Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2024

Open Access 01-12-2024 | Alzheimer's Disease | Research article

Rejuvenating aged microglia by p16ink4a-siRNA-loaded nanoparticles increases amyloid-β clearance in animal models of Alzheimer’s disease

Authors: Hyo Jung Shin, In Soo Kim, Seung Gyu Choi, Kayoung Lee, Hyewon Park, Juhee Shin, Dayoung Kim, Jaewon Beom, Yoon Young Yi, Deepak Prasad Gupta, Gyun Jee Song, Won-Suk Chung, C. Justin Lee, Dong Woon Kim

Published in: Molecular Neurodegeneration | Issue 1/2024

Login to get access

Abstract

Age-dependent accumulation of amyloid plaques in patients with sporadic Alzheimer’s disease (AD) is associated with reduced amyloid clearance. Older microglia have a reduced ability to phagocytose amyloid, so phagocytosis of amyloid plaques by microglia could be regulated to prevent amyloid accumulation. Furthermore, considering the aging-related disruption of cell cycle machinery in old microglia, we hypothesize that regulating their cell cycle could rejuvenate them and enhance their ability to promote more efficient amyloid clearance. First, we used gene ontology analysis of microglia from young and old mice to identify differential expression of cyclin-dependent kinase inhibitor 2A (p16ink4a), a cell cycle factor related to aging. We found that p16ink4a expression was increased in microglia near amyloid plaques in brain tissue from patients with AD and 5XFAD mice, a model of AD. In BV2 microglia, small interfering RNA (siRNA)-mediated p16ink4a downregulation transformed microglia with enhanced amyloid phagocytic capacity through regulated the cell cycle and increased cell proliferation. To regulate microglial phagocytosis by gene transduction, we used poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles, which predominantly target microglia, to deliver the siRNA and to control microglial reactivity. Nanoparticle-based delivery of p16ink4a siRNA reduced amyloid plaque formation and the number of aged microglia surrounding the plaque and reversed learning deterioration and spatial memory deficits. We propose that downregulation of p16ink4a in microglia is a promising strategy for the treatment of Alzheimer’s disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Madhavan A, Schwarz CG, Duffy JR, Strand EA, Machulda MM, Drubach DA, Kantarci K, Przybelski SA, Reid RI, Senjem ML, et al. Characterizing White Matter Tract Degeneration in Syndromic Variants of Alzheimer’s Disease: A Diffusion Tensor Imaging Study. J Alzheimers Dis. 2016;49:633–43.PubMedPubMedCentralCrossRef Madhavan A, Schwarz CG, Duffy JR, Strand EA, Machulda MM, Drubach DA, Kantarci K, Przybelski SA, Reid RI, Senjem ML, et al. Characterizing White Matter Tract Degeneration in Syndromic Variants of Alzheimer’s Disease: A Diffusion Tensor Imaging Study. J Alzheimers Dis. 2016;49:633–43.PubMedPubMedCentralCrossRef
2.
3.
go back to reference Ahn HJ, Zamolodchikov D, Cortes-Canteli M, Norris EH, Glickman JF, Strickland S. Alzheimer’s disease peptide beta-amyloid interacts with fibrinogen and induces its oligomerization. Proc Natl Acad Sci U S A. 2010;107:21812–7.PubMedPubMedCentralCrossRefADS Ahn HJ, Zamolodchikov D, Cortes-Canteli M, Norris EH, Glickman JF, Strickland S. Alzheimer’s disease peptide beta-amyloid interacts with fibrinogen and induces its oligomerization. Proc Natl Acad Sci U S A. 2010;107:21812–7.PubMedPubMedCentralCrossRefADS
4.
go back to reference Yuan HF, Li X, Quan QK, Wang NN, Li Y, Li M. Effects of Naoerkang on expressions of beta-amyloid peptide 1–42 and neprilysin in hippocampus in a rat model of Alzheimer’s disease. Zhong Xi Yi Jie He Xue Bao. 2010;8:152–7.PubMedCrossRef Yuan HF, Li X, Quan QK, Wang NN, Li Y, Li M. Effects of Naoerkang on expressions of beta-amyloid peptide 1–42 and neprilysin in hippocampus in a rat model of Alzheimer’s disease. Zhong Xi Yi Jie He Xue Bao. 2010;8:152–7.PubMedCrossRef
5.
go back to reference Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer’s Disease and Some Therapeutic Approaches Targeting A beta by Using Several Synthetic and Herbal Compounds. Oxid Med Cell Longev. 2016;2016:7361613.PubMedCrossRef Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer’s Disease and Some Therapeutic Approaches Targeting A beta by Using Several Synthetic and Herbal Compounds. Oxid Med Cell Longev. 2016;2016:7361613.PubMedCrossRef
7.
go back to reference Saido TC. Alzheimer’s disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol Aging. 1998;19:S69-75.PubMedCrossRef Saido TC. Alzheimer’s disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol Aging. 1998;19:S69-75.PubMedCrossRef
8.
go back to reference Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774.PubMedPubMedCentralCrossRefADS Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774.PubMedPubMedCentralCrossRefADS
9.
go back to reference Derecki NC, Cronk JC, Kipnis J. The role of microglia in brain maintenance: implications for Rett syndrome. Trends Immunol. 2013;34:144–50.PubMedCrossRef Derecki NC, Cronk JC, Kipnis J. The role of microglia in brain maintenance: implications for Rett syndrome. Trends Immunol. 2013;34:144–50.PubMedCrossRef
11.
go back to reference Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci. 2008;28:4283–92.PubMedPubMedCentralCrossRef Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci. 2008;28:4283–92.PubMedPubMedCentralCrossRef
12.
go back to reference Shi Y, Manis M, Long J, Wang K, Sullivan PM, Remolina Serrano J, Hoyle R, Holtzman DM. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J Exp Med. 2019;216:2546–61.PubMedPubMedCentralCrossRef Shi Y, Manis M, Long J, Wang K, Sullivan PM, Remolina Serrano J, Hoyle R, Holtzman DM. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J Exp Med. 2019;216:2546–61.PubMedPubMedCentralCrossRef
13.
go back to reference Streit WJ, Sammons NW, Kuhns AJ, Sparks DL. Dystrophic microglia in the aging human brain. Glia. 2004;45:208–12.PubMedCrossRef Streit WJ, Sammons NW, Kuhns AJ, Sparks DL. Dystrophic microglia in the aging human brain. Glia. 2004;45:208–12.PubMedCrossRef
15.
go back to reference Grubman A, Choo XY, Chew G, Ouyang JF, Sun G, Croft NP, Rossello FJ, Simmons R, Buckberry S, Landin DV, et al. Transcriptional signature in microglia associated with Abeta plaque phagocytosis. Nat Commun. 2021;12:3015.PubMedPubMedCentralCrossRefADS Grubman A, Choo XY, Chew G, Ouyang JF, Sun G, Croft NP, Rossello FJ, Simmons R, Buckberry S, Landin DV, et al. Transcriptional signature in microglia associated with Abeta plaque phagocytosis. Nat Commun. 2021;12:3015.PubMedPubMedCentralCrossRefADS
16.
go back to reference Maes ME, Colombo G, Schulz R, Siegert S. Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges. Neurosci Lett. 2019;707:134310.PubMedPubMedCentralCrossRef Maes ME, Colombo G, Schulz R, Siegert S. Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges. Neurosci Lett. 2019;707:134310.PubMedPubMedCentralCrossRef
17.
go back to reference Ellert-Miklaszewska A, Ochocka N, Maleszewska M, Ding L, Laurini E, Jiang Y, Roura AJ, Giorgio S, Gielniewski B, Pricl S, et al. Efficient and innocuous delivery of small interfering RNA to microglia using an amphiphilic dendrimer nanovector. Nanomedicine (Lond). 2019;14:2441–58.PubMedCrossRef Ellert-Miklaszewska A, Ochocka N, Maleszewska M, Ding L, Laurini E, Jiang Y, Roura AJ, Giorgio S, Gielniewski B, Pricl S, et al. Efficient and innocuous delivery of small interfering RNA to microglia using an amphiphilic dendrimer nanovector. Nanomedicine (Lond). 2019;14:2441–58.PubMedCrossRef
18.
go back to reference Cai Q, Wang L, Deng G, Liu J, Chen Q, Chen Z. Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am J Transl Res. 2016;8:749–64.PubMedPubMedCentral Cai Q, Wang L, Deng G, Liu J, Chen Q, Chen Z. Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am J Transl Res. 2016;8:749–64.PubMedPubMedCentral
19.
go back to reference Kargaard A, Sluijter JPG, Klumperman B. Polymeric siRNA gene delivery - transfection efficiency versus cytotoxicity. J Control Release. 2019;316:263–91.PubMedCrossRef Kargaard A, Sluijter JPG, Klumperman B. Polymeric siRNA gene delivery - transfection efficiency versus cytotoxicity. J Control Release. 2019;316:263–91.PubMedCrossRef
20.
go back to reference Tran Q, Pham TL, Shin HJ, Shin J, Shin N, Kwon HH, Park H, Kim SI, Choi SG, Wu J, et al. Targeting spinal microglia with fexofenadine-loaded nanoparticles prolongs pain relief in a rat model of neuropathic pain. Nanomedicine. 2022;44: 102576.PubMedCrossRef Tran Q, Pham TL, Shin HJ, Shin J, Shin N, Kwon HH, Park H, Kim SI, Choi SG, Wu J, et al. Targeting spinal microglia with fexofenadine-loaded nanoparticles prolongs pain relief in a rat model of neuropathic pain. Nanomedicine. 2022;44: 102576.PubMedCrossRef
21.
go back to reference Shin J, Yin Y, Park H, Park S, Triantafillu UL, Kim Y, Kim SR, Lee SY, Kim DK, Hong J, Kim DW. p38 siRNA-encapsulated PLGA nanoparticles alleviate neuropathic pain behavior in rats by inhibiting microglia activation. Nanomedicine. 2018;13:1607–21.PubMedCrossRef Shin J, Yin Y, Park H, Park S, Triantafillu UL, Kim Y, Kim SR, Lee SY, Kim DK, Hong J, Kim DW. p38 siRNA-encapsulated PLGA nanoparticles alleviate neuropathic pain behavior in rats by inhibiting microglia activation. Nanomedicine. 2018;13:1607–21.PubMedCrossRef
22.
go back to reference Shin HJ, Park H, Shin N, Shin J, Gwon DH, Kwon HH, Yin Y, Hwang JA, Hong J, Heo JY, et al. p66shc siRNA Nanoparticles Ameliorate Chondrocytic Mitochondrial Dysfunction in Osteoarthritis. Int J Nanomed. 2020;15:2379–90.CrossRef Shin HJ, Park H, Shin N, Shin J, Gwon DH, Kwon HH, Yin Y, Hwang JA, Hong J, Heo JY, et al. p66shc siRNA Nanoparticles Ameliorate Chondrocytic Mitochondrial Dysfunction in Osteoarthritis. Int J Nanomed. 2020;15:2379–90.CrossRef
23.
go back to reference Shin N, Shin HJ, Yi Y, Beom J, Lee W, Lee CH, Kim DW. p66shc siRNA-Encapsulated PLGA Nanoparticles Ameliorate Neuropathic Pain Following Spinal Nerve Ligation. Polymers-Basel. 2020;12(5):1014.PubMedPubMedCentralCrossRef Shin N, Shin HJ, Yi Y, Beom J, Lee W, Lee CH, Kim DW. p66shc siRNA-Encapsulated PLGA Nanoparticles Ameliorate Neuropathic Pain Following Spinal Nerve Ligation. Polymers-Basel. 2020;12(5):1014.PubMedPubMedCentralCrossRef
24.
go back to reference Kim SI, Shin J, Tran Q, Park H, Kwon HH, Shin N, Hwang JA, Shin HJ, Lee J, Lee WH, et al. Application of PLGA nanoparticles to enhance the action of duloxetine on microglia in neuropathic pain. Biomater Sci. 2021;9:6295–307.PubMedCrossRef Kim SI, Shin J, Tran Q, Park H, Kwon HH, Shin N, Hwang JA, Shin HJ, Lee J, Lee WH, et al. Application of PLGA nanoparticles to enhance the action of duloxetine on microglia in neuropathic pain. Biomater Sci. 2021;9:6295–307.PubMedCrossRef
25.
go back to reference Shin HJ, Choi SG, Qu F, Yi MH, Lee CH, Kim SR, Kim HG, Beom J, Yi Y, Kim DK, et al. Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury. Nanoscale. 2024;16(2):833–47.PubMedCrossRef Shin HJ, Choi SG, Qu F, Yi MH, Lee CH, Kim SR, Kim HG, Beom J, Yi Y, Kim DK, et al. Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury. Nanoscale. 2024;16(2):833–47.PubMedCrossRef
26.
go back to reference Choi JW, Ju YH, Choi Y, Hyeon SJ, Gadhe CG, Park JH, Kim MS, Baek S, Kim Y, Park KD, et al. PyrPeg, a Blood-Brain-Barrier-Penetrating Two-Photon Imaging Probe, Selectively Detects Neuritic Plaques. Not Tau Aggregates ACS Chem Neurosci. 2020;11:1801–10.PubMedCrossRef Choi JW, Ju YH, Choi Y, Hyeon SJ, Gadhe CG, Park JH, Kim MS, Baek S, Kim Y, Park KD, et al. PyrPeg, a Blood-Brain-Barrier-Penetrating Two-Photon Imaging Probe, Selectively Detects Neuritic Plaques. Not Tau Aggregates ACS Chem Neurosci. 2020;11:1801–10.PubMedCrossRef
27.
go back to reference Lu Y, Sareddy GR, Wang J, Wang R, Li Y, Dong Y, Zhang Q, Liu J, O’Connor JC, Xu J, et al. Neuron-Derived Estrogen Regulates Synaptic Plasticity and Memory. J Neurosci. 2019;39:2792–809.PubMedPubMedCentralCrossRef Lu Y, Sareddy GR, Wang J, Wang R, Li Y, Dong Y, Zhang Q, Liu J, O’Connor JC, Xu J, et al. Neuron-Derived Estrogen Regulates Synaptic Plasticity and Memory. J Neurosci. 2019;39:2792–809.PubMedPubMedCentralCrossRef
28.
go back to reference Ding RT, Li YN, Du A, Yu H, He BL, Shen RP, Zhou JC, Li L, Cui W, Zhang GH, et al. Changes in hippocampal AMPA receptors and cognitive impairments in chronic ketamine addiction models: another understanding of ketamine CNS toxicity. Sci Rep-Uk. 2016;6:38771.CrossRefADS Ding RT, Li YN, Du A, Yu H, He BL, Shen RP, Zhou JC, Li L, Cui W, Zhang GH, et al. Changes in hippocampal AMPA receptors and cognitive impairments in chronic ketamine addiction models: another understanding of ketamine CNS toxicity. Sci Rep-Uk. 2016;6:38771.CrossRefADS
29.
go back to reference Yi YY, Shin HJ, Choi SG, Kang JW, Song HJ, Kim SK, Kim DW. Preventive Effects of Neuroprotective Agents in a Neonatal Rat of Photothrombotic Stroke Model. Int J Mol Sci. 2020;21:3703.PubMedPubMedCentralCrossRef Yi YY, Shin HJ, Choi SG, Kang JW, Song HJ, Kim SK, Kim DW. Preventive Effects of Neuroprotective Agents in a Neonatal Rat of Photothrombotic Stroke Model. Int J Mol Sci. 2020;21:3703.PubMedPubMedCentralCrossRef
30.
go back to reference Tripathi M, Yen PM, Singh BK. Protocol to Generate Senescent Cells from the Mouse Hepatic Cell Line AML12 to Study Hepatic Aging. STAR Protoc. 2020;1: 100064.PubMedPubMedCentralCrossRef Tripathi M, Yen PM, Singh BK. Protocol to Generate Senescent Cells from the Mouse Hepatic Cell Line AML12 to Study Hepatic Aging. STAR Protoc. 2020;1: 100064.PubMedPubMedCentralCrossRef
31.
go back to reference Zeitvogel F, Schmid G, Hao L, Ingino P, Obst M. ScatterJ: An ImageJ plugin for the evaluation of analytical microscopy datasets. J Microsc. 2016;261:148–56.PubMedCrossRef Zeitvogel F, Schmid G, Hao L, Ingino P, Obst M. ScatterJ: An ImageJ plugin for the evaluation of analytical microscopy datasets. J Microsc. 2016;261:148–56.PubMedCrossRef
32.
go back to reference Clement S, Chen W, Deng W, Goldys EM. X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs. Int J Nanomedicine. 2018;13:3553–70.PubMedPubMedCentralCrossRef Clement S, Chen W, Deng W, Goldys EM. X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs. Int J Nanomedicine. 2018;13:3553–70.PubMedPubMedCentralCrossRef
33.
go back to reference Shin HJ, Lee KY, Kang JW, Choi SG, Kim DW, Yi YY. Perampanel Reduces Brain Damage via Induction of M2 Microglia in a Neonatal Rat Stroke Model. Int J Nanomed. 2022;17:2791–804.CrossRef Shin HJ, Lee KY, Kang JW, Choi SG, Kim DW, Yi YY. Perampanel Reduces Brain Damage via Induction of M2 Microglia in a Neonatal Rat Stroke Model. Int J Nanomed. 2022;17:2791–804.CrossRef
34.
go back to reference Zimmermann HR, Yang W, Kasica NP, Zhou X, Wang X, Beckelman BC, Lee J, Furdui CM, Keene CD, Ma T. Brain-specific repression of AMPKalpha1 alleviates pathophysiology in Alzheimer’s model mice. J Clin Invest. 2020;130:3511–27.PubMedPubMedCentralCrossRef Zimmermann HR, Yang W, Kasica NP, Zhou X, Wang X, Beckelman BC, Lee J, Furdui CM, Keene CD, Ma T. Brain-specific repression of AMPKalpha1 alleviates pathophysiology in Alzheimer’s model mice. J Clin Invest. 2020;130:3511–27.PubMedPubMedCentralCrossRef
35.
go back to reference Lee S, Shin HJ, Noh C, Kim SI, Ko YK, Lee SY, Lim C, Hong B, Yang SY, Kim DW, et al. IKBKB siRNA-Encapsulated Poly (Lactic-co-Glycolic Acid) Nanoparticles Diminish Neuropathic Pain by Inhibiting Microglial Activation. Int J Mol Sci. 2021;22:5657.PubMedPubMedCentralCrossRef Lee S, Shin HJ, Noh C, Kim SI, Ko YK, Lee SY, Lim C, Hong B, Yang SY, Kim DW, et al. IKBKB siRNA-Encapsulated Poly (Lactic-co-Glycolic Acid) Nanoparticles Diminish Neuropathic Pain by Inhibiting Microglial Activation. Int J Mol Sci. 2021;22:5657.PubMedPubMedCentralCrossRef
36.
go back to reference Shin HJ, Park H, Shin N, Kwon HH, Yin Y, Hwang JA, Kim SI, Kim SR, Kim S, Joo Y, et al. p47phox siRNA-Loaded PLGA Nanoparticles Suppress ROS/Oxidative Stress-Induced Chondrocyte Damage in Osteoarthritis. Polymers-Basel. 2020;12:443.PubMedPubMedCentralCrossRef Shin HJ, Park H, Shin N, Kwon HH, Yin Y, Hwang JA, Kim SI, Kim SR, Kim S, Joo Y, et al. p47phox siRNA-Loaded PLGA Nanoparticles Suppress ROS/Oxidative Stress-Induced Chondrocyte Damage in Osteoarthritis. Polymers-Basel. 2020;12:443.PubMedPubMedCentralCrossRef
37.
go back to reference Thomas AL, Lehn MA, Janssen EM, Hildeman DA, Chougnet CA. Naturally-aged microglia exhibit phagocytic dysfunction accompanied by gene expression changes reflective of underlying neurologic disease. Sci Rep. 2022;12:19471.PubMedPubMedCentralCrossRefADS Thomas AL, Lehn MA, Janssen EM, Hildeman DA, Chougnet CA. Naturally-aged microglia exhibit phagocytic dysfunction accompanied by gene expression changes reflective of underlying neurologic disease. Sci Rep. 2022;12:19471.PubMedPubMedCentralCrossRefADS
38.
go back to reference Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, Mushayamaha T, Thomas PD. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021;49:D394–403.PubMedCrossRef Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, Mushayamaha T, Thomas PD. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021;49:D394–403.PubMedCrossRef
39.
go back to reference Kim YS, Jung HM, Yoon BE. Exploring glia to better understand Alzheimer’s disease. Anim Cells Syst (Seoul). 2018;22:213–8.PubMedCrossRef Kim YS, Jung HM, Yoon BE. Exploring glia to better understand Alzheimer’s disease. Anim Cells Syst (Seoul). 2018;22:213–8.PubMedCrossRef
40.
go back to reference Chun H, Marriott I, Lee CJ, Cho H. Elucidating the Interactive Roles of Glia in Alzheimer’s Disease Using Established and Newly Developed Experimental Models. Front Neurol. 2018;9:797.PubMedPubMedCentralCrossRef Chun H, Marriott I, Lee CJ, Cho H. Elucidating the Interactive Roles of Glia in Alzheimer’s Disease Using Established and Newly Developed Experimental Models. Front Neurol. 2018;9:797.PubMedPubMedCentralCrossRef
42.
go back to reference Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, Thomas NE, Sharpless NE. Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009;8:439–48.PubMedCrossRef Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, Thomas NE, Sharpless NE. Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009;8:439–48.PubMedCrossRef
43.
go back to reference Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004;18:2699–711.PubMedCrossRef Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004;18:2699–711.PubMedCrossRef
44.
go back to reference Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature. 1998;395:237–43.PubMedCrossRefADS Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature. 1998;395:237–43.PubMedCrossRefADS
45.
go back to reference Hu Y, Fryatt GL, Ghorbani M, Obst J, Menassa DA, Martin-Estebane M, Muntslag TAO, Olmos-Alonso A, Guerrero-Carrasco M, Thomas D, et al. Replicative senescence dictates the emergence of disease-associated microglia and contributes to Abeta pathology. Cell Rep. 2021;35: 109228.PubMedPubMedCentralCrossRef Hu Y, Fryatt GL, Ghorbani M, Obst J, Menassa DA, Martin-Estebane M, Muntslag TAO, Olmos-Alonso A, Guerrero-Carrasco M, Thomas D, et al. Replicative senescence dictates the emergence of disease-associated microglia and contributes to Abeta pathology. Cell Rep. 2021;35: 109228.PubMedPubMedCentralCrossRef
46.
go back to reference Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.PubMedCrossRef Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.PubMedCrossRef
47.
go back to reference Campisi J. d’Adda di Fagagna F: Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.PubMedCrossRef Campisi J. d’Adda di Fagagna F: Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.PubMedCrossRef
49.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. 2017;169(1276–1290): e1217. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. 2017;169(1276–1290): e1217.
51.
go back to reference Zhao S, Chen Z, Han S, Wu H. Effects of the p16/cyclin D1/CDK4/Rb/E2F1 pathway on aberrant lung fibroblast proliferation in neonatal rats exposed to hyperoxia. Exp Ther Med. 2021;22:1057.PubMedPubMedCentralCrossRef Zhao S, Chen Z, Han S, Wu H. Effects of the p16/cyclin D1/CDK4/Rb/E2F1 pathway on aberrant lung fibroblast proliferation in neonatal rats exposed to hyperoxia. Exp Ther Med. 2021;22:1057.PubMedPubMedCentralCrossRef
52.
go back to reference Martin N, Beach D, Gill J. Ageing as developmental decay: insights from p16(INK4a). Trends Mol Med. 2014;20:667–74.PubMedCrossRef Martin N, Beach D, Gill J. Ageing as developmental decay: insights from p16(INK4a). Trends Mol Med. 2014;20:667–74.PubMedCrossRef
53.
go back to reference Burton DG, Faragher RG. Cellular senescence: from growth arrest to immunogenic conversion. Age (Dordr). 2015;37:27.PubMedCrossRef Burton DG, Faragher RG. Cellular senescence: from growth arrest to immunogenic conversion. Age (Dordr). 2015;37:27.PubMedCrossRef
54.
go back to reference Schosserer M, Grillari J, Breitenbach M. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy. Front Oncol. 2017;7:278.PubMedPubMedCentralCrossRef Schosserer M, Grillari J, Breitenbach M. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy. Front Oncol. 2017;7:278.PubMedPubMedCentralCrossRef
56.
go back to reference Frey N, Venturelli S, Zender L, Bitzer M. Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics. Nat Rev Gastroenterol Hepatol. 2018;15:81–95.PubMedCrossRef Frey N, Venturelli S, Zender L, Bitzer M. Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics. Nat Rev Gastroenterol Hepatol. 2018;15:81–95.PubMedCrossRef
57.
go back to reference Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry. 2011;50:5566–82.PubMedCrossRef Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry. 2011;50:5566–82.PubMedCrossRef
58.
go back to reference LaPak KM, Burd CE. The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res. 2014;12:167–83.PubMedCrossRef LaPak KM, Burd CE. The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res. 2014;12:167–83.PubMedCrossRef
59.
go back to reference Matsudaira T, Nakano S, Konishi Y, Kawamoto S, Uemura K, Kondo T, Sakurai K, Ozawa T, Hikida T, Komine O, et al. Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype. Commun Biol. 2023;6:665.PubMedPubMedCentralCrossRef Matsudaira T, Nakano S, Konishi Y, Kawamoto S, Uemura K, Kondo T, Sakurai K, Ozawa T, Hikida T, Komine O, et al. Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype. Commun Biol. 2023;6:665.PubMedPubMedCentralCrossRef
60.
go back to reference Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16:1217–26.PubMedCrossRef Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16:1217–26.PubMedCrossRef
62.
go back to reference Navarro V, Sanchez-Mejias E, Jimenez S, Munoz-Castro C, Sanchez-Varo R, Davila JC, Vizuete M, Gutierrez A, Vitorica J. Microglia in Alzheimer’s Disease: Activated. Dysfunctional or Degenerative Front Aging Neurosci. 2018;10:140.PubMedPubMedCentralCrossRef Navarro V, Sanchez-Mejias E, Jimenez S, Munoz-Castro C, Sanchez-Varo R, Davila JC, Vizuete M, Gutierrez A, Vitorica J. Microglia in Alzheimer’s Disease: Activated. Dysfunctional or Degenerative Front Aging Neurosci. 2018;10:140.PubMedPubMedCentralCrossRef
63.
go back to reference Swanson A, Wolf T, Sitzmann A, Willette AA. Neuroinflammation in Alzheimer’s disease: Pleiotropic roles for cytokines and neuronal pentraxins. Behav Brain Res. 2018;347:49–56.PubMedPubMedCentralCrossRef Swanson A, Wolf T, Sitzmann A, Willette AA. Neuroinflammation in Alzheimer’s disease: Pleiotropic roles for cytokines and neuronal pentraxins. Behav Brain Res. 2018;347:49–56.PubMedPubMedCentralCrossRef
64.
go back to reference Daria A, Colombo A, Llovera G, Hampel H, Willem M, Liesz A, Haass C, Tahirovic S. Young microglia restore amyloid plaque clearance of aged microglia. Embo J. 2017;36:583–603.PubMedCrossRef Daria A, Colombo A, Llovera G, Hampel H, Willem M, Liesz A, Haass C, Tahirovic S. Young microglia restore amyloid plaque clearance of aged microglia. Embo J. 2017;36:583–603.PubMedCrossRef
66.
go back to reference Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 2014;10:217–24.PubMedCrossRef Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 2014;10:217–24.PubMedCrossRef
67.
go back to reference Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT. Age-related alterations in the dynamic behavior of microglia. Aging Cell. 2011;10:263–76.PubMedCrossRef Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT. Age-related alterations in the dynamic behavior of microglia. Aging Cell. 2011;10:263–76.PubMedCrossRef
68.
go back to reference Ng PY, McNeely TL, Baker DJ. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J. 2023;290:1326–39.PubMedCrossRef Ng PY, McNeely TL, Baker DJ. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J. 2023;290:1326–39.PubMedCrossRef
69.
go back to reference Hou J, Chen Y, Grajales-Reyes G, Colonna M. TREM2 dependent and independent functions of microglia in Alzheimer’s disease. Mol Neurodegener. 2022;17:84.PubMedPubMedCentralCrossRef Hou J, Chen Y, Grajales-Reyes G, Colonna M. TREM2 dependent and independent functions of microglia in Alzheimer’s disease. Mol Neurodegener. 2022;17:84.PubMedPubMedCentralCrossRef
70.
go back to reference Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, Zhou Y, Cairns NJ, Kambal A, et al. TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease. Cell. 2017;170:649-663 e613.PubMedPubMedCentralCrossRef Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, Zhou Y, Cairns NJ, Kambal A, et al. TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease. Cell. 2017;170:649-663 e613.PubMedPubMedCentralCrossRef
71.
go back to reference Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, Zhang Y, Spevak W, Lin J, Phan NY, et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun. 2019;10:3758.PubMedPubMedCentralCrossRefADS Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, Zhang Y, Spevak W, Lin J, Phan NY, et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun. 2019;10:3758.PubMedPubMedCentralCrossRefADS
72.
go back to reference Casali BT, MacPherson KP, Reed-Geaghan EG, Landreth GE. Microglia depletion rapidly and reversibly alters amyloid pathology by modification of plaque compaction and morphologies. Neurobiol Dis. 2020;142: 104956.PubMedPubMedCentralCrossRef Casali BT, MacPherson KP, Reed-Geaghan EG, Landreth GE. Microglia depletion rapidly and reversibly alters amyloid pathology by modification of plaque compaction and morphologies. Neurobiol Dis. 2020;142: 104956.PubMedPubMedCentralCrossRef
Metadata
Title
Rejuvenating aged microglia by p16ink4a-siRNA-loaded nanoparticles increases amyloid-β clearance in animal models of Alzheimer’s disease
Authors
Hyo Jung Shin
In Soo Kim
Seung Gyu Choi
Kayoung Lee
Hyewon Park
Juhee Shin
Dayoung Kim
Jaewon Beom
Yoon Young Yi
Deepak Prasad Gupta
Gyun Jee Song
Won-Suk Chung
C. Justin Lee
Dong Woon Kim
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2024
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-024-00715-x

Other articles of this Issue 1/2024

Molecular Neurodegeneration 1/2024 Go to the issue