Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2020

01-12-2020 | Frontotemporal Dementia | Review

Imaging biomarkers in neurodegeneration: current and future practices

Authors: Peter N. E. Young, Mar Estarellas, Emma Coomans, Meera Srikrishna, Helen Beaumont, Anne Maass, Ashwin V. Venkataraman, Rikki Lissaman, Daniel Jiménez, Matthew J. Betts, Eimear McGlinchey, David Berron, Antoinette O’Connor, Nick C. Fox, Joana B. Pereira, William Jagust, Stephen F. Carter, Ross W. Paterson, Michael Schöll

Published in: Alzheimer's Research & Therapy | Issue 1/2020

Login to get access

Abstract

There is an increasing role for biological markers (biomarkers) in the understanding and diagnosis of neurodegenerative disorders. The application of imaging biomarkers specifically for the in vivo investigation of neurodegenerative disorders has increased substantially over the past decades and continues to provide further benefits both to the diagnosis and understanding of these diseases. This review forms part of a series of articles which stem from the University College London/University of Gothenburg course “Biomarkers in neurodegenerative diseases”. In this review, we focus on neuroimaging, specifically positron emission tomography (PET) and magnetic resonance imaging (MRI), giving an overview of the current established practices clinically and in research as well as new techniques being developed. We will also discuss the use of machine learning (ML) techniques within these fields to provide additional insights to early diagnosis and multimodal analysis.
Literature
11.
go back to reference Mosconi L, Berti V, Glodzik L, Pupi A, de Santi S, de Leon MJ. Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. J Alzheimer’s Disease. 2010;20:843–54.CrossRef Mosconi L, Berti V, Glodzik L, Pupi A, de Santi S, de Leon MJ. Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. J Alzheimer’s Disease. 2010;20:843–54.CrossRef
12.
go back to reference Smailagic N, Vacante M, Hyde C, Martin S, Ukoumunne O, Sachpekidis C. 18F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Vol. 2017, Cochrane Database of Systematic Reviews. Wiley; 2015. Smailagic N, Vacante M, Hyde C, Martin S, Ukoumunne O, Sachpekidis C. 18F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Vol. 2017, Cochrane Database of Systematic Reviews. Wiley; 2015.
27.
go back to reference Wolk DA, Zhang Z, Boudhar S, Clark CM, Pontecorvo MJ, Arnold SE. Amyloid imaging in Alzheimer’s disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. Journal of neurology, neurosurgery, and psychiatry. 2012/07/11. 2012;83(9):923–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22791901. Wolk DA, Zhang Z, Boudhar S, Clark CM, Pontecorvo MJ, Arnold SE. Amyloid imaging in Alzheimer’s disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. Journal of neurology, neurosurgery, and psychiatry. 2012/07/11. 2012;83(9):923–6. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22791901.
28.
go back to reference Choi SR, Golding G, Zhuang Z, Zhang W, Lim N, Hefti F, et al. Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2009/10/16. 2009;50(11):1887–94. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19837759. Choi SR, Golding G, Zhuang Z, Zhang W, Lim N, Hefti F, et al. Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2009/10/16. 2009;50(11):1887–94. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19837759.
29.
go back to reference Ikonomovic MD, Buckley CJ, Heurling K, Sherwin P, Jones PA, Zanette M, et al. Post-mortem histopathology underlying β-amyloid PET imaging following flutemetamol F 18 injection. Acta Neuropathologica Communications. 2016;4(1):130. Available from: https://doi.org/10.1186/s40478-016-0399-z. Ikonomovic MD, Buckley CJ, Heurling K, Sherwin P, Jones PA, Zanette M, et al. Post-mortem histopathology underlying β-amyloid PET imaging following flutemetamol F 18 injection. Acta Neuropathologica Communications. 2016;4(1):130. Available from: https://​doi.​org/​10.​1186/​s40478-016-0399-z.​
34.
go back to reference Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous Sr MD, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s & dementia : the journal of the Alzheimer’s association. 2014/10/28. 2015 Jan;11(1):1-15.e154. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25443857. Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous Sr MD, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s & dementia : the journal of the Alzheimer’s association. 2014/10/28. 2015 Jan;11(1):1-15.e154. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25443857.
35.
go back to reference Salvadó G, Molinuevo JL, Brugulat-Serrat A, Falcon C, Grau-Rivera O, Suárez-Calvet M, et al. Centiloid cut-off values for optimal agreement between PET and CSF core AD biomarkers. Alzheimer’s Research & Therapy. 2019;11(1):27. Available from: https://doi.org/10.1186/s13195-019-0478-z. Salvadó G, Molinuevo JL, Brugulat-Serrat A, Falcon C, Grau-Rivera O, Suárez-Calvet M, et al. Centiloid cut-off values for optimal agreement between PET and CSF core AD biomarkers. Alzheimer’s Research & Therapy. 2019;11(1):27. Available from: https://​doi.​org/​10.​1186/​s13195-019-0478-z.
41.
go back to reference Ketter N, Brashear HR, Bogert J, Di J, Miaux Y, Gass A, et al. Central review of amyloid-related imaging abnormalities in two phase III clinical trials of bapineuzumab in mild-to-moderate Alzheimer’s disease patients. Journal of Alzheimer’s disease : JAD. 2017 [cited 2019 Aug 15];57(2):557–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28269765. Ketter N, Brashear HR, Bogert J, Di J, Miaux Y, Gass A, et al. Central review of amyloid-related imaging abnormalities in two phase III clinical trials of bapineuzumab in mild-to-moderate Alzheimer’s disease patients. Journal of Alzheimer’s disease : JAD. 2017 [cited 2019 Aug 15];57(2):557–73. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28269765.
43.
go back to reference Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Annals of Neurology. 2016;79(1):110–9. Available from: https://doi.org/10.1002/ana.24546. Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Annals of Neurology. 2016;79(1):110–9. Available from: https://​doi.​org/​10.​1002/​ana.​24546.
46.
go back to reference Marquié M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015 1;78(5):787–800. Available from: https://doi.org/10.1002/ana.24517. Marquié M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015 1;78(5):787–800. Available from: https://​doi.​org/​10.​1002/​ana.​24517.
47.
go back to reference Marquié M, Normandin MD, Meltzer AC, Siao Tick Chong M, Andrea N v, Antón-Fernández A, et al. Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Annals of Neurology. 2017;81(1):117–28. Available from: https://doi.org/10.1002/ana.24844. Marquié M, Normandin MD, Meltzer AC, Siao Tick Chong M, Andrea N v, Antón-Fernández A, et al. Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Annals of Neurology. 2017;81(1):117–28. Available from: https://​doi.​org/​10.​1002/​ana.​24844.
49.
51.
go back to reference Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of Tau pathology in Alzheimer disease. J Nucl Med. 2013;54(8):1420–7.PubMedCrossRef Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of Tau pathology in Alzheimer disease. J Nucl Med. 2013;54(8):1420–7.PubMedCrossRef
54.
55.
go back to reference Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). Journal of medicinal chemistry. 2016 [cited 2019 Aug 15];59(10):4778–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27088900. Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(Fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([(18)F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). Journal of medicinal chemistry. 2016 [cited 2019 Aug 15];59(10):4778–89. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27088900.
56.
go back to reference Aguero C, Dhaynaut M, Normandin MD, Amaral AC, Guehl NJ, Neelamegam R, et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathologica Communications. 2019;7(1):37. Available from: https://doi.org/10.1186/s40478-019-0686-6. Aguero C, Dhaynaut M, Normandin MD, Amaral AC, Guehl NJ, Neelamegam R, et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathologica Communications. 2019;7(1):37. Available from: https://​doi.​org/​10.​1186/​s40478-019-0686-6.
58.
go back to reference Sanabria Bohórquez S, Marik J, Ogasawara A, Tinianow JN, Gill HS, Barret O, et al. [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease. European journal of Nuclear Medicine and Molecular Imaging. 2019;46(10):2077–89. Available from: https://doi.org/10.1007/s00259-019-04399-0. Sanabria Bohórquez S, Marik J, Ogasawara A, Tinianow JN, Gill HS, Barret O, et al. [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease. European journal of Nuclear Medicine and Molecular Imaging. 2019;46(10):2077–89. Available from: https://​doi.​org/​10.​1007/​s00259-019-04399-0.
59.
go back to reference Fawaz M v, Brooks AF, Rodnick ME, Carpenter GM, Shao X, Desmond TJ, et al. High affinity radiopharmaceuticals based upon lansoprazole for PET imaging of aggregated tau in Alzheimer’s disease and progressive supranuclear palsy: synthesis, preclinical evaluation, and lead selection. ACS chemical neuroscience. 2014/06/16. 2014;5(8):718–30. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24896980. Fawaz M v, Brooks AF, Rodnick ME, Carpenter GM, Shao X, Desmond TJ, et al. High affinity radiopharmaceuticals based upon lansoprazole for PET imaging of aggregated tau in Alzheimer’s disease and progressive supranuclear palsy: synthesis, preclinical evaluation, and lead selection. ACS chemical neuroscience. 2014/06/16. 2014;5(8):718–30. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24896980.
60.
go back to reference Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(Fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). Journal of Medicinal Chemistry. 2016;59(10):4778–89. Available from: https://doi.org/10.1021/acs.jmedchem.6b00166. Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(Fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). Journal of Medicinal Chemistry. 2016;59(10):4778–89. Available from: https://​doi.​org/​10.​1021/​acs.​jmedchem.​6b00166.
67.
go back to reference Xia C, Makaretz SJ, Caso C, McGinnis S, Gomperts SN, Sepulcre J, et al. Association of in vivo [18F]AV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA neurology. 2017 [cited 2019 Aug 15];74(4):427–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28241163. Xia C, Makaretz SJ, Caso C, McGinnis S, Gomperts SN, Sepulcre J, et al. Association of in vivo [18F]AV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA neurology. 2017 [cited 2019 Aug 15];74(4):427–36. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28241163.
68.
69.
go back to reference Josephs KA, Murray ME, Tosakulwong N, Whitwell JL, Knopman DS, Machulda MM, et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta neuropathologica. 2017 [cited 2019 Aug 15];133(5):705–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28160067. Josephs KA, Murray ME, Tosakulwong N, Whitwell JL, Knopman DS, Machulda MM, et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta neuropathologica. 2017 [cited 2019 Aug 15];133(5):705–15. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28160067.
70.
go back to reference Adams JN, Lockhart SN, Li L, Jagust WJ. Relationships between tau and glucose metabolism reflect Alzheimer’s disease pathology in cognitively normal older adults. Cerebral cortex (New York, NY : 1991). 2019 [cited 2019 Aug 15];29(5):1997–2009. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29912295. Adams JN, Lockhart SN, Li L, Jagust WJ. Relationships between tau and glucose metabolism reflect Alzheimer’s disease pathology in cognitively normal older adults. Cerebral cortex (New York, NY : 1991). 2019 [cited 2019 Aug 15];29(5):1997–2009. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29912295.
72.
74.
go back to reference Pontecorvo MJ, Devous MD, Kennedy I, Navitsky M, Lu M, Galante N, et al. A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer’s disease dementia. Brain. 2019 [cited 2019 Aug 15];142(6):1723–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31009046. Pontecorvo MJ, Devous MD, Kennedy I, Navitsky M, Lu M, Galante N, et al. A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer’s disease dementia. Brain. 2019 [cited 2019 Aug 15];142(6):1723–35. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​31009046.
75.
go back to reference Ossenkoppele R, Rabinovici GD, Smith R, Cho H, Schöll M, Strandberg O, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2018 [cited 2019 Aug 15];320(11):1151–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30326496. Ossenkoppele R, Rabinovici GD, Smith R, Cho H, Schöll M, Strandberg O, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2018 [cited 2019 Aug 15];320(11):1151–62. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​30326496.
77.
go back to reference Wang L, Benzinger TL, Su Y, Christensen J, Friedrichsen K, Aldea P, et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA neurology. 2016 [cited 2019 Aug 15];73(9):1070–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27454922. Wang L, Benzinger TL, Su Y, Christensen J, Friedrichsen K, Aldea P, et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA neurology. 2016 [cited 2019 Aug 15];73(9):1070–7. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27454922.
80.
82.
go back to reference Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991 [cited 2019 Aug 15];30(4):572–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1789684. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991 [cited 2019 Aug 15];30(4):572–80. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​1789684.
83.
86.
go back to reference Vogl C, Tanifuji S, Danis B, Daniels V, Foerch P, Wolff C, et al. Synaptic vesicle glycoprotein 2A modulates vesicular release and calcium channel function at peripheral sympathetic synapses. Eur J Neurosci. 2015;41(4):398–409. Available from: https://doi.org/10.1111/ejn.12799. Vogl C, Tanifuji S, Danis B, Daniels V, Foerch P, Wolff C, et al. Synaptic vesicle glycoprotein 2A modulates vesicular release and calcium channel function at peripheral sympathetic synapses. Eur J Neurosci. 2015;41(4):398–409. Available from: https://​doi.​org/​10.​1111/​ejn.​12799.
89.
go back to reference Finnema SJ, Nabulsi NB, Mercier J, Lin S-F, Chen M-K, Matuskey D, et al. Kinetic evaluation and test-retest reproducibility of [11C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2018 [cited 2019 Aug 15];38(11):2041–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28792356. Finnema SJ, Nabulsi NB, Mercier J, Lin S-F, Chen M-K, Matuskey D, et al. Kinetic evaluation and test-retest reproducibility of [11C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2018 [cited 2019 Aug 15];38(11):2041–52. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28792356.
91.
go back to reference Bretin F, Bahri MA, Bernard C, Warnock G, Aerts J, Mestdagh N, et al. Biodistribution and radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H: first-in-human study. Molecular Imaging Biol. 2015;17(4):557–64. Available from: https://doi.org/10.1007/s11307-014-0820-6. Bretin F, Bahri MA, Bernard C, Warnock G, Aerts J, Mestdagh N, et al. Biodistribution and radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H: first-in-human study. Molecular Imaging Biol. 2015;17(4):557–64. Available from: https://​doi.​org/​10.​1007/​s11307-014-0820-6.
92.
go back to reference Bastin C, Bahri MA, Meyer F, Manard M, Delhaye E, Plenevaux A, et al. In vivo imaging of synaptic loss in Alzheimer’s disease with [18F]UCB-H positron emission tomography. Eur J Nuclear Med Molecular Imaging. 2020;47(2):390–402. Available from: https://doi.org/10.1007/s00259-019-04461-x. Bastin C, Bahri MA, Meyer F, Manard M, Delhaye E, Plenevaux A, et al. In vivo imaging of synaptic loss in Alzheimer’s disease with [18F]UCB-H positron emission tomography. Eur J Nuclear Med Molecular Imaging. 2020;47(2):390–402. Available from: https://​doi.​org/​10.​1007/​s00259-019-04461-x.
100.
102.
107.
go back to reference Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993 [cited 2019 Aug 22];43(2):250–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8094895. Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993 [cited 2019 Aug 22];43(2):250–60. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8094895.
110.
go back to reference McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia 2011/04/21. 2011;7(3):263–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21514250. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia 2011/04/21. 2011;7(3):263–9. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21514250.
113.
go back to reference Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain : a journal of neurology. 2011/08/02. 2011 Sep;134(Pt 9):2456–77. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21810890. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain : a journal of neurology. 2011/08/02. 2011 Sep;134(Pt 9):2456–77. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21810890.
116.
go back to reference Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Movement disorders : official journal of the Movement Disorder Society. 2017/05/03. 2017 Jun;32(6):853–64. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28467028. Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Movement disorders : official journal of the Movement Disorder Society. 2017/05/03. 2017 Jun;32(6):853–64. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28467028.
120.
123.
go back to reference Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. JAMA Neurology. 2000;57(3):339–44. Available from: https://doi.org/10.1001/archneur.57.3.339. Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. JAMA Neurology. 2000;57(3):339–44. Available from: https://​doi.​org/​10.​1001/​archneur.​57.​3.​339.
125.
go back to reference Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, et al. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cerebral Cortex. 2008;19(3):497–510. Available from: https://doi.org/10.1093/cercor/bhn113. Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, et al. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cerebral Cortex. 2008;19(3):497–510. Available from: https://​doi.​org/​10.​1093/​cercor/​bhn113.
127.
go back to reference Du A-T, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain. 2007;130(4):1159–66. Available from: https://doi.org/10.1093/brain/awm016. Du A-T, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain. 2007;130(4):1159–66. Available from: https://​doi.​org/​10.​1093/​brain/​awm016.
128.
129.
go back to reference Wang J, Ekin A, Haan G de. Shape analysis of brain ventricles for improved classification of Alzheimer’s patients. In: 2008 15th IEEE International Conference on Image Processing. 2008. p. 2252–5. Wang J, Ekin A, Haan G de. Shape analysis of brain ventricles for improved classification of Alzheimer’s patients. In: 2008 15th IEEE International Conference on Image Processing. 2008. p. 2252–5.
133.
go back to reference Carlesimo GA, Piras F, Orfei MD, Iorio M, Caltagirone C, Spalletta G. Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer’s disease. Alzheimer’s & dementia (Amsterdam, Netherlands). 2015;1(1):24–32. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27239489. Carlesimo GA, Piras F, Orfei MD, Iorio M, Caltagirone C, Spalletta G. Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer’s disease. Alzheimer’s & dementia (Amsterdam, Netherlands). 2015;1(1):24–32. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27239489.
138.
go back to reference Sullivan E v, Adalsteinsson E, Rohlfing T, Pfefferbaum A. Relevance of iron deposition in deep gray matter brain structures to cognitive and motor performance in healthy elderly men and women: exploratory findings. Brain Imaging Behavior. 2009 ;3(2):167–75. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20161183. Sullivan E v, Adalsteinsson E, Rohlfing T, Pfefferbaum A. Relevance of iron deposition in deep gray matter brain structures to cognitive and motor performance in healthy elderly men and women: exploratory findings. Brain Imaging Behavior. 2009 ;3(2):167–75. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20161183.
139.
141.
142.
go back to reference Möller HE, Bossoni L, Connor JR, Crichton RR, Does MD, Ward RJ, et al. Iron, myelin, and the brain: neuroimaging meets neurobiology. Vol. 42, Trends in Neurosciences. Elsevier Ltd; 2019. p. 384–401. Möller HE, Bossoni L, Connor JR, Crichton RR, Does MD, Ward RJ, et al. Iron, myelin, and the brain: neuroimaging meets neurobiology. Vol. 42, Trends in Neurosciences. Elsevier Ltd; 2019. p. 384–401.
144.
go back to reference Wisnieff C, Ramanan S, Olesik J, Gauthier S, Wang Y, Pitt D. Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron. Magnetic Resonance Med. 2014/08/18. 2015;74(2):564–70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25137340. Wisnieff C, Ramanan S, Olesik J, Gauthier S, Wang Y, Pitt D. Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron. Magnetic Resonance Med. 2014/08/18. 2015;74(2):564–70. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25137340.
146.
go back to reference Acosta-Cabronero J, Cardenas-Blanco A, Betts MJ, Butryn M, Valdes-Herrera JP, Galazky I, et al. The whole-brain pattern of magnetic susceptibility perturbations in Parkinson’s disease. Brain. 2016;140(1):118–31. Available from: https://doi.org/10.1093/brain/aww278. Acosta-Cabronero J, Cardenas-Blanco A, Betts MJ, Butryn M, Valdes-Herrera JP, Galazky I, et al. The whole-brain pattern of magnetic susceptibility perturbations in Parkinson’s disease. Brain. 2016;140(1):118–31. Available from: https://​doi.​org/​10.​1093/​brain/​aww278.
173.
go back to reference Tang M, Chen X, Zhou Q, Liu B, Liu Y, Liu S, et al. Quantitative assessment of amyotrophic lateral sclerosis with diffusion tensor imaging in 3.0T magnetic resonance. International journal of clinical and experimental medicine. 2015;8(5):8295–303. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26221413. Tang M, Chen X, Zhou Q, Liu B, Liu Y, Liu S, et al. Quantitative assessment of amyotrophic lateral sclerosis with diffusion tensor imaging in 3.0T magnetic resonance. International journal of clinical and experimental medicine. 2015;8(5):8295–303. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26221413.
181.
go back to reference Pereira JB, Strandberg TO, Palmqvist S, Volpe G, van Westen D, Westman E, et al. Amyloid network topology characterizes the progression of Alzheimer’s disease during the predementia stages. Cerebral cortex (New York, NY : 1991). 2018;28(1):340–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29136123. Pereira JB, Strandberg TO, Palmqvist S, Volpe G, van Westen D, Westman E, et al. Amyloid network topology characterizes the progression of Alzheimer’s disease during the predementia stages. Cerebral cortex (New York, NY : 1991). 2018;28(1):340–9. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29136123.
183.
go back to reference Pellegrini E, Ballerini L, Hernandez MDCV, Chappell FM, González-Castro V, Anblagan D, et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dementia (Amsterdam, Netherlands). 2018;10:519–35. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30364671. Pellegrini E, Ballerini L, Hernandez MDCV, Chappell FM, González-Castro V, Anblagan D, et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer’s Dementia (Amsterdam, Netherlands). 2018;10:519–35. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​30364671.
187.
go back to reference Dimitriadis SI, Liparas D, Initiative ADN. How random is the random forest? Random forest algorithm on the service of structural imaging biomarkers for Alzheimer’s disease: from Alzheimer’s disease neuroimaging initiative (ADNI) database. Neural Regeneration Res. 2018;13(6):962–70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29926817. Dimitriadis SI, Liparas D, Initiative ADN. How random is the random forest? Random forest algorithm on the service of structural imaging biomarkers for Alzheimer’s disease: from Alzheimer’s disease neuroimaging initiative (ADNI) database. Neural Regeneration Res. 2018;13(6):962–70. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29926817.
193.
go back to reference Bouts MJRJ, van der Grond J, Vernooij MW, Koini M, Schouten TM, de Vos F, et al. Detection of mild cognitive impairment in a community-dwelling population using quantitative, multiparametric MRI-based classification. Human Brain Mapping. 2019/02/25. 2019;40(9):2711–22. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30803110. Bouts MJRJ, van der Grond J, Vernooij MW, Koini M, Schouten TM, de Vos F, et al. Detection of mild cognitive impairment in a community-dwelling population using quantitative, multiparametric MRI-based classification. Human Brain Mapping. 2019/02/25. 2019;40(9):2711–22. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​30803110.
194.
go back to reference Lian C, Liu M, Zhang J, Shen D. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans Pattern Anal Mach Intell. 2018;1. Lian C, Liu M, Zhang J, Shen D. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans Pattern Anal Mach Intell. 2018;1.
197.
go back to reference Ruiz E, Ramírez J, Górriz JM, Casillas J, Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s disease computer-aided diagnosis: histogram-based analysis of regional MRI volumes for feature selection and classification. J Alzheimer’s Dis. 2018 [cited 2019 Aug 16];65(3):819–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29966190. Ruiz E, Ramírez J, Górriz JM, Casillas J, Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s disease computer-aided diagnosis: histogram-based analysis of regional MRI volumes for feature selection and classification. J Alzheimer’s Dis. 2018 [cited 2019 Aug 16];65(3):819–42. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29966190.
201.
go back to reference Ardekani BA, Bermudez E, Mubeen AM, Bachman AH, Alzheimer’s Disease Neuroimaging Initiative. Prediction of incipient Alzheimer’s disease dementia in patients with mild cognitive impairment. J Alzheimer’s Dis. 2017 [cited 2019 Aug 16];55(1):269–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27662309. Ardekani BA, Bermudez E, Mubeen AM, Bachman AH, Alzheimer’s Disease Neuroimaging Initiative. Prediction of incipient Alzheimer’s disease dementia in patients with mild cognitive impairment. J Alzheimer’s Dis. 2017 [cited 2019 Aug 16];55(1):269–81. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27662309.
202.
go back to reference Wang S, Zhang Y, Liu G, Phillips P, Yuan T-F. Detection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imaging. JournalAlzheimer’s Dis. 2016 ;50(1):233–48. [cited 2019 Aug 16] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26682696. Wang S, Zhang Y, Liu G, Phillips P, Yuan T-F. Detection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imaging. JournalAlzheimer’s Dis. 2016 ;50(1):233–48. [cited 2019 Aug 16] Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26682696.
211.
go back to reference Luo S, Li X, Li J. Automatic Alzheimer’s fisease recognition from MRI data dsing deep learning method. J Appl Mathematics Physics. 2017;05(09):1892–8.CrossRef Luo S, Li X, Li J. Automatic Alzheimer’s fisease recognition from MRI data dsing deep learning method. J Appl Mathematics Physics. 2017;05(09):1892–8.CrossRef
214.
220.
go back to reference Neffati S, ben Abdellafou K, Jaffel I, Taouali O, Bouzrara K. An improved machine learning technique based on downsized KPCA for Alzheimer’s disease classification. Int J Imaging Syst Technol. 2019;29(2):121–31. Available from: https://doi.org/10.1002/ima.22304. Neffati S, ben Abdellafou K, Jaffel I, Taouali O, Bouzrara K. An improved machine learning technique based on downsized KPCA for Alzheimer’s disease classification. Int J Imaging Syst Technol. 2019;29(2):121–31. Available from: https://​doi.​org/​10.​1002/​ima.​22304.
222.
go back to reference Asim Y, Raza B, Malik AK, Rathore S, Hussain L, Iftikhar MA. A multi-modal, multi-atlas-based approach for Alzheimer detection via machine learning. Int J Imaging Syst Technol. 2018 1;28(2):113–23. Available from: https://doi.org/10.1002/ima.22263. Asim Y, Raza B, Malik AK, Rathore S, Hussain L, Iftikhar MA. A multi-modal, multi-atlas-based approach for Alzheimer detection via machine learning. Int J Imaging Syst Technol. 2018 1;28(2):113–23. Available from: https://​doi.​org/​10.​1002/​ima.​22263.
Metadata
Title
Imaging biomarkers in neurodegeneration: current and future practices
Authors
Peter N. E. Young
Mar Estarellas
Emma Coomans
Meera Srikrishna
Helen Beaumont
Anne Maass
Ashwin V. Venkataraman
Rikki Lissaman
Daniel Jiménez
Matthew J. Betts
Eimear McGlinchey
David Berron
Antoinette O’Connor
Nick C. Fox
Joana B. Pereira
William Jagust
Stephen F. Carter
Ross W. Paterson
Michael Schöll
Publication date
01-12-2020

Other articles of this Issue 1/2020

Alzheimer's Research & Therapy 1/2020 Go to the issue