Albers E-M. Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. J Cell Sci. 2008;121:834–42.CrossRefPubMed
62.
go back to reference Bankston AN, Forston MD, Howard RM, Andres KR, Smith AE, Ohri SS, et al. Autophagy is essential for oligodendrocyte differentiation, survival, and proper myelination. Glia. 2019;67:1745–59.CrossRefPubMed Bankston AN, Forston MD, Howard RM, Andres KR, Smith AE, Ohri SS, et al. Autophagy is essential for oligodendrocyte differentiation, survival, and proper myelination. Glia. 2019;67:1745–59.CrossRefPubMed
63.
go back to reference Folkerth RD. Abnormalities of developing white matter in lysosomal storage diseases. J Neuropathol Exp Neurol. 1999;58:887–902.CrossRefPubMed Folkerth RD. Abnormalities of developing white matter in lysosomal storage diseases. J Neuropathol Exp Neurol. 1999;58:887–902.CrossRefPubMed
65.
go back to reference Festa LK, Clyde AE, Long CC, Roth LM, Grinspan JB, Jordan-Sciutto KL. Antiretroviral treatment reveals a novel role for lysosomes in oligodendrocyte maturation. J Neurochem. 2023;165:722–40.CrossRefPubMed Festa LK, Clyde AE, Long CC, Roth LM, Grinspan JB, Jordan-Sciutto KL. Antiretroviral treatment reveals a novel role for lysosomes in oligodendrocyte maturation. J Neurochem. 2023;165:722–40.CrossRefPubMed
66.
go back to reference Blanchard JW, Akay LA, Davila-Velderrain J, von Maydell D, Mathys H, Davidson SM, et al. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature. 2022;611:769–79.CrossRefADSPubMedPubMedCentral Blanchard JW, Akay LA, Davila-Velderrain J, von Maydell D, Mathys H, Davidson SM, et al. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature. 2022;611:769–79.CrossRefADSPubMedPubMedCentral
67.
go back to reference Djelloul M, Holmqvist S, Boza-Serrano A, Azevedo C, Yeung MS, Goldwurm S, et al. Alpha-synuclein expression in the oligodendrocyte lineage: an in vitro and in vivo study using rodent and human models. stem cell Rep. 2015;5:174.CrossRef Djelloul M, Holmqvist S, Boza-Serrano A, Azevedo C, Yeung MS, Goldwurm S, et al. Alpha-synuclein expression in the oligodendrocyte lineage: an in vitro and in vivo study using rodent and human models. stem cell Rep. 2015;5:174.CrossRef
68.
go back to reference May VEL, Ettle B, Poehler A-M, Nuber S, Ubhi K, Rockenstein E, et al. α-Synuclein impairs oligodendrocyte progenitor maturation in multiple system atrophy. Neurobiol Aging. 2014;35:2357–68.CrossRefPubMedPubMedCentral May VEL, Ettle B, Poehler A-M, Nuber S, Ubhi K, Rockenstein E, et al. α-Synuclein impairs oligodendrocyte progenitor maturation in multiple system atrophy. Neurobiol Aging. 2014;35:2357–68.CrossRefPubMedPubMedCentral
69.
go back to reference Kaji S, Maki T, Kinoshita H, Uemura N, Ayaki T, Kawamoto Y, et al. Pathological endogenous α-synuclein accumulation in oligodendrocyte precursor cells potentially induces inclusions in multiple system atrophy. Stem Cell Rep. 2018;10:356–65.CrossRef Kaji S, Maki T, Kinoshita H, Uemura N, Ayaki T, Kawamoto Y, et al. Pathological endogenous α-synuclein accumulation in oligodendrocyte precursor cells potentially induces inclusions in multiple system atrophy. Stem Cell Rep. 2018;10:356–65.CrossRef
70.
go back to reference Lee H-J, Khoshaghideh F, Patel S, Lee S-J. Clearance of α-Synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci. 2004;24:1888–96.CrossRefPubMedPubMedCentral Lee H-J, Khoshaghideh F, Patel S, Lee S-J. Clearance of α-Synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci. 2004;24:1888–96.CrossRefPubMedPubMedCentral
71.
go back to reference Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023;14:176.CrossRefPubMedPubMedCentral Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023;14:176.CrossRefPubMedPubMedCentral
72.
go back to reference Ettle B, Reiprich S, Deusser J, Schlachetzki JCM, Xiang W, Prots I, et al. Intracellular alpha-synuclein affects early maturation of primary oligodendrocyte progenitor cells. Mol Cell Neurosci. 2014;0:68–78.CrossRefPubMedCentral Ettle B, Reiprich S, Deusser J, Schlachetzki JCM, Xiang W, Prots I, et al. Intracellular alpha-synuclein affects early maturation of primary oligodendrocyte progenitor cells. Mol Cell Neurosci. 2014;0:68–78.CrossRefPubMedCentral
73.
go back to reference Agosta F, Kostic VS, Davidovic K, Kresojević N, Sarro L, Svetel M, et al. White matter abnormalities in Parkinson’s disease patients with glucocerebrosidase gene mutations. Mov Disord. 2013;28:772–8.CrossRefPubMed Agosta F, Kostic VS, Davidovic K, Kresojević N, Sarro L, Svetel M, et al. White matter abnormalities in Parkinson’s disease patients with glucocerebrosidase gene mutations. Mov Disord. 2013;28:772–8.CrossRefPubMed
74.
go back to reference Lee SH, Kim SS, Tae WS, Lee SY, Choi JW, Koh SB, et al. Regional volume analysis of the Parkinson Disease brain in early disease stage: gray matter, white matter, striatum, and thalamus. AJNR Am J Neuroradiol. 2011;32:682–7.CrossRefPubMedPubMedCentral Lee SH, Kim SS, Tae WS, Lee SY, Choi JW, Koh SB, et al. Regional volume analysis of the Parkinson Disease brain in early disease stage: gray matter, white matter, striatum, and thalamus. AJNR Am J Neuroradiol. 2011;32:682–7.CrossRefPubMedPubMedCentral
75.
go back to reference Hattori T, Orimo S, Aoki S, Ito K, Abe O, Amano A, et al. Cognitive status correlates with white matter alteration in Parkinson’s disease. Hum Brain Mapp. 2011;33:727–39.CrossRefPubMedPubMedCentral Hattori T, Orimo S, Aoki S, Ito K, Abe O, Amano A, et al. Cognitive status correlates with white matter alteration in Parkinson’s disease. Hum Brain Mapp. 2011;33:727–39.CrossRefPubMedPubMedCentral
76.
go back to reference Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Brooks DJ, Barker RA, et al. Gray and white matter imaging: a biomarker for cognitive impairment in early Parkinson’s disease? Mov Disord. 2016;31:103–10.CrossRefPubMed Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Brooks DJ, Barker RA, et al. Gray and white matter imaging: a biomarker for cognitive impairment in early Parkinson’s disease? Mov Disord. 2016;31:103–10.CrossRefPubMed
77.
go back to reference Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science. 1998;280:1610–3.CrossRefADSPubMed Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science. 1998;280:1610–3.CrossRefADSPubMed
78.
go back to reference Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485:517–21.CrossRefADSPubMedPubMedCentral Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485:517–21.CrossRefADSPubMedPubMedCentral
79.
go back to reference Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487:443–8.CrossRefADSPubMedPubMedCentral Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487:443–8.CrossRefADSPubMedPubMedCentral
80.
go back to reference Fuller M, Futerman AH. The brain lipidome in neurodegenerative lysosomal storage disorders. Biochem Biophys Res Commun. 2018;504:623–8.CrossRefPubMed Fuller M, Futerman AH. The brain lipidome in neurodegenerative lysosomal storage disorders. Biochem Biophys Res Commun. 2018;504:623–8.CrossRefPubMed
81.
go back to reference Leyns CEG, Prigent A, Beezhold B, Yao L, Hatcher NG, Tao P, et al. Glucocerebrosidase activity and lipid levels are related to protein pathologies in Parkinson’s disease. Npj Park Dis. 2023;9:1–14. Leyns CEG, Prigent A, Beezhold B, Yao L, Hatcher NG, Tao P, et al. Glucocerebrosidase activity and lipid levels are related to protein pathologies in Parkinson’s disease. Npj Park Dis. 2023;9:1–14.
82.
go back to reference Mahoney-Crane CL, Viswanathan M, Russell D, Curtiss RAC, Freire J, Bobba SS, et al. Neuronopathic GBA1L444P mutation accelerates glucosylsphingosine levels and formation of hippocampal alpha-synuclein inclusions. J Neurosci. 2023;43:501–21.CrossRefPubMedPubMedCentral Mahoney-Crane CL, Viswanathan M, Russell D, Curtiss RAC, Freire J, Bobba SS, et al. Neuronopathic GBA1L444P mutation accelerates glucosylsphingosine levels and formation of hippocampal alpha-synuclein inclusions. J Neurosci. 2023;43:501–21.CrossRefPubMedPubMedCentral
83.
go back to reference Taguchi YV, Liu J, Ruan J, Pacheco J, Zhang X, Abbasi J, et al. Glucosylsphingosine promotes α-synuclein pathology in mutant GBA-associated Parkinson’s Disease. J Neurosci. 2017;37:9617–31.CrossRefPubMedPubMedCentral Taguchi YV, Liu J, Ruan J, Pacheco J, Zhang X, Abbasi J, et al. Glucosylsphingosine promotes α-synuclein pathology in mutant GBA-associated Parkinson’s Disease. J Neurosci. 2017;37:9617–31.CrossRefPubMedPubMedCentral
84.
go back to reference Deane JE, Graham SC, Kim NN, Stein PE, McNair R, Cachón-González MB, et al. Insights into Krabbe disease from structures of galactocerebrosidase. Proc Natl Acad Sci U S A. 2011;108:15169–73.CrossRefADSPubMedPubMedCentral Deane JE, Graham SC, Kim NN, Stein PE, McNair R, Cachón-González MB, et al. Insights into Krabbe disease from structures of galactocerebrosidase. Proc Natl Acad Sci U S A. 2011;108:15169–73.CrossRefADSPubMedPubMedCentral
85.
86.
go back to reference Jung W, Liu C, Yu Y, Chang Y, Lien W, Chao H, et al. Lipophagy prevents activity-dependent neurodegeneration due to dihydroceramide accumulation in vivo. EMBO Rep. 2017;18:1150–65.CrossRefPubMedPubMedCentral Jung W, Liu C, Yu Y, Chang Y, Lien W, Chao H, et al. Lipophagy prevents activity-dependent neurodegeneration due to dihydroceramide accumulation in vivo. EMBO Rep. 2017;18:1150–65.CrossRefPubMedPubMedCentral
87.
go back to reference Pant DC, Dorboz I, Schluter A, Fourcade S, Launay N, Joya J, et al. Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. J Clin Invest. 2019;129:1240–56. Pant DC, Dorboz I, Schluter A, Fourcade S, Launay N, Joya J, et al. Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. J Clin Invest. 2019;129:1240–56.
88.
go back to reference Shimizu T, Schutt CR, Izumi Y, Tomiyasu N, Omahdi Z, Kano K, et al. Direct activation of microglia by β-glucosylceramide causes phagocytosis of neurons that exacerbates Gaucher disease. Immunity. 2023;56:307-319.e8.CrossRef Shimizu T, Schutt CR, Izumi Y, Tomiyasu N, Omahdi Z, Kano K, et al. Direct activation of microglia by β-glucosylceramide causes phagocytosis of neurons that exacerbates Gaucher disease. Immunity. 2023;56:307-319.e8.CrossRef
89.
go back to reference Zunke F, Moise AC, Belur NR, Gelyana E, Stojkovska I, Dzaferbegovic H, et al. Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide. Neuron. 2018;97:92-107.e10.CrossRefPubMed Zunke F, Moise AC, Belur NR, Gelyana E, Stojkovska I, Dzaferbegovic H, et al. Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide. Neuron. 2018;97:92-107.e10.CrossRefPubMed
90.
go back to reference Paul A, Jacoby G, Laor Bar-Yosef D, Beck R, Gazit E, Segal D. Glucosylceramide associated with Gaucher Disease forms amyloid-like twisted ribbon fibrils that induce α-synuclein Aggregation. ACS Nano. 2021;15:11854–68.CrossRefPubMedPubMedCentral Paul A, Jacoby G, Laor Bar-Yosef D, Beck R, Gazit E, Segal D. Glucosylceramide associated with Gaucher Disease forms amyloid-like twisted ribbon fibrils that induce α-synuclein Aggregation. ACS Nano. 2021;15:11854–68.CrossRefPubMedPubMedCentral
91.
go back to reference Kim S, Wong YC, Gao F, Krainc D. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease. Nat Commun. 2021;12:1807.CrossRefADSPubMedPubMedCentral Kim S, Wong YC, Gao F, Krainc D. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease. Nat Commun. 2021;12:1807.CrossRefADSPubMedPubMedCentral
92.
go back to reference Alaamery M, Albesher N, Aljawini N, Alsuwailm M, Massadeh S, Wheeler MA, et al. Role of sphingolipid metabolism in neurodegeneration. J Neurochem. 2021;158:25–35.CrossRefPubMed Alaamery M, Albesher N, Aljawini N, Alsuwailm M, Massadeh S, Wheeler MA, et al. Role of sphingolipid metabolism in neurodegeneration. J Neurochem. 2021;158:25–35.CrossRefPubMed
93.
go back to reference Abbott SK, Li H, Muñoz SS, Knoch B, Batterham M, Murphy KE, et al. Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson’s disease. Mov Disord. 2014;29:518–26.CrossRefPubMed Abbott SK, Li H, Muñoz SS, Knoch B, Batterham M, Murphy KE, et al. Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson’s disease. Mov Disord. 2014;29:518–26.CrossRefPubMed
94.
go back to reference Mielke MM, Maetzler W, Haughey NJ, Bandaru VVR, Savica R, Deuschle C, et al. Plasma ceramide and glucosylceramide metabolism is altered in sporadic Parkinson’s Disease and associated with cognitive impairment: a pilot study. PLoS ONE. 2013;8: e73094.CrossRefADSPubMedPubMedCentral Mielke MM, Maetzler W, Haughey NJ, Bandaru VVR, Savica R, Deuschle C, et al. Plasma ceramide and glucosylceramide metabolism is altered in sporadic Parkinson’s Disease and associated with cognitive impairment: a pilot study. PLoS ONE. 2013;8: e73094.CrossRefADSPubMedPubMedCentral
95.
go back to reference Pellicano C, Benincasa D, Pisani V, Buttarelli FR, Giovannelli M, Pontieri FE. Prodromal non-motor symptoms of Parkinson’s disease. Neuropsychiatr Dis Treat. 2007;3:145–52.CrossRefPubMedPubMedCentral Pellicano C, Benincasa D, Pisani V, Buttarelli FR, Giovannelli M, Pontieri FE. Prodromal non-motor symptoms of Parkinson’s disease. Neuropsychiatr Dis Treat. 2007;3:145–52.CrossRefPubMedPubMedCentral
96.
go back to reference Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. Motor symptoms in Parkinson’s disease: a unified framework. Neurosci Biobehav Rev. 2016;68:727–40.CrossRefPubMed Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. Motor symptoms in Parkinson’s disease: a unified framework. Neurosci Biobehav Rev. 2016;68:727–40.CrossRefPubMed
97.
go back to reference Amende I, Kale A, McCue S, Glazier S, Morgan JP, Hampton TG. Gait dynamics in mouse models of Parkinson’s disease and Huntington’s disease. J Neuroengineering Rehabil. 2005;2:20.CrossRefPubMedCentral Amende I, Kale A, McCue S, Glazier S, Morgan JP, Hampton TG. Gait dynamics in mouse models of Parkinson’s disease and Huntington’s disease. J Neuroengineering Rehabil. 2005;2:20.CrossRefPubMedCentral
98.
go back to reference Dai M, Liou B, Swope B, Wang X, Zhang W, Inskeep V, et al. Progression of behavioral and CNS deficits in a viable murine model of chronic neuronopathic Gaucher Disease. PLoS ONE. 2016;11: e0162367.CrossRefPubMedPubMedCentral Dai M, Liou B, Swope B, Wang X, Zhang W, Inskeep V, et al. Progression of behavioral and CNS deficits in a viable murine model of chronic neuronopathic Gaucher Disease. PLoS ONE. 2016;11: e0162367.CrossRefPubMedPubMedCentral
99.
go back to reference Farfel-Becker T, Do J, Tayebi N, Sidransky E. Can GBA1-associated parkinson disease be modeled in the mouse? Trends Neurosci. 2019;42:631–43.CrossRefPubMed Farfel-Becker T, Do J, Tayebi N, Sidransky E. Can GBA1-associated parkinson disease be modeled in the mouse? Trends Neurosci. 2019;42:631–43.CrossRefPubMed
100.
go back to reference Fernagut PO, Diguet E, Labattu B, Tison F. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J Neurosci Methods. 2002;113:123–30.CrossRefPubMed Fernagut PO, Diguet E, Labattu B, Tison F. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J Neurosci Methods. 2002;113:123–30.CrossRefPubMed
101.
go back to reference Lamontagne-Proulx J, Coulombe K, Morissette M, Rieux M, Calon F, Di Paolo T, et al. Sex and age differences in a progressive synucleinopathy mouse model. Biomolecules. 2023;13:977.CrossRefPubMedPubMedCentral Lamontagne-Proulx J, Coulombe K, Morissette M, Rieux M, Calon F, Di Paolo T, et al. Sex and age differences in a progressive synucleinopathy mouse model. Biomolecules. 2023;13:977.CrossRefPubMedPubMedCentral
102.
go back to reference Taguchi T, Ikuno M, Hondo M, Parajuli LK, Taguchi K, Ueda J, et al. α-Synuclein BAC transgenic mice exhibit RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model. Brain. 2020;143:249–65.CrossRefPubMed Taguchi T, Ikuno M, Hondo M, Parajuli LK, Taguchi K, Ueda J, et al. α-Synuclein BAC transgenic mice exhibit RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model. Brain. 2020;143:249–65.CrossRefPubMed
103.
go back to reference Prediger RD, Schamne MG, Sampaio TB, Moreira ELG, Rial D. Animal models of olfactory dysfunction in neurodegenerative diseases. Handb Clin Neurol. 2019;164:431–52.CrossRefPubMed Prediger RD, Schamne MG, Sampaio TB, Moreira ELG, Rial D. Animal models of olfactory dysfunction in neurodegenerative diseases. Handb Clin Neurol. 2019;164:431–52.CrossRefPubMed
104.
go back to reference Cerri S, Mus L, Blandini F. Parkinson’s Disease in women and men: what’s the difference? J Park Dis. 2019;9:501–15. Cerri S, Mus L, Blandini F. Parkinson’s Disease in women and men: what’s the difference? J Park Dis. 2019;9:501–15.
105.
go back to reference Li Q, Jing Y, Lun P, Liu X, Sun P. Association of gender and age at onset with glucocerebrosidase associated Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci. 2021;42:2261–71.CrossRefPubMed Li Q, Jing Y, Lun P, Liu X, Sun P. Association of gender and age at onset with glucocerebrosidase associated Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci. 2021;42:2261–71.CrossRefPubMed
106.
go back to reference Simuni T, Brumm MC, Uribe L, Caspell-Garcia C, Coffey CS, Siderowf A, et al. Clinical and dopamine transporter imaging characteristics of leucine- rich repeat kinase 2 (LRRK2) and glucosylceramidase beta (GBA) Parkinson’s Disease participants in the Parkinson’s Progression Markers Initiative: a cross-sectional study. Mov Disord Off J Mov Disord Soc. 2020;35:833–44.CrossRef Simuni T, Brumm MC, Uribe L, Caspell-Garcia C, Coffey CS, Siderowf A, et al. Clinical and dopamine transporter imaging characteristics of leucine- rich repeat kinase 2 (LRRK2) and glucosylceramidase beta (GBA) Parkinson’s Disease participants in the Parkinson’s Progression Markers Initiative: a cross-sectional study. Mov Disord Off J Mov Disord Soc. 2020;35:833–44.CrossRef
107.
go back to reference Brunialti E, Villa A, Toffoli M, Lucas Del Pozo S, Rizzi N, Meda C, et al. sex-specific microglial responses to glucocerebrosidase inhibition: relevance to GBA1-Linked Parkinson’s Disease. Cells. 2023;12:343.CrossRefPubMedPubMedCentral Brunialti E, Villa A, Toffoli M, Lucas Del Pozo S, Rizzi N, Meda C, et al. sex-specific microglial responses to glucocerebrosidase inhibition: relevance to GBA1-Linked Parkinson’s Disease. Cells. 2023;12:343.CrossRefPubMedPubMedCentral
Metadata
Title
GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice
Authors
Ilaria Gregorio
Loris Russo
Enrica Torretta
Pietro Barbacini
Gabriella Contarini
Giada Pacinelli
Dario Bizzotto
Manuela Moriggi
Paola Braghetta
Francesco Papaleo
Cecilia Gelfi
Enrico Moro
Matilde Cescon
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2024
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-024-00713-z

Other articles of this Issue 1/2024

Molecular Neurodegeneration 1/2024 Go to the issue